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1. Introduction

Although the term circular economy is still open, various
definitions exist. Based on corresponding state-of-the-art 
reviews, which were examined by Suzanne et al. [19], the term 
circular economy (CE) can be defined as follows according to 
[6]:

CE is an economic system that opposes the linear open-
ended system (produce, consume, dispose) with the aim of 
achieving sustainable development that simultaneously creates 
environmental quality, economic prosperity and social justice 
for the benefit of current and future generations [6].

In the literature, product life extension options are discussed 
under different terms such as reconditioning, reuse, 
refurbishment, and remanufacturing. As they tend to overlap in 
meaning, the definitions of these trending concepts become 
blurred and mixed. In the production planning literature, two 
product life extension terms stand out, namely refurbishment 

and remanufacturing [19]. Refurbishment is a recovery process 
in which waste is collected, tested, repaired, cleaned, and resold 
as used, functional products without being disassembled. 
Remanufactured products are often returned to warranty. 
Meanwhile, remanufacturing is most commonly referred to as 
the recovery of used products, which involves the collection, 
repair, disassembly, and replacement of worn components to 
bring the products back to the quality level of newly 
manufactured products. The main feature of remanufacturing is 
the disassembly of the product, which is the first and most 
important step in the markets for spare parts or remanufacturing 
operations in production [19].

To illustrate how CE reshapes the classical linear production 
approach, it is important to understand how the interference 
between backward and forward flows affects the production 
planning process. This interference includes i) the planning of 
the recovery and procurement of raw materials; ii) the planning 
of the production activities required to transform input 
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materials into finished products to meet customer demand, 
taking into account both remanufactured and new products; and 
iii) the returns that have varying degrees of impact on the 
decision-making levels of production systems [19].

In the following, the individual process steps of the 
remanufacturing process are described, in which the old parts 
are regenerated:

• Disassembly: In disassembly, the uncleaned old part is 
disassembled into individual parts or components and sorted 
for reuse. components and presorted according to 
reusability, whereby wear parts such as seals and bearings 
are sorted out and later replaced by new parts in the 
remanufacturing or reassembly process [17].

• Cleaning: All components are cleaned chemically and/or 
mechanically. This production step is most often a 
bottleneck, as machines with fixed cycle times and limited 
capacity are used. cycle times and limited capacity [17].

• Inspection and sorting: During inspection, the components 
are non-destructively for damage and for their reusability. If 
a component is worn or damaged, it is either sent to the 
component reconditioning production step or disposed of
[18].

• Component reconditioning: In component reconditioning 
("reconditioning" for short), mainly machining processes 
are used to bring the components back to the same quality 
level as the new part [17].

• Reassembly: In reassembly, the replacement products or 
regenerates are produced using new parts. This production 
step deviates the least from new production but tends to have 
a higher manual share [17].

2. Literature review and state of the art

2.1. Production planning in remanufacturing

In their literature review on meta-heuristics in production 
planning for remanufacturing plants, Ansari and Daxini [1]
cover the state of the art of applied algorithms as well as current 
trends. Significantly, the genetic algorithm (GA) is the most 
widely used, along with artificial bee colonies, particle swarm 
optimization, ant colony optimization, simulated annealing, 
tabu search, variable neighborhood search, and hybrids of these 
approaches. They also emphasize that the use of meta-
heuristics to solve production planning problems has become 
increasingly important, not only in the field of 
remanufacturing. Following this literature review by Ansari 
and Daxini [1], nine other publications on production planning 
in remanufacturing have appeared in the scientific database 
Scopus, which are summarized below. These include the 
scenario analysis by Khakbaz and Tirkolaee [7], which 
examined six different cases of the ability of manufacturing and 
remanufacturing processes to develop a sustainable 
manufacturing/remanufacturing policy that maximizes
expected profit. The results found indicate that as the 
substitution rate increases, the expected profit and the 
remanufacturing rate increase [7]. Lahmar  et al. [10]
investigate the best trade-off between manufacturing new 
products and remanufacturing recycled products based on 

economic and environmental considerations. A mathematical 
multi-objective model is developed and an approach based on 
a non-dominated sorting genetic algorithm (NSGA-II) is 
proposed [10].

