
Vol.: (0123456789)

J Grid Computing (2024) 22:71
https://doi.org/10.1007/s10723-024-09785-z

RESEARCH

Adapting to Changes: A Novel Framework for Continual
Machine Learning in Industrial Applications

Jibinraj Antony · Dorotea Jalušić · Simon Bergweiler · Ákos Hajnal ·
Veronika Žlabravec · Márk Emődi · Dejan Strbad · Tatjana Legler ·
Attila Csaba Marosi

Received: 13 May 2024 / Accepted: 22 October 2024
© The Author(s) 2024

Abstract This paper is dedicated to solving the
problem of concept drift in industrial plants using
artificial intelligence methods. For this purpose,
methodological approaches and procedures are con-
sidered and analyzed. Based on the findings, ref-
erence architectures were developed at different
abstraction levels that can be used in an industrial
environment and enable continuous machine learn-
ing. Continuous machine learning offers the possibil-
ity of adapting to dynamic changes in the production
environment, which are reflected in constantly chang-
ing data sets. Through a combination of machine

learning techniques, a novel and practical framework
for continuous learning, also known as lifelong learn-
ing, is presented. The integration of problem-focused
machine learning methods is advancing in produc-
tion, e.g., predictive maintenance, process optimi-
zation or fault detection. Thereby, fully or semi-
automated adaptations to changing environments
requiring continuous improvements are less often
explored, although practical use cases often require
adaptive capabilities as the physical data distribu-
tion may change over time. In this paper, the applica-
tion was continuously improved based on case stud-
ies and empirical results, and finally validated with a
quality assurance application. Various methods and
approaches for detecting concept and data deviations,
retraining, packaging and model updating had to be

Jibinraj Antony, Dorotea Jalušić, Simon Bergweiler, Ákos
Hajnal, Veronika Žlabravec, Márk Emődi, Dejan Strbad,
Tatjana Legler, and Attila Csaba Marosi contributed
equally to this work.

J. Antony (*) · S. Bergweiler · T. Legler
German Research Center for Artificial Intelligence
(DFKI), Trippstadter Str. 122, 67663 Kaiserslautern,
Germany
e-mail: jibinrajantony@gmail.com

S. Bergweiler
e-mail: simon.bergweiler@dfki.de

T. Legler
e-mail: tatjana.legler@dfki.de

D. Jalušić · V. Žlabravec · D. Strbad
Ascalia Ltd., Trate 16, 40000 Čakovec, Croatia
e-mail: dorotea.jalusic@gmail.com

V. Žlabravec
e-mail: veronika@ascalia.io

D. Strbad
e-mail: dejan@ascalia.io

Á. Hajnal · M. Emődi · A. C. Marosi
Laboratory of Parallel and Distributed Systems, Institute
for Computer Science and Control, Hungarian Research
Network, Budapest, Hungary
e-mail: akos.hajnal@sztaki.hun-ren.hu

M. Emődi
e-mail: mark.emodi@sztaki.hun-ren.hu

A. C. Marosi
e-mail: attila.marosi@sztaki.hun-ren.hu

Á. Hajnal · M. Emődi
John Von Neumann Faculty of Informatics, Obuda
University, Budapest, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-024-09785-z&domain=pdf
http://orcid.org/0000-0003-1982-9946

 J Grid Computing (2024) 22:71 71 Page 2 of 19

Vol:. (1234567890)

investigated, which led to the question of what a real
industry-oriented implementation could look like.
The result is a reference architecture that can run on
cloud and edge computing resources. This reference
architecture is validated in real-world application in
the parquet production sector, proving its feasibility
and efficiency.

Keywords Continual machine learning ·
Continuous machine learning · Concept drift ·
Automated deployment · Reference architecture ·
Manufacturing-as-a-service

1 Introduction

Machine Learning (ML) has revolutionized the
manufacturing industry by enabling manufacturers
to increase efficiency [1, 2], reduce costs [3, 4] and
improve quality [5, 6]. ML has proven its applications
in many fields, such as predictive maintenance [7, 8],
quality control 9, 10, process optimization [11, 12],
etc.

In a conventional ML application, the ML Algo-
rithm identifies the features or patterns in a histori-
cal dataset called training dataset and adapts the ML
Model parameters according to the identified features
during the Model training or learning process. The
given training dataset shall have a static nature and be
a subset of the data points from the real-world appli-
cation, which have been collected historically over
time and have similar features to those of the applica-
tion. After successfully completing the model train-
ing process, the trained ML model will be able to imi-
tate the given data distribution through its parameters
(weights) and make predictions on any new given
data point with features similar to the training data
distribution. This data-driven nature of ML Algo-
rithms makes them highly dependent on the quality
and quantity of the collected historical data points
and their effectiveness in representing the real appli-
cation scenario, which in turn becomes a crucial fac-
tor in the success of the application use case.

In a dynamically changing world, where the nature
and features of products continuously vary, the static
nature of the dataset used in ML applications cre-
ates inefficiencies and uncertainties in the long run.
This idea of Concept Drift, where the underlying
data distribution changes over time, thereby making

the trained ML models obsolete, has become a criti-
cal issue in the trustworthiness of ML models in a
production environment. For example, an ML model
used to predict frauds in credit card transactions may
become less accurate as fraudsters change their tactics
[13]. To dynamically adapt to the changes in the real
world and to eliminate the Data Drift inefficiencies,
modern ML techniques such as Continual Learning
(CL) and implementation approaches such as Contin-
uous Machine Learning (CML) must be used.

Continual Learning, also referred to as lifelong,
sequential, or incremental learning, is the problem
of learning from an infinite stream of data with the
intent to preserve and extend the acquired knowledge
[14]. In contrast to static artificial neural networks,
which are incapable of adapting or expanding, real-
world streams of information constantly evolve [14].
Humans learn sequentially throughout their lives.
They gradually forget some old information, espe-
cially details, but without completely losing obtained
knowledge [15]. The ability to integrate new knowl-
edge and stability to preserve previous knowledge is
called the "stability-plasticity" dilemma in both bio-
logical [16] and artificial neural systems [17]. With-
out a good balance, neural networks can suffer from
"catastrophic forgetting", thus resulting in a deterio-
ration of performance in handling old classes when
acquiring new data [18]. Although continual learning
is a long-standing challenge [19, 20], with the spread
of AI applications in the daily life, the ability to con-
tinuously learn is still of high importance.

On the other hand, Continuous Machine Learning
is the latest ML development strategy for production-
ready ML applications, where an ML Model has been
integrated and managed at periodic instances, lever-
aging Agile DevOps practices used in the industry.
Although such a continuous approach can address
a few requirements of a dynamic real world, it still
associates other challenges such as complex infra-
structure requirements, low failure rates, etc. This gap
can be filled by combining the approaches of CML
with CL tools to achieve a highly dynamic ML work-
flow, which can be efficiently transferred to industrial
scenarios.

Machine Learning Operations (MLOps) [72] refers
to the efficient lifecycle management of machine
learning models, including the technologies and
methodologies required. It is considered a multidis-
ciplinary field, combining the practices of Machine

J Grid Computing (2024) 22:71 Page 3 of 19 71

Vol.: (0123456789)

Learning, DevOps (Development and Operations),
and data engineering. The main goal of MLOps is
to improve the efficiency, quality, and maintainabil-
ity of machine learning projects by automating and
standardizing the process of taking a machine learn-
ing model from development to production and man-
aging its complete lifecycle. MLOps practices can
be applied to any machine learning project and itself
does not concern with the learning methods used
within a project. The Continual Machine Learning
Reference Architecture presented in this paper incor-
porates many MLOps aspects in an automated man-
ner, such as re-training, versioning, testing, deploy-
ment, and monitoring and management.

DIGITbrain [21] is a European innovation project
that aims to support the manufacturing industry by
providing a collaborative platform for faster devel-
opment of Digital Twin (DT) solutions, re-usability
and dynamic composition of various assets [22]
(models incorporating behavioral, physics, finite ele-
ment model, 3D, machine learning [23], dynamically
bound data resources, and algorithms decomposed
into microservices), and easier access to high-perfor-
mance computing and cloud resources.

Reference Architectures (RAs) represent fre-
quently emerging patterns and best practices, which
can be defined at various levels of abstraction. For
example, "Reference Architectural Model Industry
4.0” [24] (RAMI 4.0) or “Industrial Internet Refer-
ence Architecture” [25] is built on high-level con-
cepts. At the same time, RAs provided by popular
public cloud providers such as Amazon WebServices
(AWS) [26], Google Cloud Platform, and Micro-
soft Azure [27] are more concrete, directly deploy-
able components. RAMI 4.0 represents a high-level
(abstract) reference architecture, a framework for
digital transformation in manufacturing and industry
that facilitates the integration of digital and physi-
cal processes. While being comprehensive, it is not
without difficulties, such as (i) the cost of implemen-
tation to align with the standards of RAMI 4.0; (ii)
complexity as it is a multi-dimensional and multi-
layered model; (iii) it has its adaptability, flexibility
and interoperability issues; and (iv) assumes organi-
zational and process changes within any organization
to adapt the model. Generally, it provides a structured
approach for companies to modernize and standard-
ize their operations. Still, it may not be suited for
organizations of all sizes and maturities and may not

be applied to improve only a specific set of processes.
DIGITbrain specializes in providing smaller-scale
best-practice recommendations, blueprints, patterns,
and prototypes in manufacturing context [28–31],
which can be directly applied or customized with lit-
tle effort. Research and development carried out were
validated using real-life industrial use cases.

