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Profiling the transcriptomic age of single-
cells in humans
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Although aging clocks predicting the age of individual organisms have been extensively studied, the
age of individual cells remained largely unexplored. Most recently single-cell omics clocks were
developed for themouse, however, extensive profiling the age of human cells is still lacking. To fill this
gap, here we use available scRNA-seq data of 1,058,909 blood cells of 508 healthy, human donors
(between 19 and 75 years), for developing single-cell transcriptomic clocks and predicting the
age of human blood cells. By the application of the proposed cell-type-specific single-cell clocks,
our main observations are that (i) transcriptomic age is associated with cellular senescence; (ii) the
transcriptomic age of classical monocytes as well as naive B and T cells is decreased in moderate
COVID-19 followed by an increase for some cell types in severe COVID-19; and (iii) the human embryo
cells transcriptomically rejuvenated at the morulae and blastocyst stages. In summary, here we
demonstrate that single-cell transcriptomic clocks are useful tools to investigate aging and
rejuvenation at the single-cell level.

An aging society poses enormous challenges to both healthcare and the
economy. To handle this growing problem we need to uncover the internal
mechanisms of aging. Until now, it has not been possible to measure the
aging process with a precision that can be used for practical applications.
However, the recently developed epigenetic aging clocks, i.e., machine
learning models that predict an individual’s age using epigenetic markers,
have emerged as promising tools for measuring the aging process1–8. In
addition to epigenetic clocks, transcriptomic clocks were also developed for
the estimation of age9–13. Common in these “omics” aging clocks is that they
havebeen trainedondataoriginating fromtissue-level (“bulk”) samples (e.g.
blood, saliva, skin, andmulti-tissue) that contain a mixture of multiple cells
of various cell types14. Given that cell types exhibit distinct methylation and
gene expression patterns, the predictions of the aging clocks might be
skewed by age-related changes in cell compositions4,15,16.

Single-cell omics, especially single-cell transcriptomics is, revolutioniz-
ing cell biology by profiling individual cells of different cell types hence serves
as a promising tool to measure the aging process at the single-cell level17–19.
Importantly, using single-cell data instead of bulk samples excludes cell
composition bias14. This has the promise to dissect the role of tissue het-
erogeneity in biological aging at the cellular level for multicellular organisms.

Recently, an algorithm (scAge) was developed that can determine the
age of single cells based on methylation data and evaluated the age of
different cells (such as hepatocytes, muscle stem cells, and various embryo

cells) from mice20. As scAge was trained using bulk tissue data, the devel-
opment of a cell-level aging clock directly trained on single-cell data
remained a challenge.

Filling this gap a cell-type-specific single-cell transcriptomic aging
clock was developed for neurogenic regions of the mouse and revealed that
heterochronic parabiosis and exercise reverse transcriptomic aging in
neurogenic regions21. Furthermore a very recent study developed single-cell
transcriptomic aging clocks using human peripheral blood mononuclear
cells (PBMC) and they revealed that supercentenarians weremuch younger
than their actual age22. Importantly, the above-mentioned transcriptomic
clocks, although using single-cell data, mainly focused on the age prediction
of individuals (mice or humans) instead of cells.

Here, we developed human cell-type-specific aging clocks directly
trained on single-cell transcriptomic data and focused on the age prediction
of single cells rather than the ageof individuals.Wealso appliedour clocks to
different external datasets and, at the first time, evaluated the age of single
cells originated from COVID-19 patients and human embryos (Fig. 1a).

Results
Profiling the age of human single-cells by cell-type-
specific clocks
For the development of single-cell aging clocks, we used scRNA-seq data
from the Asian Immune Diversity Atlas (AIDA) v123, which comprises
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1,058,909 PBMCs in total from 508 healthy, human donors with age
between 19 and 75 years (Supplementary Fig. 1a, b).

Considering the cells from 33 cell types and the 36,266 genes in the
AIDA dataset, we calculated the Spearman correlation coefficient (ρ)
between log-normalized gene expressions and ages for each cell type and
gene separately (Fig. 1b). We observed more positively than negatively

correlated genes in themajority of the cell types (p=0.0005), suggesting that
genes tend tobeupregulatedduringaging.The strongest positive ornegative
correlation with age was observed for the expression of PPP1R15A, JUND,
FOS, PCBP1 and DUSP1 in innate lymphoid cells (ρ = 0.42, ρ = −0.395,
ρ= 0.391, ρ=−0.343, ρ= 0.347, respectively) as well as forKLF6,MT-ATP8
and GNAS in CD8-positive alpha-beta T cells (ρ = 0.33, ρ = −0.325 and
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ρ = −0.313, respectively), see Fig. 1c. The expression of FOS and DUSP1
positively correlated with age in naive B cells as well (ρ = 0.339, ρ = 0.309,
respectively).

To contribute to the understanding of the process of single-cell
transcriptomic aging, we created cell-type-specific aging clocks. We
trained ElasticNet regression models with 5-fold cross-validation using
the log-normalized gene expression counts of single cells to predict
chronological age (for details see the Methods). 31 (94%) of the 33 cell-
type-specific clocks showed a significant correlation between age and
predicted age with Pearson correlation coefficients (r) between 0.22 and
0.5 (Fig. 1d). The MAE was between 8.64 and 10.48 years. Nine clocks
showed an r above 0.4 and mean absolute error (MAE) below 10.1 years
(Fig. 1e). The CD8-positive alpha-beta T cell clock was the best-
performing model with r = 0.5036 and MAE = 8.6426 and interestingly
eight of the top nine were based on some type of T cells. The average
number of non-zero coefficients, i.e. the average number of genes
affecting the predicted age is mostly less than 100.

We measured the variability of gene expressions, which is often
referred to as transcriptional noise24,25, and their associations with the pro-
posed single-cell clocks. We calculated the standard deviation (std) and
interquartile range (IQR) of the normalized expressions of each gene for
cells from a particular cell type and donor in the AIDA dataset. Then we
tested whether the variability of the genes was significant (i.e., std/IQR
significantly differed fromzero, see the section “Methods”).We found that a
large number of genes in each cell type was transcriptionally noisy, in other
words, the expression values of cells from a given cell type varied con-
siderably. We found that much fewer genes were transcriptionally noisy
based on IQR than std (Supplementary Fig. 1j). We also measured the
correlation of chronological age and transcriptional noise (based on IQR)
for cell type and gene.We found at least one significantly correlated gene for
23 of the 33 cell types. We also found that the transcriptional noise rather
decreased for 10 cell types and increased for 13 cell types with age (Sup-
plementary Fig. 1k), meaning that in 10 cell types, gene expressions tended
to stabilize showing less variability during aging. This means that the rela-
tion of aging and transcriptional noise varies among cell types to a great
extent, and aging does not necessarily increase variability in every cell type.
Finally, we checked if the genes with significant transcriptional noise
overlapped with the important clock features (i.e. genes with non-zero
regression coefficient). Among the nine best-performing single-cell clocks
only two had features with zero transcriptional noise (double negative T
regulatory clock: 3 of 637 important features; innate lymphoid clock: 236 of
677 important features) showing that genes thatwere found to be important
in the age predictions were typically showed high variability in gene
expression.

We also examined the relation of predicted age of single cells to the
process of cellular senescence. We performed gene set enrichment analysis
(GSEA) using the predictions given by the top 5 best-performing clocks as
phenotypes and the REACTOME_CELLULAR_SENESCENCE gene set
from the Molecular Signatures Database (MSignDB). In all 5 cases, the
cellular senescence-related genes were enriched among the genes positively
correlating with the predicted ages (Normalized Enrichment Score = 1.09,
1.01, 2.1, 1.62, 1.55 for theCD8-positive, alpha-betaT cells, innate lymphoid
cells, CD8-positive, alpha-beta memory T cells, effector memory CD4-
positive, alpha-beta T cells and gamma-delta T cells, respectively).

Consequently, predicted age of cells given by the proposed single-cell clocks
may be able to measure the process of cellular senescence.

We investigated the overlap between cell-type-specific marker genes
and the important clock features. We found a small overlap between the
whole set of marker genes and important clock features. Only 20 of the 79
marker geneswere features in at least one clock, and these 20 geneswere less
than 8% of the whole set of important clock features (Supplementary
Fig. 2a). In the case of 20 of the 32 cell types (62.5%) there was no overlap
between the markers and the clock features of the given cell type (Supple-
mentary Fig. 2b, c). The largest proportion of marker genes among clock
features was 11.11% while the largest proportion of clock features among
marker genes was 28.57%. Consequently, the marker genes, which char-
acterize the different cell types were mostly distinct from the clock feature
genes, which characterize aging.

Estimating the age of donors
In addition to cell-level age prediction, we also used multiple different
methods to give estimate on donor age.

