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Abstract Performance and cost-effectiveness are sus-
tained by efficient management of resources in cloud
computing. Current autoscaling approaches, when try-
ing to balance between the consumption of resources
and QoS requirements, usually fall short and end up
being inefficient and leading to service disruptions. The
existing literature has primarily focuses on static met-
rics and/or proactive scaling approaches which do not
align with dynamically changing tasks, jobs or service
calls. The key concept of our approach is the use of sta-
tistical analysis to select the most relevant metrics for
the specific application being scaled. We demonstrated
that different applications require different metrics to
accurately estimate the necessary resources, highlight-
ing that what is critical for an application may not be
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for the other. The proper metrics selection for con-
trol mechanism which regulates the requried recources
of application are described in this study. Introduced
selection mechanism enables us to improve previously
designed autoscaler by allowing them to react more
quickly to sudden load changes, use fewer resources,
and maintain more stable service QoS due to the more
accurate machine learning models. We compared our
method with previous approaches through a carefully
designed series of experiments, and the results showed
that this approach brings significant improvements,
such as reducing QoS violations by up to 80% and
reducing VM usage by 3% to 50%. Testing and mea-
surements were conducted on the Hungarian Research
Network (HUN-REN) Cloud, which supports the oper-
ation of over 300 scientific projects.

Keywords Cloud computing · Orchestration ·
Autoscaling · Machine learning · Proactive control ·
Metric selection · Resource optimization ·
Quality of Service (QoS)

1 Introduction

The wide adoption of virtualization has introduced
the on-demand resource allocation and pay-per-use
mechanisms to form and develop the cloud comput-
ing paradigm. The cost implication of resource utilisa-
tion has quickly led to the challenge of designing and
developing efficient coordinated execution of multiple
virtual machines to optimise costs for the owner. There
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are a wide variety of orchestration solutions to centrally
manage application with their particular auto-scaling
and Quality of Service (QoS) requirements to utilise
elasticity provided by cloud computing. These orches-
tration platforms are facing the challenge to meet the
strict QoS requirements specified by the service own-
ers while having little knowledge about the internals of
the service behaviour and characteristics [1].

Since the internal characteristics of the applications
and services are significantly affecting the resource util-
isation, the scaling logic applied to control the under-
lying resources may differ from service to service. As a
consequence it is a tedious task [2] for the service owner
to specify and configure the scaling logic to reach the
ideal scaling mechanism to optimise the resource utili-
sation as well as costs in parallel. To reach the optimal
solution for a particular cloud service, one of the key
elements is the knowledge of the operational charac-
teristics of the service which is of course usually hard
to discover due to its unpredictable nature of load and
resource consumption.

Research results of different scientific fields can
be utilised for regulation of resources. Each field
approaches the given problem from a different aspect
and places emphasis on different parts of the problem.
The most relevant scientific fields are a) time series-
based estimation and forecasts, b) control theory and c)
machine learning. Each field and its results have its own
advantages and there are specific cases and applica-
tion areas where they operate more efficiently than the
other ones. However, we found that each direction suf-
fers from some boundary condition constraints, so our
goal was to find a solution that eliminates application-
specific constraints. Based on all these considerations
the solution presented in this paper cannot be clearly
classified under one scientific field (discipline), but we
have adopted certain considerations from the fields of
machine learning, time series analysis and regulation,
combining these fields into an interdisciplinary solu-
tion.

For example, estimates based on expected load fore-
casting are difficult, if at all possible to provide cor-
rect scaling in situations where there is no recogniz-
able pattern in the load generated by the incoming
requests. Even, in situation where load is changing,
while the number of incoming requests are close to
constant, prediction is a real challenge for any scien-
tific area. In case of time series based approaches the
future trajectory of the incoming load is generally esti-

mated and forecasted. Regulation based on the system’s
internal metrics establishes some relationship between
the input metrics (state variables) and the response
time. Machine learning plays a crucial role in trying to
uncover these relationships based on (or learnt from)
the observed data.

With the increasing utilisation of machine-learning
algorithms for automatically learning and discovering
the monitored behaviour, autoscaling methods have the
potential to provide more sophisticated controlling over
the cloud consumers (services) and resources in terms
of provisioning. Machine-learning algorithms have the
power of building knowledge about characteristics by
monitoring the relation between the behaviour of the
service and its continuously changing environment
such as resource consumption and incoming loads.