This paper focuses on conceptualizing an industry-
transferable, dynamic ML pipeline and validating it in
a Quality Control operation use case, namely, in the
glue application process at Bauwerk Group Hrvat-
ska d.o.o. Reference Architectures are provided for
dynamic ML at different levels of abstraction (from
schematical to concrete realization). The process and
the presented results can be utilized in other industrial
use cases or at least can serve as a starting point or
template for similar applications.

The main contributions of this work are as follows:

• overview and analysis of related approaches and
methodological solutions addressing the problem
of concept drift in industrial applications

• a logical architecture enabling continual machine
learning

• a concrete reference architecture realization appli-
cable in industrial contexts

• a case study and empirical results that validate the
approach to an industrial quality control applica-
tion

Note that the paper does not merely aim to pro-
vide a realization of a particular continuous machine
learning application, which though can be applied in
various domains in the industry, but to draw the atten-
tion to the phenomenon of concept drift, which can
explain why the effectiveness of the applied machine
learning technique degrades over time. We present an
overview of the state-of-the-art methodologies and
concepts in the field of continual learning. The pro-
posed high-level, logical reference architecture can
serve as a functional blueprint, a starting point for
designing such a complex system, and we also pre-
sent a particular implementation option, which was
validated on a real-world manufacturing process to
show its applicability and benefits for manufactur-
ing companies. To our experiences the introduction
of ML is ongoing and of very high interest at small
and medium enterprises (SMEs) having huge poten-
tial and even higher expectations. ML technologies

 J Grid Computing (2024) 22:71 71 Page 4 of 19

Vol:. (1234567890)

are more mature and are better supported by several
tools and research materials. Application of continual
machine learning however is less known, still a very
important from both practical and research points of
view.

The rest of the paper is organized as follows: In
the next section, we overview the problem of concept
drift in static ML models, and related, existing meth-
odological approaches addressing it. We then propose
both a logical and a specific Reference Architecture
that can help realize Continual ML architectures and
workflows. It is followed by a particular use case and
empirical results on adapting the proposed Reference
Architecture onto an industrial application. Finally,
the paper is concluded.

2 Related Work

Although ML utilizes static, historical data for its
development, it has been successfully applied to
diverse use cases in various branches of industry:
agricultural industries for the optimization of food
production [32], medical applications for disease
diagnosing [33], making cybersecurity systems more
secure [34], Industry 4.0 applications [35] etc.

The dynamic characteristics of industrial use cases
and the inability of ML models to adapt to changes,
as addressed in the context of concept drift or drift
[36], make ML models obsolete in certain real-world
environments and applications. ML models which
are incapable of detecting cyber attacks as the attack-
ers change their strategies [13] or the medical image
processing models which deteriorates its performance
as the diversity of the data increases [73] are some of
the examples of such real-world applications. On the
other hand, the relationship between input and output
data can also change over time meaning that, in turn,
there are changes to the underlying mapping function
learned by the ML model. These changes may be con-
sequential, such as the predictions made by a model
(trained on historical data) are no longer correct or as
correct as they could be if the model would have been
trained on more recent historical data. Such unfore-
seeable changes of the underlying data distributions
result in poor learning results [37] and performance
deterioration [38] over a certain period. For success-
ful ML applications, it is thus essential to take drift

into consideration even during the development phase
to recognize the drift in early stages and to deploy
updated models that would diagnose themselves and
adapt to changes in data over time [39], which are
essential in error-free industrial applications.

Early detection of drift, characterization and quan-
tification, identification of change points and change
time intervals [40] are important topics in many ML
applications. Generally, drift detection algorithms
can be classified into three different categories [37].
In an error rate-based drift detection algorithm, the
error rate of the base classifier is tracked, and a drift
notification will be triggered based on a statistically
significant error rate. Common algorithms such as
Drift Detection Method (DDM) [41], Learning with
Local Drift Detection (LLDD) [42], Early Drift
Detection Method (EDDM) [43] use an error rate-
based approach for drift detection. In data distribu-
tion-based drift detection approaches, algorithms use
a metric or distance function to quantify the dissimi-
larity between the distribution of historical and new
data points, and at statistically significant dissimilar-
ity instances, a trigger has been initiated. In such data
distribution-based drift detection methods, the algo-
rithms consider the distribution drift to quantify the
drift. In the third category, called multiple hypothesis
test drift detection [37], a combination of both the
error rate and the data distribution approaches has
been utilized. Although these drift detection algo-
rithms can identify the occurrence time (when) and
the severity of the concept drift (how), only a very
few algorithms can locate the drift regions (where) in
the dataset [37].

Upon successful detection of drift, a general strat-
egy for drift adaptation or drift reaction is to per-
form a simple model retraining, develop ensemble
models, or perform model adjusting to handle differ-
ent types of drift [37]. The retraining strategy is one
of the most successful methods of addressing global
drift by replacing the obsolete model with a new
one. The DELM [44] model performs such a retrain-
ing approach to address the global drift by actively
adjusting the number of hidden layer nodes for clas-
sification models. Similarly, the just-in-time approach
used in [45, 46] detects the drift using kNN classifiers
[46], and the models are updated on-demand.

Model ensemble approaches were found to be
more efficient in addressing the recurring concept
drifts, where the previously trained models are

J Grid Computing (2024) 22:71 Page 5 of 19 71

Vol.: (0123456789)

reused, and retraining efforts are minimized. In a
general ensemble approach, a combined result from
different models (using certain voting rules and
weighting) is generated and used to make new pre-
dictions. The approaches proposed by [47, 48] uti-
lize ensemble models where an algorithm replaces
the worse-performing model with the newer model
to address the recurring drift.

Concept drift handling in industrial applications
is challenging, involving performance as well as
safety risks for the processes. In an industrial pro-
cess, a monitoring application of a CNC Milling use
case [49] proposes a data drift tracking method to
evaluate the uncertainty of utilized CNN’s. Once
the drift is detected, new training samples are gener-
ated, and the model is adapted to the latest changes
by retraining. Similarly, in an Injection Molding
process’s quality control system [50], various drift
detection algorithms are utilized to identify the
drift, and the corresponding adaptations are per-
formed again by retraining the model on new train-
ing datasets. Although these approaches address
the concept drift in the application, dynamic adap-
tations of data changes in a continuous manner are
rarely researched and not widely implemented in
industrial applications.

CL has originated as a new ML concept where a
model learns from a dynamically changing dataset
and updates and exploits its knowledge over its life-
time. Although CL enables models to develop them-
selves adaptively, it is limited by its catastrophic for-
getting nature, where learning new tasks results in
performance degradation on old tasks. In comparison
to the traditional ML approaches, the dynamic adapt-
ability of the CL models enables them to perform
better in real-world problems, as explained by the
plasticity-stability dilemma, with plasticity referring
to the ability to integrate new knowledge and stability
retaining previous knowledge while encoding it [51].

Traditional ML neural networks tend to be overly
plastic, lacking the stability necessary to prevent for-
getting previous knowledge, and as the learning pro-
gresses, networks tend to forget previously seen tasks,
which have been successfully addressed by various
families of CL approaches [52]. Various methods
[53–55] use regularization-based techniques while
retraining the whole network; methods that selec-
tively train the network and dynamically expand it
on-demand to represent the new tasks by architecture

modifications [56, 57]; methods using memory replay
to consolidate internal representation [58, 59]; meth-
ods by explicitly designing and manipulating the
optimization programs [60–62] have successfully
implemented strategies to overcome catastrophic for-
getting [14, 63], achieving a better plasticity-stability
trade-off.

Due to the complexity of the real world, the practi-
cal application of Continual learning is facing many
difficulties, namely, scenario complexity, task speci-
ficity and scarcity of labeled data [63], decelerating
industrial adaptation of these approaches. Although
concept drift is a well-known challenge in ML appli-
cations for industrial use cases, the application of
Continual learning is not broadly researched and
transferred to the industrial use cases.