Cell-type-level averaging of single-cell age predictions for each donor
resulted in a slight increase in correlation between chronological and pre-
dicted age and also a slight decrease in MAE (19 out of the 33 cell types)
compared to the single-cell results (Supplementary Fig. 3a). Similarly, cal-
culatingdonor-level predictedages by averaging thepredictions over all cells
for each donor resulted in similar performance (Supplementary Fig. 3b).

To estimate donor age, we also constructed pseudo-bulk samples22 and
trained regression models (see section “Methods”) on these donor-level
averaged gene expression levels. Our cross-validation-based results (Sup-
plementary Fig. 3c) indicate strong predictive performance with
MAE = 5.97. Furthermore, we constructed cell-type-specific pseudo-bulk
samples and trained cell-type-specific pseudo-bulkmodels (Supplementary
Fig. 3d). Here particular cell types, notably CD4-positive, alpha-beta T cells
derived pseudo-bulk samples provide the best donor age estimates.

Single-cell transcriptomics data allow the examination of the cell-type
composition of samples that could also reveal important characteristics of
aging. We calculated cell type proportions for each donor in the AIDA
dataset (see Methods, Supplementary Fig. 4a), and examined how they
change during aging. Proportions of 14 cell types out of the 33 correlated
significantly with chronological age (based on Spearman’s rank correlation
with Bonferroni correction to the total number of cell types). We observed
that among these 14 cell types, 7 showed significant increases and 7 showed
significantdecreases in their proportionwithaging,which suggests balanced
changes in cell type proportions (Supplementary Fig. 5a). The proportion of
the naive thymus-derived CD8-positive alpha-beta T cells showed the
strongest correlation with age (ρ = −0.62). These results recapitulate the
findings of Zhu et al.22 and are in alignment with the observation about the
reduction in thymic output with age26,27. The proportions of naive CD8-
positive T cells in samples of 20-year-old young individuals was around
12%, while for 70-year-old people their proportions dropped down to
around 2% (Supplementary Fig. 4b). We also found that the proportions of
naive CD8- and naive CD4-positive alpha-beta T cells decreased with age,
and the proportions of the memory T cell types increased with age, which
supports previous findings about T cell productions in the elderly27,28.

To explore the association of cell type proportions with chronological
age, we trained ElasticNetmodels with 5-fold cross-validation to predict the

Fig. 1 | Age predictions of human single cells by cell-type-specific transcriptomic
clocks. a Schematics of the present study. Cell-type-specific single-cell tran-
scriptomic clocks were built based on human blood samples. In addition, the clocks
were applied to human blood samples originated from healthy and COVID-19
donors, and to human pre-implantation embryo cells and human embryonic stem
cells. The figure was created with BioRender.com. b Number of genes whose
expression profile shows significant negative/positive correlation with chronological
age (light blue/red bars), and the ones remained significant after Bonferroni cor-
rection (dark blue/red bars). c Genes were showing the strongest correlations with
age. The bars show the strength of the correlation (all of them are significant even

after Bonferroni correction) and the cell types in which the specific correlations are
detected are also shown (IL: innate lymphoid cell, naive B: naive B cell, CD8+ T:
CD8-positive, alpha-beta T cell). d The performance of cell-type-specific single-cell
clocks. The blue bars represent significant, while the gray bars the non-significant
correlations between chronological and predicted age after Bonferroni correction.
e Age predictions for the individual cells by the 9 best-performing cell-type-specific
single-cell clocks. Each point corresponds to a cell of a given cell type. The number of
samples (n), the regression lines as well as r and MAE calculated between chron-
ological and predicted ages are provided for each panel.
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age of donors using their cell type proportions (see section “Methods”). The
age prediction performance wereMAE = 8.75 and r = 0.49 (Supplementary
Fig. 5b), thus cell typeproportionshad similar predictivepower as single-cell
gene expressions. Regarding thenumber of cell types, that contributed to the
predictions (i.e. having non-zero coefficients in the model), there were
usually 11–13 such cell types in each cross-validation clock, and therewere 6
types, which contributed to all clocks (Supplementary Fig. 5c). The aggre-
gation of cell types into larger categories, i.e. CD8-positive, alpha-beta
T cells, CD4-positive, alpha-beta T cells, dendritic cells, natural killer cells,
andmonocytes, and training themodel using the proportion of these larger
types did not produce valuable predictions (r =−0.1092, MAE = 11).

We combined predictions of single-cell gene expression and cell
type proportion clocks to check if such an ensemble approach could
approximate the chronological age of donors more accurately than the
individual models (see section “Methods”). We observed that in each
case, the performance improved compared to the given single-cell
expression clock, and many expression-based models combined with a
proportion clock provided better results than simply considering the
proportion-based model. The Pearson r of age and predicted age
increased by around 0.1 in general (Supplementary Fig. 5d). Altogether,
we observed that the combination of different types of aging clocks
produced more accurate predictions of chronological age.

External validation of aging clocks on healthy samples
To assess the generalization power of the proposed aging clocks, we applied
them to four independent PBMC datasets, the eQTL dataset29 and the
healthy samples from the Yoshida et al.30, Liu et al.31, and the Stephenson
et al.32 datasets (Supplementary Fig. 1c, d, f, h).

In the case of the healthy samples of the Yoshida et al. dataset, 18
(78.3%) of the 23 cell-type-specific single-cell clocks showed a significant
positive correlation between age groups and predicted age with a Spearman
ρ between 0.17 and 0.48 (Fig. 2a, and Supplementary Fig. 6a).We concluded
that the correlation coefficientswere comparable to that of theAIDAdataset
with a slight decrease. MAE was not calculated as exact ages were not
available for this dataset only age groups. Cells from aged adult donors were
predicted to be significantly older than cells from adults for 13 cell types,
while significant differences between adolescent and adult groups were
observed for 19 cell types.

For the healthy samples of the Liu et al. dataset, 12 (63.2%) of the 19
cell-type-specific single-cell clocks showed significant positive correlation
between chronological and predicted age with r between 0.07 and 0.4
(Fig. 2b). The MAE was between 10.61 and 23.48 years. The naive
thymus-derived CD4-positive alpha-beta T cells showed the strongest
association with r = 0.4 andMAE = 15 years. The best-performing clocks
on AIDA, showed low performance on the Liu et al. dataset (Supple-
mentary Fig. 6b). The predicted age of cells from adults above 65 years
was significantly higher compared to the adults below 65 in 10 out of the
19 cases.

For the eQTL dataset, 16 of the 24 cell-type-specific single-cell clocks
showed a significant positive correlation between chronological age and
predicted age with r between 0.03 and 0.17 (Fig. 2c, and Supplementary
Fig. 6c). The strongest correlationwas Pearson r= 0.17 for the gamma-delta
T cells.MAEs between chronological andpredictedagewere above 20 years.
However, the predicted age of cells fromaged adults was significantly higher
compared to the adults in 14 out of the 24 cases. Altogether, the model
performances highly decreased for the eQTLdataset compared to theAIDA
dataset both in terms ofMAE and correlation, but tendencies, i.e. significant
(positive) correlation between chronological and predicted ages were still
clearly shown.

In the case of the healthy samples of the Stephenson et al. dataset,
surprisingly, the predicted age of cells from donors in the 3rd decade were
higher than from samples of the other age groups, for themajority of the cell
types, which often resulted in negative overall Spearman correlation
between age groups and predicted age. However, considering samples from
donors in and above the 4th decade, 15 of 26 cell types showed a significant

positive Spearman correlation (ρ was between 0.08 and 0.4) between age
groups and predicted age (Fig. 2d and Supplementary Fig. 6d). The best
performancewas shown by the effectormemoryCD4-positive alpha-beta T
cell clock with ρ = 0.4.

The cell type proportion clock predicted ages on the Yoshida et al.
dataset with Spearman ρ = 0.4268 with the age categories, that is performed
slightly worse than the best single-cell clocks, but approached the perfor-
mance on the training dataset (AIDA). Moreover, adults were predicted
significantly older than adolescents, however, there was no significant dif-
ference between the predicted age of adult and aged adult groups, possibly
because of the small sample size. The clock did not show a significant
correlation between chronological and predicted age in the case of the Liu
et al. dataset, but it is possibly because of the large number of missing cell
types (compared to AIDA) in this dataset. The performance of this clock on
the eQTL dataset was Pearson r = 0.6146 and MAE = 16.8782 along with a
significant difference between adult and aged adult groups. In the case of the
Stephenson et al. dataset, the Spearman correlation between age groups and
predicted age was ρ = 0.6297, meaning that the clock outperformed its
training performance on this dataset, although direct comparison was not
possible due to the lack of information about exact ages. Consequently, the
proposed cell-type proportion clocks generalized well to unseen data in
terms of correlation between predicted and chronological age, however, the
MAE highly increased in the case of the eQTL dataset (Supplemen-
tary Fig. 7a).