Quezada et al. [16] attempt to optimize the production 
scheduling of a three-season remanufacturing system under 
uncertain input data. They consider a multi-stage stochastic 
integer programming approach and use scenario trees to 
represent the uncertain information structure. Their numerical 
results show that the proposed solution approach provides near-
optimal solutions for large instances with a reasonable 
computational cost [16]. Cheng [4] studies a multi-period 
dynamic production scheduling problem in a hybrid 
manufacturing and remanufacturing system (HMRS). To solve 
the problem, they first use the hazard rate function and the 
information about the products in use to obtain an estimator of 
the replenishment quantity. Then a dynamic programming 
model is formulated and proven that a smooth-value policy is 
optimal when demand is uniformly distributed [4].

Due to the divergent material flow, production systems with 
loosely coupled stations are particularly suitable, and due to the 
risk of state-dependent operational disturbances, the emergence 
of hybrid disassembly systems combining manual and 
autonomous workstations is expected. By comparing the 
reinforcement learning (RL) approach with a heuristic control 
approach, the potential of the RL approach can be simulated 
using two different test cases [20].

Yu [22] models a new mixed-integer program to support 
various tactical decisions in remanufacturing reverse logistics, 
i.e. remanufacturing setup, production planning and inventory 
levels, core procurement and transportation, and 
remanufacturing line balancing and utilization. 

Lahmar et al. [9] tackle the HMRS problem A mathematical 
multi-objective model is established and an approach based on 
the NSGA-II is introduced; moreover, a technique of ranking 
performance by similarity to the ideal solution is used to find 
the best trade-off solution under the Pareto front obtained by 
the NSGA-II algorithm [9].

Assid et al. [3] investigate how companies could benefit 
from such an integrated control policy to assist their managers 
in determining production rates, the order and size of follow-
up orders, and the size of samples to be inspected. The 
corresponding problem aims to propose an efficient inspection 
policy that integrates four key decisions to coordinate 
remanufacturing, production, replenishment of returns, and 
quality control while minimizing overall costs and meeting a 
quality constraint demanded by customers [3].

Assid et al. [2] addresses the problem of production 
planning and scheduling in an HMRS where demand is 
satisfied either by remanufacturing returned items or by 
manufacturing new items. It explores how companies can 
benefit from changeable system settings with two production 
lines operating in a stochastic and dynamic context [2].

2.2. Grey wolf optimizer

The grey wolf optimizer (GWO) was originally published 
by Mirjalili [14] in 2014 and has since received attention in its 
application to a wide variety of mathematical problems. Before 
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discussing the planning problems in particular, a brief general 
overview of the idea of the GWO should be given. The idea 
originates from the hierarchical structure of real grey wolves, 
whereby here their hunting behavior has been investigated. In 
the original formulation, there are four groups: alpha -, beta -, 
gamma-, omega -wolves. The alpha-wolves are the ringleaders. 
The beta-wolf obeys the alpha-wolf but dominates the wolves 
of the other levels. The third group, the gamma-wolf, is led by 
the alpha- and beta-wolves but dominates the other wolves. 
Omega-wolves are at the lowest level in the group. They obey 
all wolves at higher levels [14].

In the literature, the necessity of four groups is critically 
discussed and results have shown that a division into only two 
groups, alpha and omega, simplifies the hierarchy structure of 
the wolves. This version is known as the improved grey wolf 
optimizer (IGWO) [11].

2.3. Grey wolf optimizer in remanufacturing

A literature search in Scopus on the use of grey wolf in 
remanufacturing using the keywords "remanufacturing" and 
"grey wolf" yielded eight publications. Six of these were 
relevant to this search, five of which used a multi-objective 
grey wolf optimizer (MOGWO) approach and one of which 
used an improved IGWO approach. In comparison to other 
meta-heuristics, the field of applications with the GWO is still  
quite new and therefore needs more applied research. 