3 Continual Machine Learning Reference
Architecture

This section presents a schematic block diagram, a
logical structure of a Continual ML reference archi-
tecture, incorporating components necessary to real-
ize potential CML workflows. We describe all the
major steps of such processes, starting from the "hot"
control loop performing real-time data analysis and
intervention, then extending to the "cold" path that
allows to detect concept drift to re-train and re-deploy
the refined model from time to time to adapt to the
changing environment. It is followed by an overview
of existing tools and software frameworks that can be
facilitated to realize such an end-to-end infrastruc-
ture, in part or fully. Finally, we propose a concrete
and complete Continual ML Reference Architecture,
in which every logical component has its correspond-
ing software choice, and so thus, after an application-
specific customization, it can directly be deployed
and run in a local or cloud-edge execution environ-
ment, respectively.

3.1 High-level CML Reference Architecture

Fig. 1 illustrates the structure of the logical refer-
ence architecture composed of high-level functional
blocks, which can serve as a blueprint, pattern, or
simply a schematic guideline to overview, under-
stand what needs to be designed and implemented
to construct a Continual ML application. This

 J Grid Computing (2024) 22:71 71 Page 6 of 19

Vol:. (1234567890)

architecture contains all the essential, necessary
modules and functionality, aimed to be as complete
as possible, although, note that, in practice, several
other components might extend this base architec-
ture to fulfil further application-specific require-
ments. This model was constructed jointly by sev-
eral companies from the industry and research
organizations specialized for IT and AI technolo-
gies, went through multiple iterations of develop-
ments, and combines research and industrial prac-
tices gained from small and medium enterprises
(SMEs) during the DIGITbrain project in manu-
facturing domain. In the following paragraphs, we
explain the role and functionality of the individual
components.

Proceeding upwards from the bottom, the lower
part represents the shopfloor in a production plant
with a production machine equipped with sev-
eral sensors observing various metrics of the live
manufacturing process. Examples of production
machines include metal-forming press machines or
industrial robot arms, but they can also be complex

systems with several cooperating components (even
geographically distributed). Examples of sensors
include heat-, pressure sensors, industrial cameras,
programmable logic controllers (PLCs), or other
software components (e.g., Enterprise Resource
Systems), databases, respectively.

The stream of sensor data is fed into a compo-
nent called Real-time Inference. It performs real-
time inferences/predictions using ML algorithms
and models (initially) trained on historical data pre-
viously. The result of the inference can imply imme-
diate control feedback and intervention to the pro-
duction machine (or another cooperating machine)
through a component called a Control Unit. This
loop of data and control is called the “hot path”
(indicated as red arrows), as it is used actively in the
production process.

The data coming from the sensors is forwarded
to a Data Collector component, which is responsi-
ble for storing new data for later analysis, and might
also perform further data transformation and pre-
processing activities such as data augmentation,

Fig. 1 High-level CML reference architecture and workflows

J Grid Computing (2024) 22:71 Page 7 of 19 71

Vol.: (0123456789)

scaling, sampling, cleaning, aggregation, KPI (Key
Performance Indicator) extraction, etc. Data Collector
also records the actual predictions made by the cur-
rent ML application (Real-time Inference block) and
potentially collects and assigns annotations (labels)
for data samples on the fly, entered by a human
operator.

Data Collector can also buffer the data before
sending it to a persistent storage system called Data
Storage. This direction of data is called a “cold path”,
which is typically it is less time-critical compared to
the “hot” control loop. Data Storage can be an object
storage, as an example, a database, or a message bro-
ker, respectively. It can be hosted on-premises (keep-
ing governance, control, and sovereignty over the
data) but can potentially hosted in a cloud storage ser-
vice outside the facility.

Drift Detection module continuously analyses new
data (obtained from the Data Storage component),
derives and calculates statistical, metric data, trends
such as accuracy of prediction degradation over time,
distribution change and other anomalies.

A Monitoring and Visualization layer, which is
typically the graphical user interface of the system,
can visualize this information for a human operator
(but can provide other monitoring and status infor-
mation about the system; this time we restrict our
attention of CML aspects). When drift is detected,
it notifies the Decision Making component, which is
responsible for determining whether model re-train-
ing is required and when it can be performed (e.g.,
enough new training data is available, drift exceeds a
certain threshold), it schedules re-training and deter-
mines the set of data to be used (only new or a mix-
ture of old and new, etc.) and whether a new model
architecture is required (e.g., in case of a new cat-
egory or ensembles). The decision may require user
interaction or confirmation.

Model Training module performs the training pro-
cesses. This component is typically hosted in an exe-
cution environment equipped with sufficient compute
resources (typically with GPU cards). Model train-
ing may use previous model parameters as a starting
point (transfer learning), and the resulting model is
eventually stored in the Model Registry using ver-
sioning and other metadata.

When the new model becomes available and is
uploaded into the Model Registry, the Decision Mak-
ing component initiates graceful termination of the

current control process and instructs the Real-time
Inference module to fetch the new model version
(indicated by “(re-)deploy model” arrow), apply it
and resume the manufacturing with as little downtime
as possible.

Note that this is a high-level reference architec-
ture that includes functional components needed
to cover workflows in CML systems. Although it is
also an architecture of high abstraction, in contrast to
RAMI 4.0 for industry, this model focuses on CML.
It intentionally does not specify software solutions
and other implementation details that could restrict
the application of the logical scheme to use cases
or uniform requirements. It provides merely hints
for placement for the components (shopfloor, edge,
cloud), which can vary from application to applica-
tion; an “optimal” placement cannot be determined
in general in advance and is largely dependent on
company policies and preferences. In extreme cases,
it can happen that all components are best deployed
on the shopfloor (no data leaves company premises),
or everything runs in the cloud (no infrastructure is
needed from the company), respectively. In most
cases, a mixed allocation of functional components
to compute and storage resources might be prefer-
able, considering several aspects like performance,
cost, data privacy, etc. Because the necessary data
and model storage technologies (and the required
infrastructure backing) also vary widely (databases,
object/file storages, streaming resources, potentially
storing loads of volumes in a distributed and repli-
cated manner), no placement is recommended at all
for these components (simply referred to as a storage
layer). Re-training, due to its high computing require-
ments (GPU support) and its periodical but tempo-
rary nature, is typically allocated to clouds for cost-
performance tradeoff reasons (as recommended by
the architecture).

3.2 Related Tools and Frameworks

There are several platforms and libraries available
to support continual ML use cases. MLflow [64]
is an open-source platform designed to streamline
the machine learning life cycle, manage and track
machine learning experiments, models, and deploy-
ments. It provides a unified interface and allows
users to work with various machine-learning frame-
works, libraries, and tools. The core components of

 J Grid Computing (2024) 22:71 71 Page 8 of 19

Vol:. (1234567890)

MLflow include (i) Tracking, which enables users to
log and organize experiments and their parameters,
metrics, and artifacts; (ii) Projects, which standardize
the structure and modularization of machine learning
code to make it more shareable and reproducible; and
(iii) Models, which facilitate model packaging and
deployment across different platforms.

Additionally, MLflow offers a Model Registry for
version control, collaboration on model development
and an extensive set of APIs and integrations. Fur-
thermore, MLflow Recipes is an experimental frame-
work for structuring MLOps workflows that simpli-
fies and standardizes machine learning application
development and productionization. It provides (a)
predefined templates that include standardized stages
such as data ingestion, transformation, training, eval-
uation, etc.; (b) a recipe execution engine that allows
fast iteration by, e.g., keeping track of the dependen-
cies within any pipeline and will trigger re-execution
starting only from the required step; and (c) standard-
ized and modular structure to simplify and automate
hand-off from development to production.

On the other hand, Avalanche [65] is an open-
source end-to-end Continual Learning library based
on PyTorch. Its goal is to support fast prototyping,
training and evaluation of continual learning algo-
rithms. Its initial focus was on continual supervised
learning for vision tasks. It focuses on reproduc-
ibility, scalability, and code efficiency (e.g., requir-
ing less code, allowing faster iteration, and reducing
errors). It consists of five modules: (i) the bench-
marks module contains the major CL benchmarks
and offers a uniform API for data handling; (ii) the
training module contains functionality for model
training, including efficient methods for implement-
ing new CL strategies and also contains CL base-
lines and algorithms to use and compare against;
(iii) the evaluation module contains functionality for
evaluating CL algorithms based on the criteria, fac-
tors that the Avalanche authors consider important;
(iv) the models module includes task-aware models
and utilities to expand models through a set of pre-
trained models and popular (reference) architectures,
similarly to torchvision.models. Finally, (v) the log-
ging module contains logging and plotting features,
including native support for Tensorboard. As Ava-
lanche is an off-the-shelf open-source framework
offering end-to-end CL implementation and customi-
zation opportunities on demand, its functionalities

are in line with the objectives of the paper and, there-
fore, chosen for the implementation.