The combination of single-cell and cell-type proportion clocks resulted
in improved age predictions on the Yoshida et al. dataset compared to the
training dataset (AIDA). The Spearman correlation coefficient of predicted
age and age groups was usually around 0.5, and in some cases the perfor-
mance approached the training results (Supplementary Fig. 7b). We note
that similarly to the case of the individual cell type proportion clock, there
was no significant difference between the adult and aged adult groups. Due
to the poor performance of the cell type proportion clock on the Liu et al.
dataset, the combination of its predictions with single-cell predicted ages
also did not produce satisfactory results (Supplementary Fig. 7c). The
combined clock approach improved the performance of age prediction on
the eQTL dataset. This way, the MAE also increased, but the difference
between the adult and aged adult groups remained significant (Supple-
mentary Fig. 7d). Finally, the combination of single-cell and cell-type pro-
portion-based predictions resulted in greatly improved performance on the
Stephenson et al. dataset (Supplementary Fig. 7e). In some cases the
Spearman correlation between age groups and predicted age even
exceeded 0.8.

To further evaluate the generalization power of the proposed single-
cell clocks, we also applied them to cells derived from lung samples of
healthy donors (Lung dataset of Sikkema et al.33). In the case of 10 of the
11 cell types (91%), the predicted ages correlated significantly and
positively with the chronological age (Supplementary Fig. 8a). The
Pearson r was between 0.12 and 0.51, and the MAE between 9.85 and
16.28 years. The best performance was achieved by the T-cell clock with
r = 0.51 and MAE = 9.85. Among the 9 best-performing clocks on AIDA
we could apply two and they showed a decreased performance on this
external dataset (Supplementary Fig. 8b, c).

In summary, we observed that the cell-type-specific single-cell
clocks generalized well to external data in the case of the healthy subset of
the Yoshida et al. dataset and for the healthy samples above 3rd decade of
the Stephenson et al. dataset. The clocks showed a moderate general-
ization ability in the case of the Liu et al. dataset, and the Lung dataset
while they did not generalize well for the eQTL dataset, however, sig-
nificant differences between age groups and significant correlations
between chronological and predicted ages were shown in many cases.
Additionally, we observed that the generalization power of the cell-type
proportion and combined clocks were better than the cell-type-specific
single-cell clocks. Altogether, the clocks possibly give insight into the
process of aging when applied to unseen data, however, this may depend
on the application dataset.
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Fig. 2 | External validation of aging clocks on healthy samples. aThe performance
of cell-type-specific single-cell clocks in the healthy subset of the Yoshida et al.
dataset. The blue bars represent significant, while the gray bars the non-significant
correlations between chronological and predicted age after Bonferroni correction.
bThe performance of aging clocks in the healthy subset of the Liu et al. dataset. cThe

performance of aging clocks in the eQTL dataset. d The performance of aging clocks
in the healthy subset of the Stephenson et al. dataset. Dark blue/gray bars correspond
to the performance achieved on all available samples, light blue/gray bars and the
shown correlation coefficients show the performance of the clocks when applied to
samples in and above the 4th decade.
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Decreased transcriptomic age of classical monocytes, naive B
and T cells in moderate COVID-19 followed by an increase for
some types in severe COVID-19
To examine the effect of SARS-CoV-2 infection on the transcriptomic age of
single cells, we applied the proposed cell-type-specific single-cell aging
clocks to COVID-19 and healthy samples of adults donors of the Yoshida
et al., Liu et al. and Stephenson et al. datasets (Supplementary Fig. 1e, g, i).
We compared the different severity groups and the healthy group based on
the predicted age of cells for each cell type separately. In order to account the
age distribution differences of the different groups we included chron-
ological age as a confounder variable in the comparison of the groups (see
section “Methods”). We only considered the findings consistent over all
three examineddatasets, to avoid drawing conclusions based onnoise or the
uncertainty of the clocks.

We observed that the predicted age of classical monocyte cells from
COVID-19-afflicted donors was significantly lower than those originating
from healthy donors, across all severity conditions (Fig. 3a). We also
observed a decreased predicted age of naive thymus-derivedCD4 andCD8-
positive, alpha-beta T cells and naive B cells from donors in moderate
severity compared to healthy controls (Fig. 3b–d). Moreover, the predicted
age of samples from the severe group was significantly higher than those
from the moderate group for the following four cell types: naive thymus-
derived CD4-positive, alpha-beta T cell; CD8-positive, alpha-beta memory
T cell; naive B cell; gamma-delta T cell (Supplementary Fig. 9). These
findings were consistent for all of the three examined datasets.

We further examined the expression of clock feature genes for the cell
types we observed decrease/increase in predicted ages of COVID-19
patients. We say that a gene “supports the rejuvenation” (i.e. the tran-
scriptomic age decrease) if its expression changes in the opposite direction
during rejuvenation compared to aging. In the case of the classical mono-
cytes, we found 7 genes with decreased expression in cells derived from
COVID-19 patients (Fig. 4a–c), while they were upregulated during aging
according to the classicalmonocyte clock (Fig. 4d). Interestingly, 4 of 7 genes
are involved in the inflammatory response: ILB1 and CXL8 are coding pro-
inflammatory cytokines (IL-1β, and IL-8, respectively) while NFKBIA and
NFKBIZ regulates pro-inflammatory cytokines through the NF-κB
pathway34.The reducedexpressionof thesegenesover all severity conditions
suggests suppressed inflammation. In the naive B cells, from donors in
moderate condition, we observed 4 genes (DUSP1, FOS, FOSB, and JUN)
with decreased expression compared to healthy samples (Fig. 4e–g), which
genes were upregulated during aging (Fig. 4h). The decreased expression of
the MT-ATP6 and PPP1R15A genes, and the increased expression of the
GYPC gene in the naive thymus-derived CD4-positive alpha-beta T cells of
moderate condition donorswere found to be supporting the rejuvenation of
these cells, while in the case of the naive thymus-derived CD8-positive
alpha-beta T cells, the decreased expression levels of the DUSP1 gene sup-
ported the rejuvenation (Supplementary Fig. 10).

For the cell types, we observed consistently increased transcriptomic
age in severe COVID-19, none of the related clock feature genes showed the
same behavior as during aging of healthy individuals.

Overall, our data surprisingly show that the transcriptomic age of
classical monocyte cells decreased in COVID-19-afflicted subjects, and the
suppressed expression of multiple inflammatory response-related genes
may explain this phenomena. Furthermore, the transcriptomic age of naive
B cells and naive T cells also decreased in moderate COVID-19.

Transcriptomic rejuvenation of human embryo cells at the mor-
ulae and blastocyst stages
To reveal the transcriptomic age dynamics of human embryogenesis at the
single-cell level, here, we applied the proposed single-cell transcriptomic
aging clocks to three datasets of early development (Yan et al.35, Petropoulos
et al.36, andMeistermann et al.37). We examined the predictions of the top 9
best-performing cell-type-specific single-cell clocks based on the AIDA
dataset (presented in Fig. 1d). The majority of clocks showed a significant
transcriptomic age decrease of the morulae stage compared to the 8-cell

stage (6of 9 cases in theYan et al. dataset and7of 9 cases inPetropoulos et al.
datasets), followed by a further significant decrease at the blastocyst stage (8
of 9 cases in the Yan et al. dataset, 6 of 9 cases in Petropoulos et al. datasets,
and 5 of 9 in the Meistermann et al. dataset; see Fig. 5a, b, and Supple-
mentary Fig. 11a). We observed similar dynamics when we aggregated the
predictions of all clocks, except for the dendritic cell and erythrocyte clocks
due to their non-significant performance in the AIDA dataset (Fig. 5c, d,
Supplementary Fig. 11b). In addition, in the case of the Yan et al. dataset, all
of the clocks showed an increased transcriptomic age of human embryonic
stem cells (hESCs), representing post-implantation epiblast cells, compared
to late blastocyst cells (Fig. 5a). Altogether, the data show the transcriptomic
rejuvenation of the human pre-implantation embryo cells at the morulae
and blastocyst stages.

Additionally, we observed that the standard deviation (std) of the
transcriptomic age of hESCswas remarkably higher in passage 10 compared
to passage 0 (primary outgrowth), while passaging did not alter tran-
scriptomic age. The average std of the 9 clocks for passage 10 (std = 3.6) was
significantly higher than that of passage 0 (std = 1.2) based on a one-sided,
two-sample t-test; there was no significant difference between the predicted
age of passage 0 and passage 10 cells in 6 cases out of 9.