In this paper we present our latest results about
how we managed to improve an existing scaling algo-
rithm towards a more sophisticated, optimised solu-
tion. We started with a detailed investigation of many
scaling techniques and solutions in order to find candi-
date algorithm providing a good starting point in order
to further develop it towards optimisation, proactivity
and improved QoS protection. During our work we
applied a collection of improvements to develop a more
optimised controlling mechanism over the resources
utilised by a cloud service.

As a result we elaborated a solution that is able
to optimize the resource usage of cloud-based appli-
cations while keeping the QoS violations as low as
possible. Our approach leverages data-driven machine
learning techniques and controls for orchestration plat-
forms. The proposed solution is thoroughly analyzed
and investigated under various conditions. We uncover
the potential weaknesses of the solution and outline
possible directions for further research in this area.

After this brief introduction, the paper continues
with a short overview of scaling techniques along with
related works in Section 2. For a deeper understanding,
in Section 3 we give a detailed description of the scal-
ing algorithm considered as baseline to be improved in
the rest of the paper. We introduce our proposed scaling
approach in Section 4 giving a summary of the direc-
tions the baseline algorithm has been further improved
towards. Section 5 dives into the details of the improve-
ments related to metric selection techniques. The sec-
ond collection of improvements is detailed in Section 6
where the focus is on proactivity and its effects on
the entire orchestration mechanism. In Section 7 the
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behaviour of our proposed scaling algorithm has been
investigated to find out how the algorithm performs in
various situations. Finally, the paper concludes in Sec-
tion 8.

2 Related Works

Zhong and Xu (2022) [3] give an excellent compre-
hensive study of the interrelation between autoscaling
and machine learning techniques in cloud scaling. This
survey effectively summarizes research findings and
tendencies from 2017 to the present. However, our cur-
rent work approaches the topic from a specific perspec-
tive that aligns more closely with our methodology,
serves to understand our solution and place it within
the broader context of scientific research.

Research in autoscaling of cloud-based systems is
widespread [4], and has used many different approaches
based on load forecasting, closed-loop control and the
use of internal state variables. Biswas et al. (2015) [5]
focused on predictive auto-scaling techniques in clouds
with service level agreements, showcasing a proactive
approach based on past workload predictions. Below,
we present the most significant related works, catego-
rized into three main groups: (1) methods based on
load forecasting, (2) closed-loop control and related
techniques, and (3) the use of internal state variables in
scaling decisions.

A common characteristic of the studies we reviewed
is the definition of a Service Level Indicator (SLI), such
as throughput, response time, or resource utilization,
and the attempt to maintain this SLO (Service Level
Objective) while dynamically adjusting the number of
resources. We also approach the issue from this per-
spective, and therefore, in our literature review, we only
include works that take a similar approach.

2.1 Methods Based on Load Forecasting

Wang et al. (DeepScaling) [6] use spatio-temporal
graph neural networks for cloud load forecasting.
While this is sufficient to identify load patterns, their
approach requires loads of high-quality data to match
the model’s accuracy.

Qiu et al. (FIRM) [7] suggest a fine-tuning resource
management framework using Support Vector Machines
and reinforcement learning. While this approach effec-
tively handles static load patterns, it has limitations

in dynamically changing environments as the authors
acknowledge.

Previous work on load forecasting also includes Xu
et al. (esDNN) [8], who apply deep neural networks
for multivariate load forecasting. While both method-
ologies gain from load patterns predefined in the past,
our solution goes further to work even in the face of
unanticipated load fluctuations.

Imdoukh et al. (2019) [9] proposed a system that
uses an LSTM model for accurate HTTP workload pre-
diction. Toka et al. (2020) [10] use a similar approach
but incorporated three different forecasting method:
AR (Auto-regressive model), LSTM (Long Short-Term
Memory), and HTM (Hierarchical Temporal Memory).
They dynamically select the most suitable forecast-
ing approach to match real-time request dynamics and
accurately predict future load, measured in Queries Per
Second (QPS). They consider not only the temporal
data of incoming requests but also the effects of the
time of day. Moreover, they contrast to the traffic in
comparison to earlier periods, such as minutes before.
They do not decide how many resources will act based
on a machine learning model but calculate it using a
rather straightforward mathematical operation: the pre-
dicted number of requests, QPS, opposes the number
of requests that one container can handle according to
the profile of an application.