3.3 Concrete CML Reference Architecture

Figure 2 illustrates the proposed Reference Archi-
tecture implementation. It contains three major lay-
ers. (i) The DIGITbrain Platform (also called Digital
Agora) serves as a high-level user interface (also, the
control and orchestration layer within the ecosystem).
(ii) The cloud layer is designed to provide the neces-
sary compute capacity from a cloud. Throughout the
deployment process, the platform orchestrates the
deployment of the predefined components and facili-
tates essential integration steps, such as data manage-
ment and communication between the components;
(iii) The infrastructure of the manufacturing com-
pany, including the Data Storage and Model Registry
components.

In manufacturing, data handling and control feed-
back are generally sensitive topics; therefore, com-
panies often prefer to share as little information as
possible with the outside world (and the competi-
tors). Therefore, the Data Storage and the Control
Unit (which beyond privacy has high security risk)
are separated from the provided reference architecture
implementation and are connected dynamically on
application start on-the-fly.

During the process of data integration, data and
models need to be stored and accessed, but since the
Reference Architecture does not intend to delimit the
type of storage to be used (which varies significantly
from use case to use case depending on the actual
data the factory produces), it contains an Rclone
component to connect to these external storages
seamlessly (data and model storages may even be of
different types). Rclone offers dynamic configuration
options to connect to a particular storage at run-time,
supporting more than 70 different providers (includ-
ing AWS S3, Microsoft Azure Blob Storage, Google
Drive, etc.). Moreover, leveraging the functionality
provided, Rclone component ensures that only essen-
tial data is synchronized to the cloud. This targeted
synchronization minimizes network load, reduces
data movement latency, and carefully considers the
secure advantages associated with retaining data
on-premises.

For the CL framework Avalanche had been
selected as a software implementation. The

J Grid Computing (2024) 22:71 Page 9 of 19 71

Vol.: (0123456789)

Avalanche container is built on top of the PyTorch
stack and extends its functionality to the CL direc-
tion. Since, during model development, use of
authoring tools (training, evaluating, experimenting,
etc.) can be important, we also integrated the widely
used JupyterLab, as a graphical development envi-
ronment option. Moreover, this container is equipped
with an NVIDIA driver for GPU execution, which
is versatile, allowing testing and utilization of CPU
resources whenever GPU resources are not available.

The Avalanche Container allows for realizing the
following functionalities: (i) model training and vali-
dation; (ii) Decision Making logic that triggers model

re-training on extended/re-sampled datasets; (iii) detec-
tion of data distribution changes (drift) over time. Since
these phases are application-specific, the reference archi-
tecture can only provide a framework, tools, and options
to implement them but cannot provide hard-wired solu-
tions for all the cases requiring no customization efforts.

Finally, the Reference Architecture when launched
by the platform allows users configuring essential
parameters such as specifying external data resources
(hosts, storage types and data protocols, access cre-
dentials, etc., for data and model storages), entering
application-specific settings (such as the password to
access JupyterLab), as well as keeping track of the

Fig. 2 Concrete CML reference architecture and implementation details

 J Grid Computing (2024) 22:71 71 Page 10 of 19

Vol:. (1234567890)

status of current application execution and potential
alerts coming from the containers.

Note that the provided concrete reference architec-
ture is an actual implementation (deployable and inte-
grated) and convers and provides frameworks for most
of the functional building blocks of the logical reference
architecture presented previously. It is not application-
specific, so it can be used more generally in various
production environments and use cases requiring CML,
although it cannot specify details such as how exactly
to detect drift, what data/types of data are collected,
what particular storage needs to be used and where it is
deployed, how to decide when to retrain the model and
how, etc., which are application-dependent details. It
still offers implementation solutions for several compo-
nents and frameworks for placeholders subject to speci-
fication, customization, tailoring to complete the system.

4 Validation and Experimental Results

The APRICOT experiment (one of the industrial
validation experiments in DIGITbrain project)
implemented a solution for automatized quality

control in the glue application process on parquet
manufacturing lines. The end user previously per-
formed quality control using manual methods,
which was rather time-consuming, costly and prone
to error. To eliminate such bottlenecks and auto-
mate the process the experiment utilized high-end,
NIR (near-infrared) cameras and deep learning-
based computer vision techniques to detect the
quality issues in the glue application process on
the wooden planks in real time on a dedicated edge
device. The images generated from the NIR cam-
eras, as shown in Figure 3, have been utilized to
generate an ML model in later stages.

The architecture of the application as shown in
Figure 4 consists of multiple microservices:

1. A microservice responsible for image acquisition,
image processing and machine learning model
inference (Glue Defect Detection)

2. A microservice that, depending on the defect
detection result, sends a command to a printer to
mark the defective plank (PLC Trigger)

3. A microservice for storing collected data in the
cloud (S3 Cloud Storage Microservice)

Fig. 3 Image data from the NIR Cameras of the plank surfaces, used as the input data to the ML Model

J Grid Computing (2024) 22:71 Page 11 of 19 71

Vol.: (0123456789)

4. A microservice for publishing metric data to
Ascalia’s web platform for monitoring production
(Data Publisher)

5. A graphical user interface showing the data on
detected defects and simple statistics

6. An MQTT broker for communication between
microservices.

Since the application uses a deep learning model
to detect the defects on images, its performance could
deteriorate over time due to various factors inherent
to industrial environments. Most frequent factors fall
into the following categories:

1. Hardware degradation: Hardware equipment
can degrade over time or stop functioning com-
pletely. For instance, lighting intensity could
decrease over time, leading to changes in data
quality which could affect model performance.

2. Adaptation challenges: New product types
could be added to production, which could differ
from existing data. The ML model in production,
which was trained prior to this addition, most
likely wouldn’t be able to perform well on those
new images. To mitigate this additional image
data of the new products should be collected and
annotated, and the ML model should be retrained.

Fig. 4 Architecture of the APRICOT experiment implementation

 J Grid Computing (2024) 22:71 71 Page 12 of 19

Vol:. (1234567890)

3. Environmental changes: If the environment, in
which the hardware setup is installed, undergoes
changes (e.g., in lighting conditions, equipment
configuration, background), the model could fail
to adapt if such conditions weren’t represented in
the training data.

An increased number of false positive detections
could be very disruptive for a manufacturing pro-
cess, whereas an increased number of false nega-
tives could result in the defect being undetected by
the operators, and lead to customer dissatisfaction.
Therefore, it’s crucial to incorporate data/model
monitoring concepts and Continual learning. To
implement those concepts into the manufacturing
pipeline the current application architecture was
extended.

4.1 Challenges

4.1.1 Scarcity of Labeled Data

Typically, in industrial production, defects rarely hap-
pen however their significance is huge when they
remain undetected and defective products are shipped
to the customer. Scarcity of labeled data was a great
challenge in this use case. The manufacturing com-
pany (targeted user of the application) has not previ-
ously used cameras to inspect their products, so they
could not provide data. Also, no such open dataset
was available at the time of the application develop-
ment. It required a huge effort to collect, manually
(visually) inspect, categorize and verify image labels
one-by-one, involving the work of experts, line man-
agers and operators to confirm the actual glue appli-
cation defects which also depend on parameters such
as size, shape and density.

4.1.2 Scenario Complexity

As mentioned previously, changes of the environment
can negatively impact the performance of the model,
which may then fail to “generalize”, detect poten-
tial faults under the new conditions. Computer vision
applications are sensitive to lighting conditions, and
despite that the hardware setup was designed to mini-
mize impact of external lighting conditions, it was

impossible to eliminate all interferences. Another chal-
lenge was the diversity of plank types to be inspected,
which varied in texture and color, furthermore, defects
also differed in their shape, size, and frequency, which
could result in an imbalanced dataset. The model was
expected to perform well on all types of products.

4.1.3 Task-Specific Requirements

The environment can change over time, so as the
products and the types of defects being inspected. In
addition, after a certain period, the ratio of glue com-
ponents was updated (to reduce production costs),
which resulted in visually different defects. On one
product type, there were multiple smaller regions
of unapplied glue on planks (“spotty” glue applica-
tion) and the decision to be reported (defect or not)
depended on the distance between the smaller defects
(density) and their size.

Considering the above challenges, continual learn-
ing was a critical aspect at developing such a com-
puter vision application.

4.2 Application Overview

A microservice for data drift detection was devel-
oped to detect changes in the acquired images. The
microservices utilizes WhyLabs [66], an open-source
data logging platform, to detect drift in the input data.
Using a reference dataset, the platform performs dif-
ferent statistical or machine-learning-based methods
to detect changes in the data distributions. When a
drift is detected, the microservice notifies the operator
about the change on a graphical user interface, which
recommends reviewing and annotating the new data.
Also, it can trigger immediate interactions, interven-
tions in case of sudden drops, unexpected behavior
of the production machine or unusual change of the
environmental conditions.

The operator is then directed to use the data anno-
tation microservice, another graphical user interface
wrapping LabelStudio [67], an open-source platform
for data labeling. Using this microservice, the user
can annotate previously collected image data from the
cameras. The annotations are automatically stored in
an S3 bucket (AWS cloud storage solution).