To explain the observed rejuvenation event during early development,
we further examined the expression of clock feature genes in the embryo
datasets.We found four genes (FOS, LGALS1, IER2, andPCBP1) supporting
the rejuvenation of the morulae in all dataset (Fig. 6, Supplementary
Fig. 11c). That is IER2 and PCBP1 expression decreased with age (based on
the AIDA dataset) but increased during the observed transcriptomic reju-
venation (basedon theYan et al. andPetropoulos et al. datasets). In contrast,
FOS and LGALS1 expression increased with age (based on the AIDA
dataset) but decreased during the observed transcriptomic rejuvenation
(based on the Yan et al. and Petropoulos et al. datasets).

Discussion
Here, we provided a comprehensive analysis of the transcriptomic age of
single cells by using cell-type-specific scRNAseq clocks. While the age
prediction performance for single cells was considerably lower than that of
bulk or pseudo-bulk samples22, profiling the age of individual single cells
provides a unique insight into the aging process at the single-cell level. For
instance, we found that the predicted age of individual cells may be able to
measure the process of cellular senescence. We also found that T cells,
especially CD8-positive T cells have a strong relation to aging (both in terms
of gene expression and cell type proportion), which cell type plays a major
role in adaptive immunity. The large difference in age prediction perfor-
mance between single cells and bulk or pseudo-bulk samples suggests an
important role of cell-type proportion in the prediction of aging clocks over
molecular changes (including molecular damage).

Accelerated epigenetic age based on bulk samples was associated with
the incidence of COVID-1938,39. It was also shown that severe COVID-19
caused a reversible increase in DNAmethylation age40. In contrast, another
study concluded that epigenetic clocks were not accelerated in COVID-19
patients41. As cell fractions (especially leukocyte fraction) could be changed
due to a SARS-CoV-2 infection it could affect previous results based on bulk
samples. Single-cell clocks are free of cell fraction bias, and also allow cell-
type-specific examinations. Interestingly, the transcriptomic age of mono-
cytes, as well as, naive B and T cells decreased in moderate COVID-19
compared to healthy individuals. If we consider transcriptomic age as a
proxy of biological age the results of the present study show that these cells
rejuvenated due to the infection. An explanation of this interesting possi-
bility could be that the infection increased the proportion of newly born cells
compared to the older ones. Another possible explanation could be as
follows. The study of Liu et al. revealed a negative association of IFN-I
expression signatures with COVID-19 severity, but elevated expression
compared to healthy controls in multiple cell types, including classical
monocytes31. Here, we found a set of genes explaining the observed reju-
venation, which are also involved in the inflammatory response. However,
their expression was decreased in moderate COVID-19 cases compared to
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the healthy condition. This result suggests that some genes regulating
inflammation may be underactive due to the infection, already at the early
stages, which could negatively impact adaptive responses as raised by Liu
et al.31.

It was proposed that germline cellsmay be rejuvenated in the offspring
after conception42,43. Recently, we tested this idea and revealed an epigenetic
rejuvenation during embryogenesis in mice, and humans20,44,45. We found

that the epigenetic age of early post-implantation embryos was lower
compared to the pre-implantation stages. We also found that this rejuve-
nation event was followed by aging during embryogenesis44. In the present
study, we examined the transcriptomic age dynamics of early human
embryogenesis at the single-cell level. We observed a transcriptomic reju-
venation at the morulae and blastocyst cells compared to earlier stages, and
also an increased transcriptomic age of hESCs compared to pre-

Fig. 3 |Decreased transcriptomic age of classicalmonocytes, naive B andT cells in
moderate COVID-19 compared to healthy individuals. Predicted age of a classical
monocyte cells, b naive thymus-derived CD4-positive alpha-beta T cells, c naive
thymus-derived CD8-positive alpha-beta T cells, and d naive B cells from healthy
and COVID-19-afflicted donors in the Yoshida et al., Liu et al., and Stephenson et al.

datasets, respectively, applying the correspondent cell-type-specific single-cell aging
clocks. We compared the different severity stages to the healthy group. The p-value
between the healthy and moderate groups was calculated by a generalized linear
model fitted to the predicted age with severity as the independent variable and age as
a confounder variable. The sample size (n) of each group is also shown for each panel.
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Fig. 4 |Genes supporting the rejuvenationof classicalmonocytes andnaiveB cells
inmoderate COVID-19.Normalized expression of genes in classicalmonocyte cells
from the a Yoshida et al., b Liu et al., and the c Stephenson et al. dataset supporting
the decreased predicted age of classical monocytes in the moderate stage of COVID-
19 compared to healthy individuals. d The regression coefficient of the supporting
genes in the five classical monocyte cross-validation clocks. The bars illustrate the
distribution of the coefficients. Normalized expression of genes in naive B cells from
the e Yoshida et al. f Liu et al., and g Stephenson et al. dataset supporting the

decreased predicted age of naive B cells of donors in the moderate stage of COVID-
19 compared to healthy individuals. h The regression coefficient of the supporting
genes in the naive B cell cross-validation clocks. The bars illustrate the distribution of
the coefficients. The p-value between the two groups was calculated by a generalized
linear model fitted to the gene expression with severity as the independent variable
and age as a confounder variable. The sample size (n) of each group is also shown for
the relevant panels.
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Fig. 5 | Transcriptomic rejuvenation of human embryo cells at the morulae and
blastocyst stages. a Predicted ages of cells from different embryonic development
stages in the Yan et al. dataset, given by the 9 best-performing cell-type-specific
clocks based on the AIDA dataset. b Predicted ages of cells from different embryonic
development stages in the Petropoulos et al. dataset. c The average predicted age of

cells in the Yan et al. dataset, derived from the predictions of all the cell-type-specific
clocks (except for the dendritic cell and erythrocyte clocks). Embryonic days 3, 4,
and 5–7 correspond to the 8-cell, morulae, and the (pre-implantation) blastocyst
stage, respectively. d The average predicted age of cells in the Petropoulos et al.
dataset.
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implantation embryos. A gene expression analysis of Yan et al. study sug-
gested that hESCs are more similar tomouse epiblast stem cells (mEpiSCs),
which derive from post-implantation epiblast cells, than to mouse
embryonic stem cells (mESCs), which derive from blastocyst-stage pre-
implantation epiblast cells35. As hESC represents human post-implantation
epiblast cells, our data show a decrease of transcriptomic age of pre-
implantation cells followed by an increase in post-implantation cells. These
results compared to our epigenetic studies suggest that the rejuvenation of
the embryo start earlier in the transcriptomic level compared to the
epigenetics level.

Although the applied single-cell clocks were trained on PBMCs, which
cells cannot be found at the early stages of embryo development, multiple
studies showed the relevance of cross-tissue application of aging clocks21,46,
and that blood clocks can showsimilar dynamics in embryogenesis asmulti-
tissue clocks20,44,45. In the present study, different cell-type-specific clocks
showed the same dynamics consistently inmultiple embryogenesis datasets
suggesting that theobserved rejuvenation event is not a cell-type-specificbut
a more general process.

In summary, our large-scale study shows that single-cell tran-
scriptomic clocks can contribute to the understanding of human aging and
draws attention to the importance of single-cell aging clocks. These clocks
can help in the development of targeted rejuvenation strategies by serving as
a tool for evaluation, and allow deeper, cell-level investigation of the aging
process.

Limitations
A limitation of the proposed cell-type-specific single-cell clocks is that while
they generalized well in one external dataset (the Yoshida et al. dataset) they
did not generalize well in other datasets. The present clocks may be largely
impacted by the method of collection and pre-processing of the cell data
used for training. The prediction performance was especially low on the
eQTL dataset possibly caused by the smaller variability of expressions of
clock feature genes. The clocks may also be impacted by the training
population, which, in our case, is largely different from that of the external
validation datasets (Asian vs mostly Caucasian).

Another limitation of the clocks may be that they are based on a linear
model. Although ElasticNet is a preferredmodel to develop aging clocks, as

it can provide accurate age predictions on the test sets even with very small
sample size and veryhighnumberof features, itmaynot be themost suitable
model for the data it is applied to, since it cannot capture non-linear feature-
target interactions47.

A limitation in assessing the performance of the proposed clocks is the
lack of information about the exact age of donors in two of the four external
datasets. Finally, while the sample sizes of some application datasets used in
this study were relatively small we made conclusions based on consistent
(and statistically significant) results on multiple independent datasets.