Bansal and Kumar (2023) [11] also developed deep
learning models to perform cloud load forecasting
based on RNNs, CNNs, and autoencoder-based mod-
els. Their methodology addresses the key challenge of
unpredictable end-user demand, which often leads to
degraded service performance and revenue loss. The
authors claim that their approach results in accurate pre-
dictions but only at large amounts of good quality data.
In contrast, our approach also takes internal state vari-
ables into account, which can reduce the data require-
ments. The authors still underline that their approach
can hardly estimate correctly the load patterns in case
behavior of the system changes dynamically.

Yazdanian and Sharifian (2021) [12] introduce
E2LG a hybrid LSTM/GAN model that decomposes
temporal data series into different frequency bands and
uses these to forecast expected load. The algorithm
of E2LG, however, is very complex and computation-
ally demanding, which may really limit it from work-
ing in real-time scenarios. Although the authors have
thoroughly developed and tested the load forecasting
algorithm (E2LG), they did not examine how an actual
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cloud-based system would scale based on these fore-
casts.

Patel and Bedi (2023) [13] use Multivariate Atten-
tion and Gated Recurrent Units (GRU). They improved
the prediction accuracy on average compared to recent
techniques that apply hybrid methods using LSTM and
various other ANN models. The main drawback of their
method is the large amount of data required to appro-
priately train these models.

2.2 Closed-loop Control and Related Techniques

Baresi et al. [14] propose a discrete-time feedback con-
troller for containerized cloud applications. They start
from the assumption that response time is a function
depending on the number of resources and system load.
Furthermore, they assume that when resources and load
remain constant, the response time will converge to a
steady value. Our method builds on the same assump-
tion by integrating machine learning algorithms and we
also assume that the dynamics of response time are not
always linear.

Sabuhi [15] uses adaptive PID controllers backed
by neural networks. In the paper performance analy-
sis of these adaptive controllers evaluating a various
loads and conditions, underlining applicability of con-
trol theory in resource scaling. Instead of using metrics
that measure the system utilization, Sabuhi regulates
resources (in his case, containers) based on error sig-
nal defined as a difference between real response time
and desired response time (set-point). Input variables
for a model estimating system performance are 1) the
current number of resources being used and 2) the num-
ber of resources required. Output will be the response
time of a system. Having made use of machine learning
techniques (neural networks) the relationship between
these variables is learnt. Our approach follows a sim-
ilar principle for estimating system response time, but
instead of focusing on the number of resources, we rely
on system utilization metrics that describe the state of
system.

Baarzi et al. [16] introduce the SHOWAR system,
performing elasticity scaling with a control theory-
based strategy. Their approach optimizes based on the
process waiting time for CPU, but ignores telemetry
data, such as memory usage and network traffic for
more accurate scaling decisions.

Goli et al. [17] describe a machine learning model
for automatic scaling of microservices, taking into

account the dependencies between services. Their
approach is close to our solution since their system
evaluates and estimates the response time of a system
what would be the impact of adding a new resource.
This way, they determine how many resources their
system requires. However, the authors consider only a
limited set of system utilization metrics to train their
model in an offline manner. As a result, it cannot adapt
to the changing conditions in real time.

2.3 Utilizing Internal State Variables for Autoscaling
Decisions

It can also make use of internal system state variables
at its disposal like CPU usage, memory, and network
traffic for autoscaling. All these help in describing or
modeling the current state of a system such as an early
example of this approach discussed by Abrantes and
Netto (2015) [18]. This is a significant methodologi-
cal shift with respect to previous approaches that try
to predict future requests using time series models or
neural networks based on incoming requests, and then
use such predictions to adjust the number of resources
accordingly.