Once the data labeling session has been com-
pleted, the microservice responsible for retraining

J Grid Computing (2024) 22:71 Page 13 of 19 71

Vol.: (0123456789)

models is notified, and training jobs are started. The
resulting model is evaluated and stored in S3. If the
new model performs better, the glue defect detection
microservice fetches the new model automatically.
The following paragraphs describe in detail the drift
detection and retraining microservices that have been
implemented.

4.3 Data Drift Detection

To assess data drift the WhyLabs platform initiates
a profiling process on the data before the drift detec-
tion algorithm is applied. These profiles encapsulate
essential statistical attributes of the data, including
distribution metrics, frequent items, and the identifi-
cation of missing values. Such statistical properties
are then employed in modified versions of drift detec-
tion techniques. It is crucial to acknowledge that a
profile is merely an estimation of the original data. Its
use for drift detection results in approximations rather
than precise identification of the actual drift [68].

Various methodologies exist in drift detection to
quantify the similarity between two probability dis-
tributions or data profiles. The selection of a specific
method hinges on the unique requirements of the use
case. The WhyLabs Platform accommodates four
algorithms for drift detection and monitoring: Hell-
inger distance, Kullback-Leibler (KL) divergence,
Jensen-Shannon (JS) divergence, and Population Sta-
bility Index (PSI). Each algorithm has distinct advan-
tages and disadvantages, necessitating some trial-and-
error to fine-tune the monitoring process to attain an
optimal signal-to-noise ratio.

The default choice for calculating drift is the Hell-
inger distance due to its applicability to discrete (cate-
gorical) and non-discrete (numerical) features and its
interpretability. This metric, derived from comparing
the square root of probability distributions, yields val-
ues between 0 and 1. A value of 0 signifies no diver-
gence, while a value of 1 denotes entirely distinct
distributions. However, its robustness may limit its
sensitivity to subtle changes in distribution, making
alternatives like KL or JS divergence more suitable in
certain cases [69].

Monitoring unstructured data, such as images,
and telemetry data, is captured in a structured format
compatible with conventional statistical approaches.
For instance, monitoring changes in image brightness
can be achieved by calculating the mean pixel value,

while hue and saturation offer insights into the image
color palette. Monitoring image height involves cap-
turing the shape of the tensor representing raw image
data along with the number of channels in the tensor
indicating the image’s color space (RGB, CMYK,
grayscale) [70].

In the reference example, parameters such as
image height, width, color space, brightness, and
entropy (representing image complexity) are con-
tinuously monitored. Once the divergence between
reference and current profiles surpasses a predefined
threshold, indicating a drift, the user is promptly noti-
fied through the user interface to review and poten-
tially annotate new data for retraining purposes.

4.4 Model Retraining Microservice

The process of retraining a complex model from
scratch whenever new data is available can be
extremely costly in terms of storage and com-
pute resources, even when conducted on serv-
ers [71]. Therefore, the reference architecture’s
model retraining service utilizes the Python library
mentioned earlier, Avalanche for rehearsal strat-
egy implementation, a simple continual learning
strategy consisting of learning new experiences
as well as re-learning/repeating those that were
already seen by the deployed model to minimize
the effects of catastrophic forgetting and reduce
the training complexity. Previously learned expe-
riences are available and can be fetched from a
rehearsal buffer, a dynamic dataset (with a fixed
maximum size) that can be continuously updated
with new data as needed. This approach employs
a custom data loader that fetches previous experi-
ences from the rehearsal buffer and injects them
into each training batch composed primarily of new
experiences.

Avalanche proved to be a good fit for this applica-
tion because it is an easy-to-use, open-source Python
library that extends PyTorch with continual learning
capabilities. It covers the whole process, from data
loading to model training and evaluation. Since it is
designed for fast prototyping, adjusting the training
loop for the PyTorch-based machine learning model
was not difficult. The updated versions of the model
are stored in AWS S3 cloud storage, utilizing its ver-
sioning feature. All versions are kept alongside the

 J Grid Computing (2024) 22:71 71 Page 14 of 19

Vol:. (1234567890)

model’s metadata, in case the updated model’s per-
formance has not improved, necessitating a rollback.

4.5 Experimental Results

During the initial model development phase, an object
detection model (YOLO architecture) was trained to
identify defects in the glue application process using
a dataset composed of 300 initial images.

However, after the model was deployed into pro-
duction, the environment changed slightly due to
decaying lighting conditions. Even though the cam-
eras and lighting were placed in the industrial cas-
ing to minimize external influences, the housing
might have been readjusted, causing changes in
how the lighting reflects from the plank surfaces. It
can be observed from the image comparison in Fig-
ure 5 that the latest images had higher brightness and

Fig. 5 Input data evolution: images taken before (top row) and after (bottom row) environmental changes. A noticeable increase in
brightness and the presence of reflections can be observed

Fig. 6 False positive detec-
tion made by the initial
model on the latest input
images due to data drift

J Grid Computing (2024) 22:71 Page 15 of 19 71

Vol.: (0123456789)

visible reflections. Consequently, the initial data-
set was updated to account for these environmental
changes.

Occurrences of false positive detection, as
depicted in Figure 6, have escalated during produc-
tion. To address this the model was updated using
the replay rehearsal strategy within Avalanche, as
described in the previous subsection, with default
hyperparameters. In the updated dataset, there were
254 new images in total (204 used for training and
50 for testing). Training the model required about
20 minutes on a ml.p2.xlarge GPU instance on
AWS.

The comparison of model performances shown in
Table 1 illustrates the impact of updating the model
with a continual learning strategy on various perfor-
mance metrics. The precision dropped slightly (from
0.985 to 0.957); however, it could also be seen that
recall improved significantly (from 0.792 to 0.936).
To clients in this industry that means that much less
defects were missed by the quality control system,
while there was a slight increase in false positive
detections. As it was previously mentioned, the error
of missing a true positive defect is much greater to the
manufacturing company than having a false positive
detection. In this use case especially, since after the
glue application phase the defects cannot be detected
in any way due to the nature of the process, and the
consequences become visible only after the parquet is
shipped to the end user, which is costly for the com-
pany and damaging to the reputation.

Having false positive detections could impact the
production process in a way that operators spend too
much time on false detections or increase costs due
to larger amounts of planks being withdrawn from
production. However, the false positives in this case
occur rarely enough, and when they occur, the results
can be used to further improve the model. Operators
at the manufacturing line have a user interface that

notifies them about the defects with visualization. If
the reported defect is false positive, the operators can
report it as a false positive detection using a button.
That sample is stored in the dataset for later retrain-
ing and validation purposes. The operators or other
personnel with expertise on quality control have
the ability to label the images using the application,
which then triggers the model retraining pipeline and
deploys the new model in case of better performance.

Therefore, even though precision dropped slightly,
the updated model performs better overall and can
be deployed into production. Slightly increased false
positive detection rate is not disruptive to the produc-
tion, and can only benefit from the continual learning
process, since images will be annotated and used in
future training. Due to the nature of the framework,
the majority of the pipeline is automatized so the end
user is only required to interact with the user interface
and annotate images in case of drift detection or false
positive detections.

5 Discussion and Conclusions

Continual Machine Learning ensures dynamic adap-
tation of ML models to these new conditions by mon-
itoring and re-fitting models according to the shift or
more radical changes, from time to time. To imple-
ment such a continuously evolving system is not a
straightforward task due to its complexity.

The paper overviewed state-of-the-art techniques
on how to recognize, identify change points, char-
acterize and quantify concept drift (based on error
rate, data distribution or on a combination of both)
as well approaches to how to adapt and react upon
these changes (by retraining models or constructing
ensemble models). We provided a high-level, logical
architecture that includes all the necessary functional
building blocks, their relationships and the main
workflows (“hot” and “cold” data paths), keeping
implementation decisions open (concrete software
choices, location of deployments, integration ques-
tions), which can serve as a reference or simply as a
guide for the more detailed system design. The paper
proposed a particular implementation for this logical
reference architecture (centered around Avalanche,
based on PyTorch, and with data interfaces through
Rclone), which was then further customized and suc-
cessfully validated in an industrial application at the

Table 1 Comparison of metrics between the initial and
updated model on validation datasets before and after environ-
mental changes

Precision Recall F1 Score mAP50 mAP50-95

Initial
dataset

0.985 0.792 0.878 0.873 0.581

Updated
dataset

0.957 0.936 0.946 0.957 0.871

 J Grid Computing (2024) 22:71 71 Page 16 of 19

Vol:. (1234567890)

industrial plant of APRICOT showing that the pre-
sented approach has also practical usability.