Methods
Description of the input datasets
This study used publicly available datasets, all of which were produced by
single-cell RNA sequencing of human cells (Supplementary Table 1). The
collectionandprocessingof samplesweredoneby theoriginal authors of the
studies, this study relies on the available gene expression datasets. Themain
dataset we used was The Asian Immune Diversity Atlas (AIDA, https://
explore.data.humancellatlas.org/projects/f0f89c14-7460-4bab-9d42-
22228a91f185)23, which comprises 1,058,909peripheral bloodmononuclear
cells (PMBCs) in total from 508 healthy, human donors. The age of the
donors ranges from 19 to 75 years, with amean of 42 years and amedian of
41 years. Cell type annotation was done by the AIDA team inmultiple steps
in a hierarchical manner and was available for the dataset. Clustering and
annotation of cells were performed on four levels, the marker genes iden-
tifying each cell type are available in the Supplementary Table S2 of the
preprint of the AIDA dataset23.

The study of Yazar et al. presents a dataset of 1,248,980 PBMCs from
981healthy, humandonorswith ages ranging from19 to 97 years29 (referred
to as “eQTL dataset”).

Yoshida et al. analyzed single-cell samples from healthy, COVID-19
infected and post-COVID-19 patients30. The COVID-19 set includes
donors with RT-qPCR test positive for SARS-CoV-2 and in asymptomatic,
mild, moderate, or severe conditions. The post-COVID-19 set consists of
donors recovered fromCOVID-19, including symptomatic patients as well.
Although Yoshida et al. carried out multi-omic analyses, here we only used
the provided PBMCdataset, which consists of 422,220 cells from 75 donors
(referred to as “Yoshida et al. dataset”), and we focus on the healthy and

Fig. 6 | Genes supporting the transcriptomic rejuvenation of the human embryo cells.Normalized expression of genes in the a Yan et al. dataset, and the b Petropoulos
et al. dataset supporting the observed decreased/increased predicted age of embryonic cells.
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COVID-19 samples. The dataset does not contain information about the
exact chronological age of donors, but they were assigned to age groups. It
contains both pediatric and adult samples, the developmental stage of the
donors ranges from the newborn to the elderly (aged adult) stage. Liu et al.
collected and analyzed PBMC samples from healthy and COVID-19
infected patients31. The COVID-19 set includes donors with positive
nasopharyngeal swab and/or positive serology for SARS-CoV-2 infection31

and in moderate, severe or critical conditions. The dataset consists of
372,081 cells from 46 donors with age ranging from 24 to 84 years (referred
to as “Liu et al. dataset”). The study of Stephenson et al. presents a dataset of
647,366 PBMCs from healthy and COVID-19 infected, non-COVID-19
and IV-LPS patients32 (referred to as “Stephenson et al. dataset”). The
COVID-19 group includes patients in asymptomatic, mild, moderate,
severe and critical conditions. In this study, we focus on the healthy and
COVID-19 cases. The dataset does not contain information about the exact
chronological age of every donor, but theywere assigned to age groups from
the 3rd to the 10th decade.

Sikkema et al. presented a large-scale, integrated single-cell reference
atlas of the human lung33. Here, we only used data of cells derived from the
lung parenchyma of healthy donors, which dataset consists of 333,468 cells
from 66 donors with age ranging from 15 to 76 years (referred to as “Lung
dataset”).

Single-cell RNA sequencing of 124 human pre-implantation embryos
and embryonic stem cells was done by Yan et al.35 (referred to as “Yan et al.
dataset”). The following development stages were present in the dataset
(number of cells in parentheses): oocyte (3), zygote (3), 2-cell embryo (6),
4-cell embryo (12), 8-cell embryo (20), morulae (16), late blastocyst (30),
hESC passage 0 (8), hESC passage 10 (26). The study of Petropoulos et al.
presents a dataset consisting of 1529 human preimplantation embryo cells36

(referred to as “Petropoulos et al. dataset”). The following development
stages (embryonic days) were present in the dataset (number of cells in
parentheses): embryonic day 3 (81), embryonic day 4 (190), embryonic day
5 (377), embryonic day 6 (415), embryonic day 7 (466). Finally, the dataset
of Meistermann et al. contains 150 human preimplantation embryo cells37

(referred to as “Meistermann et al. dataset”). The following development
stages (branches) were present in the dataset (number of cells in par-
entheses): pre-morula (1), morula (30), early blastocyst (5), inner cell mass
(9), early trophectoderm (62), epiblast (36), primitive endoderm (1),
TE.NR2F2- (5), TE.NR2F2+ (1).

The AIDA, eQTL, Yoshida et al., Liu et al., Stephenson et al. and Lung
datasets were downloaded from https://cellxgene.cziscience.com/. The Yan
et al. data was retrieved from the Gene Expression Omnibus48, the Petro-
poulos et al. dataset from BioStudies49 and the Meistermann et al. dataset
from Mendeley Data (https://data.mendeley.com).

Data pre-processing
Each single-cell PBMC and lung dataset (AIDA23, eQTL dataset29, Yoshida
et al. dataset30, Liu et al. dataset31, Stephensonet al. dataset32 andLung33)were
downloaded as h5ad files containing AnnData objects. The raw gene
expression counts were accessed either through the main layer of the object
or through the .raw layer when transformed counts were assigned to the
main. In the case of each dataset, the raw, gene-by-cell count matrix was
considered as the base data for our analyses. Then, raw counts were trans-
formed by a log-normalization step, i.e. for each cell, each gene expression
count value was divided by the total expression count of the given cell,
multipliedby10,000, and transformedwith log1p transformation. Formally:
ĉij ¼ logð1þ ½cijci � 10; 000�Þ, where cij is the raw expression count of gene j in
cell i, ci is the total expression count in cell i, log indicates the natural
logarithm and ĉij denotes the resulting log-normalized count.

The embryogenesis data of Yan et al.35 were downloaded as individual
txt files for each of the 124 cells, containing the raw expression count of the
detected genes. These files were processed to obtain a cell-by-gene matrix
containing the corresponding gene expression values.Missing values in this
matrix, i.e. expression counts of genes that were not detected in a given cell
were treated as 0 values. Then the resulting raw count matrix was log-

normalized in the same way as the other datasets described above. The
Petropoulos et al. dataset36 were accessed as a single txt file containing the
gene by cell countmatrix of raw expression values. After transposing, it was
log-normalized in the same way as described above. The dataset of Meis-
termann et al.37 was accessed through the Supplementary data repository of
Radley et al.50. The tsv file containing the raw gene expression values was
filtered toobtain thedata of the cells introduced in the studyofMeistermann
et al. The resulting countmatrixwas then log-normalized.Thedevelopment
stages (branches) present in this dataset were adjusted to have similar stages
as the other embryogenesis datasets namely, a blastocyst stage has been
created and all cells of the following branches were assigned to it: inner cell
mass, early trophectoderm, epiblast, primitive endoderm, TE.NR2F2-,
TE.NR2F2+. Furthermore, the pre-morula stage has been removed from
the dataset due to the insufficient number of samples (1 cell).

Calculation of transcriptional noise
The variability of cells, i.e. transcriptional noise in the AIDA dataset was
calculated for each (donor, cell type, gene) triplet. Standard deviation (std)
and interquartile range (IQR) of the log-normalized gene expressions of a
given genewere calculated (for each donor and cell type). One-sample, two-
sided t-tests were calculated with each metric separately to test if the tran-
scriptional noise of a given gene in a given cell type significantly differs from
0. In addition, Spearman's correlation between chronological age and
transcriptional noise was measured for each cell type and gene.

Gene set enrichment analysis
Gene set enrichment analysis was performed with the GSEA software51,52,
for each of the top 5 best-performing single-cell clocks, separately. The data
of normalized expression values of cells of the given cell typewas used as the
expression dataset, theREACTOME_CELLULAR_SENESCENCEgene set
from theMolecular SignaturesDatabase (MSignDB) as the gene set and the
predicted age of the cells as phenotype labels. The genes in the expression
data were mapped to the cellular senescence gene set prior to the analysis,
consequently the analysis was run with the “No_Collapse” setting. The
number of permutations was set to 100 and the metric for ranking genes to
Spearman correlation, otherwise the default parameter setting was used.

Age prediction models
Chronological age prediction models (i.e., aging clocks) were developed
using the AIDA dataset. Single-cell models were developed for each cell
type, separately, resulting in cell-type-specific aging clocks. Pseudo-bulk
data-based models were trained on cells averaged by donor, cell-type-
specific pseudo-bulk models were trained on cells averaged by donor and
cell type. We used the categorization of cell types created and assigned to
the cells by the original authors of the dataset, and available in the
retrieved AnnData object. For each cell type, ElasticNet models were
trained on the log-normalized gene expressions of single cells to predict
chronological age. 5-fold cross-validation (CV) on the donor level was
used to prevent overfitting, i.e. a model was trained on cells from 4

5 of the
donors, and tested on the remaining cells (coming from the remaining 1

5
of the donors), thus there was no overlapping of the train and test set of a
given model, even on the donor level. The cross-validation resulted in
five models (for each cell type and model type) and the predicted age of a
given cell was considered to be the prediction of the model that used it as
a test sample. The ElacticNet model was trained by using the default
parameter settings of the scikit-learn implementation of the model
(l1_ratio = 0.5, alpha = 1). We have also experimented with the glmnet
implementation of the ElasticNet model, which fine-tunes the alpha
parameter (lambda with the glmnet terminology), however, as we
observed a similar performance along with a much higher computational
demand, we relied on the default scikit-learn model in this study.