The IGWO is proposed by Li et al. [11] to solve a distributed 
flexible job shop scheduling problem, which is an extension of 
the flexible job shop scheduling problem. In this algorithm, 
new coding and decoding schemes are developed to represent 
the three subproblems and convert the coding into a feasible 
schedule. [11]

Multi-Objective (MO) optimization considers more than 
one objective function at a time. In Makhadmeh et al. [13] , the 
multi-objective formulation is retained and a MOGWO is used 
to estimate the Pareto optimal solutions that represent the best 
trade-offs between the objectives [13].

In further literature review, only MOGWO is used to solve 
shop floor scheduling problems. Among others, for blocking 
flow shop scheduling problems, which have an important 
application in manufacturing due to the imprecise and vague 
temporal parameters in real production. Therefore, Yang and 
Liu [21] propose a fuzzy flow shop scheduling problem with 
fuzzy processing time and fuzzy due date to minimize the fuzzy 
margin and maximize the average matching index [21]. For 
flexible job scheduling with variable processing speeds, Luo et 

al. [12] attempt to minimize production margin and total energy 
consumption simultaneously [12].

For a line balancing problem Guo et al. [5] consider real 
cases to investigate the efficiency and feasibility of the 
proposed algorithm MOGWO. Comparisons with discrete gray 
wolf optimization, genetic algorithm II with non-dominated 
sorting, multi-population evolutionary algorithm, and multi-
objective evolutionary algorithm show the superiority of the 
proposed approach. [5]

3. Methods

The method used in this research was divided into five steps, 
which include problem identification, goal definition, 
development, demonstration, evaluation, and publication. The 
focus is on the development and demonstration, in which the 
GWO is adapted for the use case and run through the 
simulation. The exact implementations of the research steps 
can be seen in Table 1.

4. Case Study

4.1. Description

At a remanufacturing facility, castings from returned 
cylinder heads are returned when they reach end-of-life status. 
After disassembly, machining, cleaning, and reassembly, the 
cylinder heads are returned to the customer, where they can be 
reworked a total of three times before being scrapped. 
Uncertainty about the timing, quality, and reusability of the 
returned components and assemblies creates scheduling 
problems for the manufacturer. The trade-offs for the 
manufacturer are increased inventory and increased need of 
production capacity available at short notice. These 
uncertainties result in financial losses and production waste, as 
well as bottlenecks in the supply of materials for gas engine 
assembly.

In the plant itself, cylinder heads can pass through three 
different lines, depending on size and series, with a total of 
eleven different variants in constant circulation.

4.2. Simulation Model

Using a discrete event simulation model developed in 
Siemens Tecnomatix Plant Simulation, the remanufacturing 
process was analyzed. Simulation technology is capable of 
investigating system performance and comparing the effect of 
different parameters used as input, without modifying the real 

Table 1: Conceptual Framework for this research after Peffer et al. [15].

Steps from Peffer et al. [15] Implementation

i) problem identification and motivation increased production capacity because of remanufacturing

ii) defining goals for a solution reduce cycle time by an optimized schedule

iii) designing and developing constrain GWO for schedule optimization

iv) demonstrating implementing and validating GWO in Python with Plant Simulation

v) evaluating and publishing evaluate GWO with simulation
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system. The model (shown in Figure 1) includes distinct 
manufacturing stages such as disassembly, machining, 
washing, and assembly. Parallel resources are dedicated to each 
product type, ensuring that the specific production line operates 
efficiently. Prior to and following the machining stage (as 
indicated by the black arrows in Figure 1), non-
remanufacturable parts are eliminated from the system. New 
parts are introduced into the system before the assembly stage 
(green arrows), if the number of parts in any of the three buffers 
falls below four, a new cylinder head is brought into the system 
to guarantee continuous assembly line operation.