This research proposed one realization for the high-
level Continual machine learning reference archi-
tecture (based on Avalanche and PyTorch), however,
other implementations may also prove to be widely
usable in different domains in the industry, potentially
using other CML toolkits and other machine learning
frameworks (Keras-TensorFlow, Scikit Learn, etc.).
The experimental validation further narrowed the
focus to specific drift detection and decision-making
strategies (optimized accordingly to the objectives of
the current manufacturing process), furthermore, the
implementation was not fully automated; human-in-
the-loop was required to assist in labelling new data to
revise or override decisions made by the system. The
investigation of these options and further improve-
ments serve as a basis for our future work.

Acknowledgements Ascalia would like to acknowledge their
colleague Valentino Petric, who was instrumental in the develop-
ment of the initial machine learning model and its deployment,
which was anything but an easy task. Furthermore, they extend
their gratitude to Boris Poklepovic and his team at Bauwerk
Group Hrvatska for providing the opportunity to address the
problem in industry at´ their factory and for tirelessly responding
to inquiries with their expertise and readiness to assist.

Author Contributions Conceptualization: J.A., Á.H. and
M.E.; Methodology: J.A., S.B., E.M. and A.C.M.; Software:
M.E., D.J., V.Ž. and D.S.; Writing—original draft: J.A., D.J.,
Á.H., V.Ž., M.E., D.S. and A.C.M.; Writing—reviewing and
editing: J.A., D.J., Á.H., V.Ž., T.L. and M.E.; Supervision:
S.B., T.L. and A.C.M.; Validation: D.J., V.Ž. and D.S.

Funding This work was funded by European Union’s Horizon
2020 project titled:”Digital twins bringing agility and innova-
tion to manufacturing SMEs, by empowering a network of DIHs
with an integrated digital platform that enables Manufacturing
as a Service (MaaS)” (DIGITbrain), under grant agreement no.
952071. This work also received financing from the Hungarian
project no. TKP2021-NVA-01, implemented with the support
provided by the Ministry of Innovation and Technology of Hun-
gary from the National Research, Development and Innovation
Fund, financed under the TKP2021-NVA funding scheme. This
work was also sponsored/funded by the German Federal Min-
istry for Economic Affairs and Climate Action (BMWK) in
the context of the project "Digitaler Zwilling und Künstliche
Intelligenz in der vernetzten Fabrik für die integrierte Nutz-
fahrzeugproduktion, Logistik und Qualitätssicherung" (TWIN-
4TRUCKS, 13IK010F). The authors are grateful for this support.

Data Availability The datasets generated and analyzed dur-
ing the use case are not publicly available due to company pri-
vacy reasons (Ascalia-Bauwerk proprietary data). The main

contributions of the paper (conceptual and concrete reference
architectures, techniques in the field of continual learning)
however do not depend on neither a direct consequence of the
particular data used but can more generally be applied.

Declarations

Ethical Approval Not applicable.

Competing Interests The authors declare no competing
interests.

Open Access This article is licensed under a Creative Com-
mons Attribution-NonCommercial-NoDerivatives 4.0 Interna-
tional License, which permits any non-commercial use, shar-
ing, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence,
and indicate if you modified the licensed material. You do
not have permission under this licence to share adapted mate-
rial derived from this article or parts of it. The images or other
third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the arti-
cle’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecom-
mons.org/licenses/by-nc-nd/4.0/.

References

 1. Matrenin, P., Antonenkov, D., Arestova, A.: Energy effi-
ciency improvement of industrial enterprise based on
machine learning electricity tariff forecasting. In: Pro-
ceedings of the 2021 XV international scientific-technical
conference on actual problems of electronic instrument
engineering (APEIE), pp. 185–189. IEEE (2021). https://
doi. org/ 10. 1109/ APEIE 52976. 2021. 96474 91

 2. Szott, S., et al.: Wi-fi meets ml: A survey on improving
ieee 802.11 performance with machine learning. IEEE
Commun. Surv. Tutorials 24, 1843–1893 (2022)

 3. Lin, X., Bogdan, P., Chang, N., Pedram, M.: Machine
learning-based energy management in a hybrid electric
vehicle to minimize total operating cost. In: 2015 IEEE/
ACM international conference on computer-aided design
(ICCAD), pp. 627–634, Austin, TX (2015). https:// doi.
org/ 10. 1109/ ICCAD. 2015. 73726 28

 4. Osypanka, P., Nawrocki, P.: Resource usage cost optimi-
zation in cloud computing using machine learning. IEEE
Trans. Cloud Comput. 10, 2079–2089 (2020)

 5. Perera, A.D., Jayamaha, N.P., Grigg, N.P., Tunnicliffe, M.,
Singh, A.: The application of machine learning to con-
solidate critical success factors of lean six sigma. IEEE
Access 9, 112411–112424 (2021)

 6. Chatterjee, S., Misbahuddin, M., Vamsi, P., Ahmed, M.H.:
Power quality improvement and fault diagnosis of PV

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1109/APEIE52976.2021.9647491
https://doi.org/10.1109/APEIE52976.2021.9647491
https://doi.org/10.1109/ICCAD.2015.7372628
https://doi.org/10.1109/ICCAD.2015.7372628

J Grid Computing (2024) 22:71 Page 17 of 19 71

Vol.: (0123456789)

system by machine learning techniques. In: 2023 inter-
national conference on signal processing, computation,
electronics, power and telecommunication (IConSCEPT),
pp. 1–6, Karaikal (2023). https:// doi. org/ 10. 1109/ IConS
CEPT5 7958. 2023. 10170 117

 7. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Fron-
toni, E., Loncarski, J.: Machine learning approach for pre-
dictive maintenance in industry 4.0. In: 2018 14th IEEE/
ASME international conference on mechatronic and
embedded systems and applications (MESA), pp. 1–6,
Oulu (2018). https:// doi. org/ 10. 1109/ MESA. 2018. 84491 50

 8. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S.,
Beghi, A.: Machine learning for predictive maintenance:
A multiple classifier approach. IEEE Trans. Industr. Inf.
11, 812–820 (2014)

 9. Ceesay, R., Boonchoo, T., Rattanatamrong, P.: Machine
learning approaches for quality control in pulp packag-
ing manufacturers. In: 2023 20th international joint con-
ference on computer science and software engineering
(JCSSE), pp. 385–390, Phitsanulok (2023). https:// doi.
org/ 10. 1109/ JCSSE 58229. 2023. 10202 113

 10. Peres, R.S., Barata, J., Leitao, P., Garcia, G.: Multistage
quality control using machine learning in the automotive
industry. IEEE Access 7, 79908–79916 (2019)

 11. Sun, S., Cao, Z., Zhu, H., Zhao, J.: A survey of optimiza-
tion methods from a machine learning perspective. IEEE
Trans. Cybern. 50, 3668–3681 (2019)

 12. Suzuki, Y., Iwashita, S., Sato, T., Yonemichi, H., Moki,
H., Moriya, T.: Machine learning approaches for process
optimization. In: 2018 international symposium on semi-
conductor manufacturing (ISSM), pp. 1–4, Tokyo (2018).
https:// doi. org/ 10. 1109/ ISSM. 2018. 86511 42

 13. Dhiman, D., Bisht, A., Kumari, A., Anandaram, D.H.,
Saxena, S., Joshi, K.: Online fraud detection using
machine learning. In: 2023 international conference on
artificial intelligence and smart communication (AISC),
pp. 161–164, Greater Noida (2023). https:// doi. org/ 10.
1109/ AISC5 6616. 2023. 10085 493

 14 Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter,
S.: Continual lifelong learning with neural networks: A
review. Neural Netw: Off. J. Int. Neural Netw. Soc. 113,
54–71 (2019)

 15. French, R.: Catastrophic forgetting in connectionist net-
works. Trends Cogn. Sci. 3, 128–135 (1999)

 16. Grossberg, S.: Studies of mind and brain: neural prin-
ciples of learning, perception, development, cognition,
and motor control, vol. 70 of Boston studies in the phi-
losophy of science. Springer, Dordrecht (1982). https://
doi. org/ 10. 1007/ 978- 94- 009- 7758-7

 17. Abraham, W.C., Robins, A.: Memory retention–the syn-
aptic stability versus plasticity dilemma. Trends Neuro-
sci. 28, 73–78 (2005)

 18. McCloskey, M., Cohen, N.J.: Catastrophic interference
in connectionist networks: The sequential learning prob-
lem. In Bower, G. H. (ed.) The psychology of learning
and motivation, vol. 24 of Psychology of Learning and
Motivation, 109–165 (Academic Press, London). (1989)

 19. Thrun, S., Mitchell, T.M.: Lifelong robot learning. In:
Steels, L. (ed.) The biology and technology of intelli-
gent autonomous agents. NATO ASI Series, vol 144.