Using the single-cell predictions, we additionally calculated donor-
level age predictions by averaging the predicted age of cells of a given donor.
The averaging was done for each cell type, separately, resulting in cell-type-
specific age predictions for each donor. The average of the age predictions of
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all cells of a given donor resulted in the general (non-cell-type-specific) age
prediction of the donor.

Besides the single-cell aging clocks, cell-type proportion-basedmodels
were also developed motivated by the work of Zhu et al.22. For this purpose,
the proportion of each cell type compared to the total number of cells of the
donor was calculated and used to predict chronological age. The glmnet
implementation of the ElasticNet algorithm was trained on the cell type
proportion values using 5-fold cross-validation.Wehave also experimented
with Partial Least Square Regression and XGBoost models, but due to their
similar or weaker performance compared to ElasticNet, we excluded these
results from the study.

Combined chronological age predictions were calculated based on the
single-cell gene expression clocks and cell-type proportion clocks. To pre-
dict the donor age in this way, the average of the donor-level prediction
given by a cell-type-specific single-cell clock and the predicted age given by a
cell type proportion-based clock was calculated. Formally:

PredAge d
combined ¼

avgi PredAge d;i
scE

� �
þ PredAge d

P

2
; ð1Þ

where PredAge d;i
scE is the predicted age of cell i of donor d given by a cell-

type-specific single-cell clock, PredAge d
P is the predicted age of donor d

given by a cell type proportion clock and PredAge d
combined denotes the

resulting combined predicted age of donor d.
For the evaluationof thedescribedaging clocks,wemeasured theMean

Absolute Error (MAE) and the Pearson correlation of the chronological and
predicted age.

Model validation on external datasets
For the external validation of the developed aging clocks, we used the eQTL
dataset (Yazar et al.29), the healthy samples of the Yoshida et al. dataset30, the
Liu et al. dataset31, and the Stephenson et al. dataset32. In the case of all
datasets cell-type-specific single-cell clockswere applied to the common cell
types, based on the categorization of cell types available for each dataset.
Additionally, CD8-positive alpha-beta memory T cell clock was applied to
the narrower types, i.e. to the central and effector memory CD8-positive
alpha-beta T cell cells in the case of the eQTL dataset, the central, effector,
and terminally differentiated effector memory CD8-positive alpha-beta
Tcells in the caseof theYoshida et al. dataset, and the effectormemoryCD8-
positive, alpha-beta T cell in the case of the Stephenson et al. dataset. In the
case of the Stephenson et al. dataset the innate lymphoid cell clock was
applied to the group 2 innate lymphoid cell and ILC1 cell types, the plasma
cell clock to the IgM, IgA and IgG plasma cells, and thememory B cell clock
to the class switched and unswitched memory B cells. Moreover, the CD8-
positive, alpha-beta cytotoxic T cell clock was applied to the effector CD8-
positive, alpha-beta T cell-typed cells in this dataset. The CD14-positive
monocyte clock was applied to the classical, the CD14-low, CD16-positive
monocyte clock to the non-classicalmonocyte cells and themonocyte clock
to the intermediate monocytes (Yoshida et al. and Liu et al. datasets). In the
case of the Liu et al. dataset both the effector and central memory CD4-
positive, alpha-beta T cell clocks were applied to the CD4-positive, alpha-
betamemoryT cells. Consequently, 23 cell-type-specific clockswere applied
to the eQTLdataset, 21 to theYoshida et al. dataset, 20 to theLiu et al. dataset
and26 to theStephensonet al. dataset. In all datasets theprimary IDof genes
was their Ensembl ID, thus it was possible to directlymap the genes to clock
features in the external validation datasets. During the application of clocks,
missing values were handledwith average imputation, that is the expression
value of a gene that was not presented in the validation set but presented
among the clock features was imputed with the average (log-normalized)
expression value of the gene in the training (AIDA) dataset, where the
averagewas takenover all cells of the given cell type. In all cases, all of thefive
clocks of the cross-validation of the training set (AIDA) were applied to the
external datasets, and for each cell, the average of the five predictions was
considered as the final predicted age of the cell.

The applicationof the cell-type proportion clockswasdone similarly to
the single-cell clocks, namely, all five fitted models of the cross-validation
were applied to the external validation data, and the average of their pre-
dictionwas considered tobe thefinal predicted age of adonor.Missing value
imputation was done with the average proportion of a given cell type in the
training set (AIDA), where the average was taken over all donors in AIDA.
Proportions of narrower cell typesmentioned above were summarized thus
average imputation was not performed in these cases. Combined chron-
ological age predictions were calculated on the external validation sets,
according to Equation (1).

For the further validation of the proposed single-cell aging clocks, we
used the Lung dataset (Sikkema et al.33). Similarly to the application of the
clocks to PBMC data, the cell-type-specific clocks were applied to the
common cell types. In the case of higher-level categorization of cell types in
the Lung dataset, all the corresponding narrower cell-type-specific clocks
were applied to the cells and their predictions were averaged for each cell
(e.g. B cell, memory B cell, naive B cell and mature B cell clocks were all
applied to the B cells in the Lung dataset). In total, predicted age for cells of
11 cell types were calculated.

The evaluation of the clocks on the external datasetswas done based on
MAEandPearson correlation of the chronological and predicted ageswhen
exact ages were assigned to donors (in the case of the eQTL, Liu et al. and
Lung datasets). When only age groups were available (in the case of the
Yoshida et al., and the Stephenson et al. datasets), we calculated Spearman
correlation coefficients between the age group and the predicted age vari-
ables, as well as t-tests for the comparison of two groups. In addition to the
exact ages in the eQTL and Liu et al. datasets, we assigned the donors to two
age categories, motivated by the groups of the Yoshida et al. dataset, to adult
(18 ≤ age < 65) and aged adult (65 ≤ age) groups, and the clock predictions
were compared between these age groups.

Application of clocks to additional datasets
The created single-cell clocks were applied to the COVID-19-infected
samples of the Yoshida et al., Liu et al., and Stephenson et al. datasets as
well. The ElasticNet-based clocks were applied to the samples the same
way as in the case of the healthy samples, described above in the Model
validation on external datasets section. Predicted age of samples in the
different severity groups and from healthy individuals were compared to
assess the effect of SARS-CoV-2 infection on biological age captured by
the proposed aging clocks. In order to account the age distribution dif-
ferences of the different groups we included chronological age as a
confounder variable in the comparison of the groups. In the Yoshida
et al. dataset more precise chronological age was available to a few
donors, but to properly compare the different groups, every donor was
assigned either to the adult (18 ≤ age < 65) or aged adult (65 ≤ age)
groups. Similarly, in the case of the Stephenson et al. dataset, every donor
was assigned to an age group from 3rd to 10th decade.

In the case of the three embryogenesis datasets, we could apply only
the single-cell clocks. Multiple ElasticNet-based cell-type-specific clocks
were applied to the samples in a similar way as described above, namely,
missing values were imputed with the corresponding average expression
value in the training (AIDA) dataset, and the average prediction of the
five CV clocks was considered as the final predicted age of a sample (see
the Model validation on external datasets section for more details). In
contrast to the other datasets used in this study, where genes were
identified with their Ensembl ID, here they were represented by their
name (in all three datasets). To map the genes to clock features two
approaches were applied. Direct mapping was used if a gene could be
mapped directly by its name to the gene set of the training dataset
(AIDA) where gene names were also available. Otherwise, using the
mapping function of UniProt (https://www.uniprot.org), gene names
were mapped to Ensembl IDs and matched with the gene set of AIDA
through these IDs. Duplicates, i.e. when more than one gene name were
mapped to an Ensembl ID, were checked manually to make sure that the
correct name was assigned to the ID.
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Explanation of changes in predicted ages
In the case of the changes in predicted ages shown by the single-cell clocks
consistent over all three COVID-19 datasets (Yoshida et al., Liu et al., Ste-
phenson et al.), we searched for the genes supporting these changes. For a
given cell type, the genes having non-zero regression coefficient in all five
CV clocks were selected, and their normalized expression in each dataset
were further examined. The different severity groups were compared based
on the expression of a given gene, similarly as described above, accounting
for the age distribution differences by including age as a confounder vari-
able. A gene was selected to support the decrease in predicted ages between
twogroups, if its expressiondecreases too,while the gene is upregulatedwith
aging according to the clock (i.e. shows opposing pattern to aging), and
similarly if its expression increases. Basedon the sameconsiderations, a gene
was selected to support the increase in predicted ages between two groups, if
its expression increases too and the gene is also upregulated with aging
according to the clock (i.e. shows the same pattern as during aging), and
similarly if its expression decreases.