Podolskiy et al. [19] utilize machine learning mod-
els to predict application performance indicators (SLIs)
such as response time and throughput. The trained mod-
els aim to forecast these SLIs based on the resources
allocated to applications (e.g., CPU capacity) and load
levels (e.g., the number of concurrent requests). While
their approach is well-suited for maintaining SLOs,
they also assume a linear relationship between SLIs
and resources. Podolskiy employs Lasso regression to
create simpler models and reduce the risk of overfit-
ting. In contrast, we use neural networks with dropout
layers to mitigate the risk of overfitting.

Rossi et al. [20] provide a dynamic multi-metric
scaling approach that learns how to adjust the thresh-
olds using reinforcement learning. The basic idea is
how threshold values of different resource usages, like
CPU and memory, are set dynamically and automati-
cally, rather than depending on a manually configured
and hence always suboptimal fixed threshold. Their
results, from simulations and prototype-based evalu-
ations, demonstrate that the proposals have advantages
over the current state-of-the-art. The RL models were
learnt first in a simulator designed to approximate the
behavior of cloud services. This simulator was very
important during this initial phase of learning, which
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emulated the dynamic behavior of cloud services. The
authors note that although their RL-based approach
is effective, definite systems modeling is not an easy
task, and treatment of several metrics complicates the
convergence of the training. Also, in the case of their
Deep-Q Learning-based solution, the right Q-network
architecture happens to be an empirical process that
requires a large number of iterations and may deserve
pre-training for enhanced learning speed.

Zhang et al. [21] focus on resource management
for cloud-based microservices through their frame-
work called Sinan. They focus on QoS maintenance
by taking into account or utilizing the service times
of all microservices involved in composite services.
It tries to make optimal decisions in resource alloca-
tions across microservices so that end-to-end latency
targets are maintained and QoS violations are avoided.
It will ensure an end-to-end latency of the next time-
step across multiple time horizons using a CNN and
provide resource utilization data on CPU, memory, and
network usage (both in terms of packets received and
sent). This kind of prediction helps proactive control
over deterioration in performance even before it hap-
pens. Like in our proposed solution, their system is also
based on a performance model aimed at predicting the
expected response time; however, the real difference
lies in how we determine and calculate the required
amount of resources.

Nhat-Minh Dang-Quang et al. [22] discussed their
method which forecasting the throughput of a network
using a Bi-LSTM model. They do not feed the num-
ber of incoming requests - such as HTTP requests - into
the model to make the prediction. Similar approach pre-
sented by Jayakumar et al. (2022) [23]. Prior to that, dif-
ferent telemetry data from the system itself are analyzed
to make a prediction on network throughput using time-
series analysis. They monitor network throughput but
also several other related telemetry metrics in order to
deduce the inference of future behavior of the network
throughput. This is a fundamental change of methods
trying to predict future request counts based on incom-
ing requests with time series models or even neural
networks. The authors note that although the system
is performing very well with variables with network
throughput and memory usage but more inputs metrics
may be needed in the future to attain more accurate
predictions.

2.4 Further Methods and References

In addition to the specific studies on predictive scal-
ing and workload forecasting, recent survey research
offers a broader perspective on the field. The survey
by Pfeifer et al. (2023) [24] provides a critical anal-
ysis of both traditional statistical methods and mod-
ern machine learning techniques in the context of time
series forecasting.

Yongkang Li et al. [25] present challenges and oppor-
tunities in serverless computing. The authors focus spe-
cially on resource usage threshold optimization and
system scalability. Our solution is related by using more
advanced predictive models and closed-loop control
techniques that ensure the stability and scalability of
the system even in serverless environments.

Hossen et al. [26] propose the PEMA system, which
allows efficient microservice auto-scaling and QoS
assurance of cloud-based microservices without seek-
ing support from complex machine learning mod-
els. Their system adapts to time-varying workloads
through an iterative feedback mechanism and is adap-
tive with regards to changing environmental condi-
tions of microservices, including hardware or software
updates. The authors present their PEMA results with
detailed experimental results, but they also comment
that the proposed PEMA system can not handle all
complex dependencies between microservices. More-
over their solution does not result in absolutely optimal
resource efficiency and there may be scenarios where
the system will find suboptimal resource allocations
during the search process and cases where this method
is not entirely free from SLO violations.

2.5 Summary and Critical Analysis

The methods face several challenges, which have also
been pointed out by the authors themselves.