Springer, Berlin, Heidelberg (1995). https:// doi. org/ 10.
1007/ 978-3- 642- 79629-6_7

 20. Hassabis, D., Kumaran, D., Summerfield, C., Botvinick,
M.: Neuroscience-inspired artificial intelligence. Neu-
ron 95, 245–258 (2017)

 21. DIGITbrain: Horizon 2020 project (2020). https:// digit
brain. eu/. Accessed 3 Mar 2023.

 22. Deslauriers, J., Kiss, T., Kovacs, J.: Dynamic compo-
sition and automated deployment of digital twins for
manufacturing. In: Proceedings of the 13th international
workshop on science gateways, CEUR workshop pro-
ceedings (2021)

 23 Zambrano, V., et al.: Industrial digitalization in the
industry 4.0 era: Classification, reuse and authoring
of digital models on digital twin platforms. Array 14,
100176 (2022)

 24. Schweichhart, K.: Reference architectural model indus-
trie 4.0 (RAMI 4.0). (2016). https:// ec. europa. eu/ futur
ium/ en/ system/ files/ ged/ a2- schwe ichha rt- refer ence_
archi tectu ral_ model_ indus trie_4. 0_ rami_4. 0. pdf.
Accessed 14 Nov 2024.

 25. Lin, S.-W., Miller, B., Durand, J., Joshi, J., Didier, P.,
Chigani, P., Torenbeek, R., Duggal, D., Martin, R.,
Bleakley, G.: Industrial internet reference architecture. In:
Industrial Internet Consortium (IIC). Tech. Rep (2015)

 26. Amazon Web Services: AWS Architecture Center—
Architecture Best Practices for Analytics & Big Data.
https:// aws. amazon. com/ archi tectu re/ analy tics- big- data/.
Accessed 5 November 2023.

 27. Microsoft Azure IoT — Internet of Things Plat-
form. https:// azure. micro soft. com/ en- us/ solut ions/ iot.
Accessed 5 November 2023.

 28. Marosi, A.C., et al.: Interoperable data analytics refer-
ence architectures empowering digital-twin-aided manu-
facturing. Futur. Internet 14, 114 (2022)

 29. Marosi, A.C., et al.: Toward reference architectures:
A cloud-agnostic data analytics platform empowering
autonomous systems. IEEE Access 10, 60658–60673
(2022)

 30. Pierantoni, G., Kiss, T., Bolotov, A., Kagialis, D.,
DesLauriers, J., Ullah, A., Chen, H., Fee, D.C.Y., Dang,
H.V., Kovacs, J., Belehaki, A., Herekakis, T., Tsagouri,
I., Gesing, S.: Toward a reference architecture based
science gateway framework with embedded e-learning
support. Concurr. Comput. Pract. Exp. 35(18), (2023).
https:// doi. org/ 10. 1002/ cpe. 6872

 31. Farkas, Z., Lovas, R.: Reference architecture for IOT plat-
forms towards cloud continuum based on Apache Kafka
and orchestration methods. In: Proceedings of the 7th
international conference on internet of things, big data and
security (IoTBDS), pp. 205–214 (2022). https:// doi. org/
10. 5220/ 00110 71300 003194

 32. Pallathadka, H., et al.: A review of using artificial intelli-
gence and machine learning in food and agriculture indus-
try. In 2022 2nd International Conference on Advance
Computing and Innovative Technologies in Engineering
(ICACITE), 2215–2218, https:// doi. org/ 10. 1109/ ICACI
TE537 22. 2022. 98234 27 (2022)

 33. Qin, J., et al.: A machine learning methodology for diagnos-
ing chronic kidney disease. IEEE Access 8, 20991–21002
(2020). https:// doi. org/ 10. 1109/ ACCESS. 2019. 29630 53

https://doi.org/10.1109/IConSCEPT57958.2023.10170117
https://doi.org/10.1109/IConSCEPT57958.2023.10170117
https://doi.org/10.1109/MESA.2018.8449150
https://doi.org/10.1109/JCSSE58229.2023.10202113
https://doi.org/10.1109/JCSSE58229.2023.10202113
https://doi.org/10.1109/ISSM.2018.8651142
https://doi.org/10.1109/AISC56616.2023.10085493
https://doi.org/10.1109/AISC56616.2023.10085493
https://doi.org/10.1007/978-94-009-7758-7
https://doi.org/10.1007/978-94-009-7758-7
https://doi.org/10.1007/978-3-642-79629-6_7
https://doi.org/10.1007/978-3-642-79629-6_7
https://digitbrain.eu/
https://digitbrain.eu/
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://aws.amazon.com/architecture/analytics-big-data/
https://azure.microsoft.com/en-us/solutions/iot
https://doi.org/10.1002/cpe.6872
https://doi.org/10.5220/0011071300003194
https://doi.org/10.5220/0011071300003194
https://doi.org/10.1109/ICACITE53722.2022.9823427
https://doi.org/10.1109/ICACITE53722.2022.9823427
https://doi.org/10.1109/ACCESS.2019.2963053

 J Grid Computing (2024) 22:71 71 Page 18 of 19

Vol:. (1234567890)

 34. Xin, Y., et al.: Machine learning and deep learning meth-
ods for cybersecurity. IEEE Access 6, 35365–35381
(2018). https:// doi. org/ 10. 1109/ ACCESS. 2018. 28369 50

 35. Khayyam, H., et al.: A novel hybrid machine learning
algorithm for limited and big data modeling with appli-
cation in industry 4.0. IEEE Access 8, 111381–111393
(2020). https:// doi. org/ 10. 1109/ ACCESS. 2020. 29998 98

 36. Žliobaite, I.: Learning under concept drift: an overview.
arXiv preprint arXiv:1010.4784. (2010). https:// doi. org/
10. 48550/ arXiv. 1010. 4784

 37. Lu, J., et al.: Learning under concept drift: A review. IEEE
Trans. Knowl. Data Eng. 31, 2346–2363 (2019). https://
doi. org/ 10. 1109/ TKDE. 2018. 28768 57

 38. Wang, H., Abraham, Z.: Concept drift detection for
streaming data. In: 2015 international joint conference
on neural networks (IJCNN), pp. 1–9, Killarney (2015).
https:// doi. org/ 10. 1109/ IJCNN. 2015. 72803 98

 39. Žliobaitė, I., Pechenizkiy, M., Gama, J.: An overview of
concept drift applications. In: Japkowicz, N., Stefanowski,
J. (eds.) Big data analysis: new algorithms for a new soci-
ety. Studies in big data, vol. 16. Springer, Cham (2016).
https:// doi. org/ 10. 1007/ 978-3- 319- 26989-4_4

 40. Basseville, M., Nikiforov, I.V.: Detection of abrupt
changes - theory and application. Prentice Hall, Inc (1993)

 41. Gama, J., Castillo, G.: Learning with local drift detection.
In: Li, X., Zaïane, O.R., Li, Z. (eds.) Advanced data min-
ing and applications. ADMA 2006. Lecture notes in com-
puter science(), vol. 4093. Springer, Berlin, Heidelberg
(2006). https:// doi. org/ 10. 1007/ 11811 305_4

 42. Gama, J., Castillo, G.: Learning with local drift detection.
In International conference on advanced data mining and
applications, 42–55 (Springer). (2006)

 43. Baena-Garcıa, M., et al.: Early drift detection method. In
Fourth international workshop on knowledge discovery
from data streams, vol. 6, 77–86 (Citeseer). (2006)

 44. Xu, S., Wang, J.: Dynamic extreme learning machine for
data stream classification. Neurocomputing 238, 433–449
(2017). https:// doi. org/ 10. 1016/j. neucom. 2016. 12. 078

 45. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers—
part i: Detecting nonstationary changes. Trans. Neur.
Netw. 19, 1145–1153 (2008). https:// doi. org/ 10. 1109/
TNN. 2008. 20000 82

 46. Alippi, C., Roveri, M.: Just-in-time adaptive classifiers—
part ii: Designing the classifier. Trans. Neur. Netw. 19,
2053–2064 (2008). https:// doi. org/ 10. 1109/ TNN. 2008.
20039 98

 47. Bifet, A., Gavalda, R.: Learning from time-changing data
with adaptive windowing. In Proceedings of the 2007
SIAM international conference on data mining, 443–448
(SIAM). (2007)

 48. Bifet, A., Gavaldà, R.: Learning from time-changing
data with adaptive windowing. In: Proceedings of the
7th SIAM international conference on data mining, vol. 7
(2007). https:// doi. org/ 10. 1137/1. 97816 11972 771. 42

 49. Jourdan, N., Bayer, T., Biegel, T., Metternich, J.: Han-
dling concept drift in deep learning applications for pro-
cess monitoring. Procedia CIRP. 56th CIRP International
Conference on Manufacturing Systems 2023. 120, 33–38
(2023). https:// doi. org/ 10. 1016/j. procir. 2023. 08. 007