In the case of the embryogenesis analyses, we searched for clock feature
genes supporting the decrease of predicted ages at the morulae stage. Since
all the clocks show a similar aging (and rejuvenation) process during early
development, some commongenes are assumed to drive this process. Genes
having the 10 highest (in absolute value) regression coefficient in all five CV
clocks for more than one cell-type-specific single-cell clocks have been
selected for further examination. A gene is assumed to be supporting the
rejuvenation process, if its expression decreases at morulae, but increases
during aging, and similarly, if its expression increases at morulae, but
decreases with aging.

Statistics
The significance of the differences between the two different groups in the
external validation analyses was calculated by two-sample, two-sided Stu-
dent’s t-tests. In the case of the COVID-19-related analyses, the significance
of the difference between two groups was calculated by a generalized linear
model fitted to the predicted age/gene expression with severity as the
independent variable and age as a confounder variable. The significance of
the differences between the two different groups in the embryogenesis
analyses was calculated by two-sample, two-sided Welch’s t-tests. ****: p ≤
0.0001, ***: 0.0001 < p ≤ 0.001, **: 0.001 < p ≤ 0.01, *: 0.01 < p ≤
0.05, ns:0.05 < p.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
TheAIDADataFreeze v1dataset23, containing the gene expression counts is
available at https://cellxgene.cziscience.com/collections/ced320a1-29f3-
47c1-a735-513c7084d508. The processed PBMC data of Yazar et al.29 are
available at https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-
46be-96a2-a8082383c4a1. All processed data of Yoshida et al.30 are avail-
able at https://cellxgene.cziscience.com/collections/03f821b4-87be-4ff4-
b65a-b5fc00061da7 (in the present study the PBMC dataset was used).
The data of Liu et al.31 is available at https://cellxgene.cziscience.com/
collections/ed9185e3-5b82-40c7-9824-b2141590c7f0. The dataset of Ste-
phenson et al.32 is available at https://cellxgene.cziscience.com/collections/
ddfad306-714d-4cc0-9985-d9072820c530. The Lung dataset of Sikkema
et al.33 is available at https://cellxgene.cziscience.com/collections/6f6d381a-
7701-4781-935c-db10d30de293. Raw gene expression counts of embryo
cells and embryonic stem cells studied by Yan et al.35 are available at Gene
Expression Omnibus under accession number GSE36552. The pre-
implantation embryo dataset of Petropoulos et al.36 is available at BioStudies
under accessionnumberE-MTAB-3929.Thedataset ofMeistermannet al.37

wasmade publicly available by Radley et al.50 at https://data.mendeley.com/
datasets/689pm8s7jc/1. The cellular senescence gene set used for the gene
set enrichment analysis can be accessed at https://www.gsea-msigdb.org/

gsea/msigdb/human/geneset/REACTOME_CELLULAR_SENESCENCE.
html. The set of cell type marker genes for the AIDA dataset is available in
the supplementary material of the work of Kock et al.23. Data generated in
this study are available at Zenodo under https://doi.org/10.5281/zenodo.
10405106.

Code availability
Data and codes generated in this study are available atZenodounderhttps://
doi.org/10.5281/zenodo.1040510653. The pipeline for the application of
single-cell clocks to new data can also be found at https://github.com/
polyake/scaging. All analyses were performed by using Python 3.8.17. Here,
we listed the most important packages with the version numbers in par-
entheses: • Basic packages for data manipulation: numpy (1.24.4), pandas
(1.5.3) • Packages to handle AnnData: scanpy (1.9.3) • Statistics and
machine learning packages: scipy (1.10.1), scikit-learn (1.3.0), glmnet
(2.2.1), xgboost (1.7.6), statsmodels (0.14.0) • Packages and software for
figure generation: matplotlib (3.3.4), seaborn (0.11.2), statannotations
(0.6.0), Tableau (2022.4).

Received: 16 January 2024; Accepted: 17 October 2024;

References
1. Horvath, S. DNA methylation age of human tissues and cell types.

Genome Biol. 14, 1–20 (2013).
2. Hannum, G. et al. Genome-wide methylation profiles reveal

quantitative viewsof human aging rates.Mol. Cell 49, 359–367 (2013).
3. Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and

healthspan. Aging 10, 573 (2018).
4. Horvath, S. & Raj, K. DNA methylation-based biomarkers and the

epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).
5. Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan

and healthspan. Aging 11, 303 (2019).
6. Bell, C. G. et al. DNA methylation aging clocks: challenges and

recommendations. Genome Biol. 20, 1–24 (2019).
7. Duan, R., Fu, Q., Sun, Y. & Li, Q. Epigenetic clock: A promising biomarker

and practical tool in aging. Ageing Res. Rev. 81, 101743 (2022).
8. Moqri, M. et al. Biomarkers of aging for the identification and

evaluation of longevity interventions. Cell 186, 3758–3775 (2023).
9. Peters, M. J. et al. The transcriptional landscape of age in human

peripheral blood. Nat. Commun. 6, 1–14 (2015).
10. Fleischer, J. G. et al. Predicting age from the transcriptome of human

dermal fibroblasts. Genome Biol. 19, 1–8 (2018).
11. Mamoshina, P. et al. Machine learning on human muscle

transcriptomic data for biomarker discovery and tissue-specific drug
target identification. Front. Genet. 9, 242 (2018).

12. Shokhirev, M. N. & Johnson, A. A. Modeling the human aging
transcriptome across tissues, health status, and sex. Aging Cell 20,
e13280 (2021).

13. Meyer, D. H. & Schumacher, B. BiT age: A transcriptome-based aging
clock near the theoretical limit of accuracy. Aging Cell 20, e13320
(2021).

14. Li, X. &Wang, C.-Y. From bulk, single-cell to spatial RNA sequencing.
Int. J. Oral. Sci. 13, 36 (2021).

15. Tomusiak, A. et al. Development of an epigenetic clock resistant to
changes in immune cell composition. Commun. Biol. 7, 934 (2024).

16. Zhang, Z. et al. Deciphering the role of immune cell composition in
epigenetic age acceleration: Insights from cell-type deconvolution
applied to human blood epigenetic clocks. Aging Cell 23, e14071
(2024).

17. Regev, A. et al. The human cell atlas. elife 6, e27041 (2017).
18. Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of

age. Nat. Commun. 11, 4307 (2020).
19. Jovic, D. et al. Single-cell RNA sequencing technologies and

applications: A brief overview. Clin. Transl. Med. 12, e694 (2022).

https://doi.org/10.1038/s42003-024-07094-5 Article

Communications Biology |          (2024) 7:1397 13

https://cellxgene.cziscience.com/collections/ced320a1-29f3-47c1-a735-513c7084d508
https://cellxgene.cziscience.com/collections/ced320a1-29f3-47c1-a735-513c7084d508
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1
https://cellxgene.cziscience.com/collections/dde06e0f-ab3b-46be-96a2-a8082383c4a1
https://cellxgene.cziscience.com/collections/03f821b4-87be-4ff4-b65a-b5fc00061da7
https://cellxgene.cziscience.com/collections/03f821b4-87be-4ff4-b65a-b5fc00061da7
https://cellxgene.cziscience.com/collections/ed9185e3-5b82-40c7-9824-b2141590c7f0
https://cellxgene.cziscience.com/collections/ed9185e3-5b82-40c7-9824-b2141590c7f0
https://cellxgene.cziscience.com/collections/ddfad306-714d-4cc0-9985-d9072820c530
https://cellxgene.cziscience.com/collections/ddfad306-714d-4cc0-9985-d9072820c530
https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293
https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293
https://data.mendeley.com/datasets/689pm8s7jc/1
https://data.mendeley.com/datasets/689pm8s7jc/1
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/REACTOME_CELLULAR_SENESCENCE.html
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/REACTOME_CELLULAR_SENESCENCE.html
https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/REACTOME_CELLULAR_SENESCENCE.html
https://doi.org/10.5281/zenodo.10405106
https://doi.org/10.5281/zenodo.10405106
https://doi.org/10.5281/zenodo.10405106
https://doi.org/10.5281/zenodo.10405106
https://github.com/polyake/scaging
https://github.com/polyake/scaging
www.nature.com/commsbio


20. Trapp, A., Kerepesi, C. & Gladyshev, V. N. Profiling epigenetic age in
single cells. Nat. Aging 1, 1189–1201 (2021).

21. Buckley, M. T. et al. Cell-type-specific aging clocks to quantify aging
and rejuvenation in neurogenic regions of the brain. Nat. Aging 3,
121–137 (2023).