It has been noted in several works that the complex-
ity of the presented methods may be challenging, even
in dynamically changing environments. For example
Sabuhi [15] mentions the cumbersome parameteriza-
tion of an adaptive PID controller. Baarzi et al. [16]
mention the general complexity of the underlying the-
ory of control. This is perhaps relevant more than ever
in cloud environments, where the two prime require-
ments are fast adaptation and scalability.
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Most of the methods require a great deal of represen-
tative data. For example, the fine-grained resource man-
agement framework presented by Qiu et al. [7] relies
a great deal on large datasets and can be challenging
in real-time applications. Wang et al. [6] point out that
high accuracy of the predictive model depends highly
on the quality and quantity of data.

Several authors underline that proposed methods do
not always adapt very well in a rapidly changing envi-
ronment. Rossi et al. [20] note that in case of rein-
forcement learning-based scaling, it is hard to update
the thresholds dynamically. On his part, Podolskiy et
al. [19] note that self-adaptive resource allocation may
suffer from changing load patterns.

Some studies, such as [10], assume that the overall
performance of scaled systems is directly proportional
to the number of resources. However, this does not often
reflect reality.

The above-mentioned authors also did not pay
enough attention to the selection of appropriate and rel-
evant state variables based on which the performance
of the system can be well described and estimated.

3 Introduction of the Baseline Scaling Algorithm

The method discussed in Wajahat’s papers “MLscale: A
machine learning-based application-agnostic autoscaler”
[27] and “Using machine learning for black-box autos-
caling” [28] has been empirically validated, demon-
strating its effectiveness in various environments. This
lays a solid foundation for our decision to adopt this
method as a benchmark for our research.

In the context of autoscaling for cloud environ-
ments, particularly for workloads that are highly unpre-
dictable, choosing the proper approach is important to
ensure both efficiency and performance. Many existing
autoscaling methods address specific difficulties, such
as fluctuating workloads or varying task complexities.
However, few methods are comprehensive enough to
address all of these issues together.

In order to fully understand the proposed orchestra-
tion approach, we consider the knowledge of this base-
line algorithm [27, 28] important. The baseline algo-
rithm aims to optimally and dynamically determine the
number of cloud-based virtual resources to maintain the
response time of an internet service within a predefined
range. The algorithm consists of three main steps:

• applying a series of linear regression (LR) mod-
els to estimate the value of metrics caused by the
change of resources

• applying a neural network to predict response time
based on estimated metrics

• calculating the optimal scaling factor based on the
predictions of possible scaling actions

In the next subsections, we give a detailed, formal
explanation on the three main parts of the algorithm
and an overall summary of the scaling procedure.

3.1 Linear Regression Models for Estimating Metrics

For each metric there is a separate model realised by
simple linear regression. Each model learns how a given
metric value changes in response to resource changes.
The training of the model is performed during a period
when scaling activities on the web application are peri-
odically executed in a free-run to observe, measure and
record the necessary metrics and their changes. It is
important that at this point we do not consider how the
changing of resource affects the response time, we only
consider how it affects the observed metrics.

We use a linear regression model (gLR) for each met-
ric. These models estimate how a given metric changes
in response to the change in the number of virtual
machines (w) and the change in resources (k), where
k, the scaling factor, represents the number of new
resources and can be negative if resources are removed.
It’s important to note that the value of w, representing
the number of virtual machines before scaling, can not
be less than 1 and (w + k) must be greater then 0.

For each metric mi , we calculate the estimated post-
scaling value the following way:

m′
i = ci,0+ci,1 ·mi ·w/(w+k)+ci,2 ·mi ·k/(w+k) (1)

where m′
i is the estimated value of the i-th metric after

scaling,mi is the value of the i-th metric before scaling,
w is the number of virtual machines before scaling, k
is the value by which we want to change the number
of virtual machines. The ci,0, ci,1, ci,2 are the linear
regression coefficients for the i-th metric, determined
from training data.

To determine the estimated metrics for each k scal-
ing, we use the following equation:

m′
i = gLRi (mi , w, k) (2)
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where gLRi (mi , w,k) calculates theestimatedvalueof the
i-th metric based on the current mi , w and change k.