 50. Kvaktun, D., Liu, D. & Schiffers, R. Detection of concept
drift for quality prediction and process control in injection

molding. AIP Conf. Proc. 2884(1), (2023). https:// doi. org/
10. 1063/5. 01684 91

 51. Lange, M.D., et al.: Continual learning: A comparative
study on how to defy forgetting in classification tasks.
https:// doi. org/ 10. 48550/ arXiv. 1909. 08383

 52. Mirzadeh, S. I., Farajtabar, M., Pascanu, R., Ghasemza-
deh, H.: Understanding the role of training regimes in
continual learning. In: Larochelle, H., Ranzato, M., Had-
sell, R., Balcan, M., Lin, H. (eds.) Advances in Neural
Information Processing Systems, vol. 33, 7308–7320
(Curran Associates, Inc.,). (2020)

 53. Li, Z., Hoiem, D.: Learning without forgetting. In: Leibe,
B., Matas, J., Sebe, N., Welling, M. (eds.) Computer
vision - 14th European conference, ECCV 2016, proceed-
ings (pp. 614-629). (Lecture notes in computer science
(including subseries lecture notes in artificial intelligence
and lecture notes in bioinformatics); Vol. 9908 LNCS).
Springer (2016). https:// doi. org/ 10. 1007/ 978-3- 319-
46493-0_ 37

 54. Jung, H., Ju, J., Jung, M., Kim, J.: Less-forgetting learning
in deep neural networks. https:// doi. org/ 10. 48550/ arXiv.
1607. 00122

 55. Maltoni, D., Lomonaco, V.: Continuous learning in sin-
gle-incremental-task scenarios. https:// doi. org/ 10. 48550/
arXiv. 1806. 08568

 56. Rusu, A.A., et al.: Progressive neural networks. https://
doi. org/ 10. 48550/ arXiv. 1606. 04671

 57. Draelos, T.J. et al.: Neurogenesis deep learning: Extend-
ing deep networks to accommodate new classes. In 2017
International Joint Conference on Neural Networks
(IJCNN), 526–533 (2017). https:// doi. org/ 10. 1109/ IJCNN.
2017. 79658 98

 58. Gepperth, A., Karaoguz, C.: A bio-inspired incremen-
tal learning architecture for applied perceptual problems.
Cogn. Comput. 8, 924–934 (2016)

 59. Lopez-Paz, David and Marc’Aurelio Ranzato. Gradient
episodic memory for continual learning. Neural informa-
tion processing systems (2017).

 60. Rajasegaran, J., Khan, S., Hayat, M., Khan, F.S., Shah,
M.: iTAML: An incremental task-agnostic meta-learning
approach. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 13585–13594
(2020). https:// doi. org/ 10. 1109/ CVPR4 2600. 2020. 01360

 61. Tang, S., Chen, D., Zhu, J., Yu, S., Ouyang, W.: Layer-
wise optimization by gradient decomposition for continual
learning. In: 2021 IEEE/CVF conference on computer
vision and pattern recognition (CVPR), pp. 9629–9638,
Nashville, TN (2021). https:// doi. org/ 10. 1109/ CVPR4
6437. 2021. 00951

 62. Saha, G., Garg, I., Roy, K.: Gradient projection memory
for continual learning. https:// doi. org/ 10. 48550/ arXiv.
2103. 09762

 63. Wang, L., Zhang, X., Su, H., Zhu, J.: A comprehensive
survey of continual learning: theory, method and applica-
tion. (2023). https:// doi. org/ 10. 48550/ arXiv. 2302. 00487

 64. Zaharia, M., et al.: Accelerating the machine learning
lifecycle with mlflow. IEEE Data Eng. Bull. 41, 39–45
(2018)

 65. Lomonaco, V., et al.: Avalanche: an end-to-end library for
continual learning. In: Proceedings of the 2021 IEEE/CVF
conference on computer vision and pattern recognition

https://doi.org/10.1109/ACCESS.2018.2836950
https://doi.org/10.1109/ACCESS.2020.2999898
https://doi.org/10.48550/arXiv.1010.4784
https://doi.org/10.48550/arXiv.1010.4784
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/TKDE.2018.2876857
https://doi.org/10.1109/IJCNN.2015.7280398
https://doi.org/10.1007/978-3-319-26989-4_4
https://doi.org/10.1007/11811305_4
https://doi.org/10.1016/j.neucom.2016.12.078
https://doi.org/10.1109/TNN.2008.2000082
https://doi.org/10.1109/TNN.2008.2000082
https://doi.org/10.1109/TNN.2008.2003998
https://doi.org/10.1109/TNN.2008.2003998
https://doi.org/10.1137/1.9781611972771.42
https://doi.org/10.1016/j.procir.2023.08.007
https://doi.org/10.1063/5.0168491
https://doi.org/10.1063/5.0168491
https://doi.org/10.48550/arXiv.1909.08383
https://doi.org/10.1007/978-3-319-46493-0_37
https://doi.org/10.1007/978-3-319-46493-0_37
https://doi.org/10.48550/arXiv.1607.00122
https://doi.org/10.48550/arXiv.1607.00122
https://doi.org/10.48550/arXiv.1806.08568
https://doi.org/10.48550/arXiv.1806.08568
https://doi.org/10.48550/arXiv.1606.04671
https://doi.org/10.48550/arXiv.1606.04671
https://doi.org/10.1109/IJCNN.2017.7965898
https://doi.org/10.1109/IJCNN.2017.7965898
https://doi.org/10.1109/CVPR42600.2020.01360
https://doi.org/10.1109/CVPR46437.2021.00951
https://doi.org/10.1109/CVPR46437.2021.00951
https://doi.org/10.48550/arXiv.2103.09762
https://doi.org/10.48550/arXiv.2103.09762
https://doi.org/10.48550/arXiv.2302.00487

J Grid Computing (2024) 22:71 Page 19 of 19 71

Vol.: (0123456789)

workshops (CVPRW), pp. 3595–3605 (2021). https:// doi.
org/ 10. 1109/ CVPRW 53098. 2021. 00399

 66. WhyLabs: “whylogs”, GitHub repository, version 1.3.10.
https:// github. com/ whyla bs/ whylo gs. Accessed 21 Nov
2023

 67. HumanSignal: “Label studio”, an open source data labe-
ling platform, version 1.9.2. https:// label stud. io. Accessed
6 Dec 2023

 68. WhyLabs: Whylabs documentation: Profile overview.
https:// docs. whyla bs. ai/ docs/ overv iew- profi les/. Accessed
8 Dec 2023

 69. WhyLabs: Whylabs documentation: Supported drift algo-
rithms. https:// docs. whyla bs. ai/ docs/ drift- algor ithms/.
Accessed 5 Dec 2023

 70. WhyLabs: Whylabs documentation: Image data. https://
docs. whyla bs. ai/ docs/ image- data/. Accessed 8 Dec 2023

 71. Pellegrini, L., Graffieti, G., Lomonaco, V., Maltoni, D.:
Latent replay for real-time continual learning. In 2020

IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 10203–10209 (2020). https:// doi.
org/ 10. 1109/ IROS4 5743. 2020. 93414 60

 72. Kreuzberger, D., Kühl, N., Hirschl, S.: Machine learning
operations (mlops): Overview, definition, and architecture.
IEEE Access 11, 31866–31879 (2023)

 73. Lacson, R., Eskian, M., Licaros, A., Kapoor, N., Kho-
rasani, R.: Machine learning model drift: predicting diag-
nostic imaging follow-up as a case example. J. Am. Coll.
Radiol. 19(10), 1162–1169 (2022). https:// doi. org/ 10.
1016/j. jacr. 2022. 05. 030

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1109/CVPRW53098.2021.00399
https://doi.org/10.1109/CVPRW53098.2021.00399
https://github.com/whylabs/whylogs
https://labelstud.io
https://docs.whylabs.ai/docs/overview-profiles/
https://docs.whylabs.ai/docs/drift-algorithms/
https://docs.whylabs.ai/docs/image-data/
https://docs.whylabs.ai/docs/image-data/
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1109/IROS45743.2020.9341460
https://doi.org/10.1016/j.jacr.2022.05.030
https://doi.org/10.1016/j.jacr.2022.05.030

	Adapting to Changes: A Novel Framework for Continual Machine Learning in Industrial Applications
	Abstract
	1 Introduction
	2 Related Work
	3 Continual Machine Learning Reference Architecture
	3.1 High-level CML Reference Architecture
	3.2 Related Tools and Frameworks
	3.3 Concrete CML Reference Architecture

	4 Validation and Experimental Results
	4.1 Challenges
	4.1.1 Scarcity of Labeled Data
	4.1.2 Scenario Complexity
	4.1.3 Task-Specific Requirements

	4.2 Application Overview
	4.3 Data Drift Detection
	4.4 Model Retraining Microservice
	4.5 Experimental Results

	5 Discussion and Conclusions
	Acknowledgements
	References