Figure 2: Flowchart of the communication between the model and the 
optimizer

Using the simulation model, experiments were run to 
investigate the effect of applying the GWO on the production 
schedule (order of used parts sent to the system as input). The 
main KPIs are the number of used and new parts and the overall 
output of the system after running the model for 1 month. Since 
simulation models are only capable of evaluating system 
performance and not suitable on their own to optimize 
parameters, GWO was programmed using Python language 
and communicated with the model through a socket interface. 

Figure 2 shows the flowchart of the communication between 
the model and the optimizer. The optimizer, after receiving a 
start message from the model, sends a list of product IDs as a 
comma-separated text to the model (first, an initial list is sent). 
After, an iteration starts where (1) the simulation model is run 
for 1 month, (2) the number of new parts needed in 1 month is 
determined as the result of the model run, (3) it is sent to the 
optimizer and (4) the optimizer determines the new schedule. 
The exit criteria for the optimizer is a given number of 
iterations, which in this case was 1000 (based on the results, 
after this the results do not change significantly).

4.3. Adaptation of the GWO

To optimize the simulation using the GWO the input 
schedule must be transformed. This is necessary as the GWO 
is not able to work with a discrete result set but expects a multi-
dimensional interval as the search space. In equation (1) this 
transformation process is stated. Using the proposed approach 
of Komaki et al. [8] the order of the parts is defined by the 
values of a 𝑛𝑛-dimensional real number 𝐳𝐳, with 𝑛𝑛 the length of 
the schedule. Each part is assigned one canonical basis vector 
independent of its position in the schedule. During 
initialization, 𝑧𝑧 is built by linear combination of random values 
from the interval [−5, 5] as scalar components and the basis 
vectors. By comparing the values of the components of 𝑧𝑧, the 
parts are sorted to create the initial schedule. By adapting 𝑧𝑧 the 
schedule can be changed as the sorting is done before each 
simulation run. This calculated schedule is then provided to the 
simulation, which returns its fitness defined by the new parts 
needed.

𝒛𝒛 =

(

  
 
−4.3
2.9
0.1
−3.74
1.5
2.94 )

  
 

𝐴𝐴1
𝐴𝐴1
𝐴𝐴2
𝐵𝐵1
𝐵𝐵1
𝐵𝐵2

∈ 𝑅𝑅𝟞𝟞 ⇒ [A1B1A2B1A1B2] (1)

Figure 1: Simulation model of the investigated manufacturing system
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By applying this transformation the schedule needs to be of 
fixed length. However, the scrap parts can cause the simulation 
to need more than the planned parts for one month. To provide 
a sufficient schedule length the dropout probability needs to be 
taken into account.

5. Results

To validate the simulation, a real production schedule from the 
manufacturer was run through and the lead time of the entire 
production schedule was measured. There is a deviation of 
4.44% of the monthly cycle time, where the simulation is 
slightly slower, but is still considered usable for further 
consideration of the GWO.

In order to validate the production plan generated by the GWO, 
a random monthly production sequence was first run and the 
total number of parts produced was measured. These results are 
shown in the first row of Table 2. The GWO was then coupled 
to the simulation and run through 1000 iterations with 10 
wolves in total. The results are shown in the second row of 
Table 2. It can be seen that the total number of parts iterated 
has increased significantly. Due to the fact that the production 
plan could be processed more quickly, new parts were 
subsequently used due to the remaining time from the 
simulation. The number of new parts that have gone through 
more can be interpreted as open capacity in the comparison of 
the production plans of the plant, whereby a positive 
functionality of the GWO can be determined. 

6. Conclusion and Outlook

In order to deal with the uncertainties within a remanufacturing 
plant, this study proposes a GWO for the application of 
production schedule optimization. By specifically transforming 
the production schedule to provide it as an input to the GWO, 
it can be effectively applied to such problems. The results show 
a reduction in both lead time and open capacity within the 
remanufacturing plant. Further research will compare this 
application of GWO with other meta-heuristics discussed in the 
literature to identify other performance indicators.
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