During the scaling algorithm in a later phase, we
need to consider the accuracy of the LR models applied
above. For this, we calculate the Mean Squared Error
(MSE) as the error of given LR model and R-square
values as the ’goodness’ of the estimation.

MSE measures the deviation between the estimated
values (m′

i ) and the real values. The calculation of MSE
is as follows in our case:

MSE = 1

n

n∑

j=1

(m′
i ( j) − mi ( j))

2 (3)

where n is the number of data points, j denotes the
index of the observed cases during individual measure-
ments,m′

i ( j) are the estimated values andmi ( j) are the
real values for the i-th metric.

R2 indicates how well the model can explain the vari-
ance in the data. The R2 value is calculated as follows:

R2 = 1 −
∑n

j=1(m
′
i ( j) − mi ( j))2

∑n
j=1(mi ( j) − m̄i )2 . (4)

The MSE and R2 indicators help us judge how well
we have managed to calculate the estimated value of a
metric with the help of its associated LR model.

Finally, we organise the estimated values of metrics ina
vector, simplifying the descriptionof the inputto the neural
network. Let us denote this vector as M′(k), where

M′(k) = [gLR1 (w, k), gLR2 (w, k), ..., gLRn (w, k)]. (5)

This vector forms the input to the neural network.
Thus, the input to the function fNN is simplyM′(k), and
the response time estimation is RT ′(k)= fN N (M′(k)).

3.2 Neural Network for Estimating the Response
Time

The neural network (NN) is trained to learn the non-
linear relation among the observed metrics and the
response time. The goal of the neural network is to
estimate the response time based on the vector of met-
rics i.e. it will predict how the system’s response time
changes in response to new metric values caused by
scaling of resources.

RT ′(k) = fN N (M′(k)) (6)

where RT ′(k) is the estimated response time, fN N

denotes the neural network that estimates the response
time from the vector of estimated metrics M ′(k) for a
given scaling factor k.

The two-layered feedforward neural network what
we used can be represented as follows:

RT ′ = θ0 +
H1∑

k=1

θk · f
(
wk,0 +

H2∑

j=1

wk, j ·

f
(
w j,0 +

N∑

i=1

w j,i · mi
))

(7)

In the (7), we let f denote the LeakyReLU activa-
tion function, defined as f (x) = max(αx, x), where
α is a small positive constant; in our case, it is 0.1.
Here, θ0 is the bias term for the output neuron, θk are
the weights from the second hidden layer’s neurons to
the output neuron, wk,0 and w j,0 are bias terms for the
second and first hidden layer’s neurons, respectively,
wk, j are the weights from the first hidden layer’s neu-
rons to the second hidden layer’s neurons, and w j,i are
the weights from the input features to the first hidden
layer’s neurons. The input features are denoted by mi .

Note that the network can be easily modified to
include additional output variables such as estimates
of tail response time or other metrics such as resource
usage, power consumption, etc. The size of the hidden
layer will have to be adjusted accordingly.

3.3 Selection of Optimal Scaling Factor

The final scaling decision is practically a procedure
which selects the optimal k value that minimizes the
cost function (C(k)), determining the number of virtual
machines to be added or removed from the system.

Let the target range for response time be [RTmin,

RTmax ]. The number of virtual machines that can be
changed in one step in the system is k ∈ [−7,+7].

The goal is to find the k value for which RT (k) ∈
[RTmin, RTmax ] and the degree of change in k com-
pared to the previous state is within the permitted range
of [−7,+7]. This decision can be formalised as follows:

C(k) =
{
RTmax − RT ′(k), if RT ′(k) ≤ RTmax

∞, otherwise
(8)

kopt = arg min
k∈[−7,+7]

C(k) (9)
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This formulation precisely chooses the k value
where the estimated response time is as close as possi-
ble to RTmax , without exceeding it.

3.4 Scaling Procedure

Once the LRs and NN model are trained scaling pol-
icy works by periodically monitoring request rate and
resource usage metrics. The monitored metrics are used
as input to the trained performance model to estimate
response time. Baseline algorithm uses a monitoring
interval of ten seconds, over which the metrics are aver-
aged. Autoscaling is invoked when observed response
time exceed the QoS target’s 90%, which is essentially
the upper limit for scaling out, referred to as LIMupper .
In the same way scale-in is initiated when response
time dropped bellow 60% of the QoS target, referred
as LIMlower . It can be formulated as follows:

Action=

⎧
⎪⎨

⎪⎩

Scale-out, IF avg(RT ) > QoS − QoS
100 · 10;

Scale-in, IF avg(RT )< QoS − QoS
100 · 60;

Do nothing, otherwise.