22. Zhu, H. et al. Human PBMC scRNA-seq–based aging clocks reveal
ribosome to inflammation balance as a single-cell aging hallmark and
super longevity. Sci. Adv. 9, eabq7599 (2023).

23. Kock, K. H. et al. Single-cell analysis of human diversity in circulating
immune cells. Preprint at bioRxiv (2024). https://www.biorxiv.org/
content/early/2024/07/01/2024.06.30.601119 (2024).

24. de Jong, T. V., Moshkin, Y. M. & Guryev, V. Gene expression
variability: the other dimension in transcriptome analysis. Physiol.
Genomics 51, 145–158 (2019).

25. Ibañez-Solé, O., Ascensión, A. M., Araúzo-Bravo, M. J. & Izeta, A.
Lack of evidence for increased transcriptional noise in aged tissues.
Elife 11, e80380 (2022).

26. Yayon, N. et al. A spatial human thymus cell atlas mapped to a
continuous tissue axis. Preprint at bioRxiv https://doi.org/10.1101/
2023.10.25.562925 (2023).

27. Gui, J., Mustachio, L. M., Su, D.-M. & Craig, R. W. Thymus size and
age-related thymic involution: early programming, sexual
dimorphism, progenitors and stroma. Aging Dis. 3, 280 (2012).

28. Posnett, D. N. et al. Oligoclonal expansions of antigen-specific CD8+
T cells in aged mice. Ann. N Y Acad. Sci. 987, 274–279 (2003).

29. Yazar, S. et al. Single-cell eQTL mapping identifies cell type-specific
genetic control of autoimmune disease. Science 376, eabf3041
(2022).

30. Yoshida, M. et al. Local and systemic responses to SARS-CoV-2
infection in children and adults. Nature 602, 321–327 (2022).

31. Liu, C. et al. Time-resolved systems immunology reveals a late
juncture linked to fatal COVID-19. Cell 184, 1836–1857 (2021).

32. Stephenson, E. et al. Single-cell multi-omics analysis of the immune
response in COVID-19. Nat. Med. 27, 904–916 (2021).

33. Sikkema, L. et al. An integrated cell atlas of the lung in health and
disease. Nat. Med. 29, 1563–1577 (2023).

34. Chen, L. et al. Inflammatory responses and inflammation-associated
diseases in organs. Oncotarget 9, 7204 (2018).

35. Yan, L. et al. Single-cell RNA-Seq profiling of human preimplantation
embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20,
1131–1139 (2013).

36. Petropoulos, S. et al. Single-cell RNA-seq reveals lineage and X
chromosome dynamics in human preimplantation embryos.Cell 165,
1012–1026 (2016).

37. Meistermann, D. et al. Integrated pseudotime analysis of human pre-
implantation embryo single-cell transcriptomes reveals the dynamics
of lineage specification. Cell Stem Cell 28, 1625–1640 (2021).

38. Corley, M. J. et al. Genome-wide DNA methylation profiling of
peripheral blood reveals an epigenetic signature associated with
severe COVID-19. J. Leukoc. Biol. 110, 21–26 (2021).

39. Cao, X. et al. Accelerated biological aging in COVID-19 patients. Nat.
Commun. 13, 2135 (2022).

40. Poganik, J. R. et al. Biological age is increased by stress and restored
upon recovery. Cell Metab. 35, 807–820 (2023).

41. Franzen, J. et al. Epigenetic clocks are not accelerated in COVID-19
patients. Int. J. Mol. Sci. 22, 9306 (2021).

42. Ashapkin, V. V., Kutueva, L. I. & Vanyushin, B. F. Aging as an
epigenetic phenomenon. Curr. Genomics 18, 385–407 (2017).

43. Gladyshev, V. N. The ground zero of organismal life and aging. Trends
Mol. Med. 27, 11–19 (2021).

44. Kerepesi, C., Zhang, B., Lee, S.-G., Trapp, A. & Gladyshev, V. N.
Epigenetic clocks reveal a rejuvenation event during embryogenesis
followed by aging. Sci. Adv. 7, eabg6082 (2021).

45. Kerepesi, C. & Gladyshev, V. N. Intersection clock reveals a
rejuvenation event during human embryogenesis. Aging Cell 22,
e13922 (2023).

46. Petkovich, D. A. et al. Using DNA methylation profiling to evaluate
biological age and longevity interventions. Cell Metab. 25, 954–960
(2017).

47. de Lima Camillo, L. P., Lapierre, L. R. & Singh, R. A pan-tissue DNA-
methylation epigenetic clock based on deep learning. npj Aging 8, 4
(2022).

48. Edgar, R., Domrachev, M. & Lash, A. E. Gene Expression Omnibus:
NCBI gene expression and hybridization array data repository.
Nucleic Acids Res. 30, 207–210 (2002).

49. Sarkans,U. et al. TheBioStudiesdatabase—onestopshop for all data
supportinga life sciencesstudy.NucleicAcidsRes.46, D1266–D1270
(2018).

50. Radley, A., Corujo-Simon, E., Nichols, J., Smith, A. & Dunn, S.-J.
Entropy sorting of single-cell RNA sequencing data reveals the inner
cell mass in the human pre-implantation embryo. Stem Cell Rep. 18,
47–63 (2023).

51. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression profiles.
Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

52. Mootha, V. K. et al. Pgc-1α-responsive genes involved in oxidative
phosphorylation are coordinately downregulated in human diabetes.
Nat. Genet. 34, 267–273 (2003).

53. Zakar-Polyák, E. & Kerepesi, C. Data for “Profiling the transcriptomic
age of single-cells in humans”. https://doi.org/10.5281/zenodo.
10405106 (2024).

Acknowledgements
E.Z.-P. and C.K. were supported by the European Union project RRF-
2.3.1-21-2022-00004 within the framework of the Artificial Intelligence
National Laboratory, Hungary, and the “OTKA” Young Researcher Excel-
lence Program (FK-146113), Hungary. Figure 1a was created with
BioRender.com.

Author contributions
C.K. conceived the study and supervised the work. E.Z.-P. retrieved
data, developed the single-cell clocks and performed the data analysis.
R.P. developed the pseudo-bulk clocks. All authors interpreted the
results. E.Z.-P. and C.K. wrote the manuscript with the contribution of A.C
and R.P.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s42003-024-07094-5.

Correspondence and requests for materials should be addressed to
Enikő. Zakar-Polyák or Csaba Kerepesi.

Peer review information Communications Biology thanks the anonymous
reviewers for their contribution to the peer review of this work. Primary
Handling Editors: George Inglis, Aylin Bircan and Tobias Goris.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/s42003-024-07094-5 Article

Communications Biology |          (2024) 7:1397 14

https://www.biorxiv.org/content/early/2024/07/01/2024.06.30.601119
https://www.biorxiv.org/content/early/2024/07/01/2024.06.30.601119
https://www.biorxiv.org/content/early/2024/07/01/2024.06.30.601119
https://doi.org/10.1101/2023.10.25.562925
https://doi.org/10.1101/2023.10.25.562925
https://doi.org/10.1101/2023.10.25.562925
https://doi.org/10.5281/zenodo.10405106
https://doi.org/10.5281/zenodo.10405106
https://doi.org/10.5281/zenodo.10405106
http://BioRender.com
https://doi.org/10.1038/s42003-024-07094-5
http://www.nature.com/reprints
www.nature.com/commsbio


Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if you modified the licensed material. You
do not have permission under this licence to share adapted material
derived from this article or parts of it. The images or other third party
material in this article are included in the article’s Creative Commons
licence, unless indicated otherwise in a credit line to thematerial. If material
is not included in thearticle’sCreativeCommons licenceandyour intended
use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by-
nc-nd/4.0/.

© The Author(s) 2024

https://doi.org/10.1038/s42003-024-07094-5 Article

Communications Biology |          (2024) 7:1397 15

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/commsbio

	Profiling the transcriptomic age of single-cells in humans
	Results
	Profiling the age of human single-cells by cell-type-specific clocks
	Estimating the age of donors
	External validation of aging clocks on healthy samples
	Decreased transcriptomic age of classical monocytes, naive B and T cells in moderate COVID-19 followed by an increase for some types in severe COVID-19
	Transcriptomic rejuvenation of human embryo cells at the morulae and blastocyst stages

	Discussion
	Limitations
	Methods
	Description of the input datasets
	Data pre-processing
	Calculation of transcriptional noise
	Gene set enrichment analysis
	Age prediction models
	Model validation on external datasets
	Application of clocks to additional datasets
	Explanation of changes in predicted ages
	Statistics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