(10)

In the baseline solution, resource regulation algorithm
only activated when the response time fell outside the
upper or lower band of this range. If the response time at
a given moment was greater than LIMupper, the system
is under-provisioned, and the algorithm scales out.

To calculate the necessary number of virtual machines
to bring the response time back within the specified range,
the baselinealgorithmfirst leverages the metrics predictor
to predict post-scaling metrics for a proposed scaling
action. Then, it uses these post-scaling metrics as input
to the performance model to predict the response time
after the proposed scaling. This allows to determine
minimum scaling required to maintain response times
bellow the QoS target by evaluating scaling options k
against the number of given virtual machines w. k can
be any integer number between the predefined range
(for example between −7 and +7) allowing for arbi-
trary provisioning changes. In other words the scaler is
able to add or remove multiple nodes (VMs) simulta-
neously in response to large variations in load.

In the baseline algorithm 8 easily monitorable and
extractable metrics are selected for observation (cpu
usage, context switch, interruption, tcp kb in/out, tcp
packet in/out). These metrics are then supplemented
with the number of requests per second, using a total
of 9 variables to describe the current state of the system.

3.5 Key Features of the Baseline Algorithm

After an extensive review of the available methods, we
identified Wajahat’s solution as the most suitable for our
needs. This decision was based on several key characte-
ristics that is going to be detailed in the next paragraphs.

Wajahat’s solution is not based on predicting future
value of the load unlike forecast methods, such as [29].
This is a crucial advantage in environments where met-
rics like request rates and resource demands are highly
variable or unreliable. Instead, the method uses exter-
nally observable system metrics (e.g., CPU usage, net-
work traffic, memory usage, response time, etc.) to
learn how scaling influences Quality of Service Objec-
tives, such as response time.

Another crucial feature expected for our research
is that the baseline algorithm should be able to deter-
mine the appropriate number of resources (e.g., virtual
machines or containers) for scaling. The selected Waja-
hat method performs exact calculation of the resources
in contrast to other solutions such as [30].

Both machine learning models - linear regression for
stateestimationandneuralnetworkfor theoutputperform-
ance - can be potentially applied in continuous or incre-
mental learning from observed data, so this mechanism
can adapt to changing environment or circumstances.

Unlike systems trained by data originated from pub-
licly available repositories or from simulator, Wajahat’s
approach learns directly from actual measured metrics
of the target hardware and cloud infrastructure. This
ensures that scaling decisions are completely optimised
for the service in question.

Beyond the previously detailed advantages, the base-
line method is empirically validated, its effectiveness has
been demonstrated in various environments. This lays a
solid foundation for our decision to adopt this method
as a benchmark and baseline for our research. Given
these capabilities, Wajahat’s solution is a perfect fit to
demonstrate the research results presented in this paper.

While Wajahat’s method effectively addresses many
of the challenges associated with autoscaling, we iden-
tified several areas for further improvement, six of which
we have explored and willbeintroduced in the next section.

4 Proposed Orchestration Approach

The baseline scaling algorithm presented in Section 3,
has already proven to be an effective solution for the
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ML-based dynamic regulation of virtual resources.
However, through an in-depth analysis of the algorithm,
we identified aspects that opened up further research
opportunities and directions. While the baseline algo-
rithm provided a solid foundation for dynamic resource
regulation, we have expanded upon it in several ways.

4.1 Metric Selection Based on Dynamicity

During the investigation of the baseline algorithm, the
focus shifted to the behaviour of the metrics. Our obser-
vation (after empirical studies) on metrics is that uni-
versal set of metrics cannot be applied to different
applications, since resources influencing response time
can vary significantly. For example, in a data-intensive
application, disk I/O metrics may be crucial, whereas
for a computation-intensive application, CPU utiliza-
tion might play a larger role.

Not all metrics are equally informative for every
application’s scaling scenario. Some metrics might
remain static or show negligible variation during scal-
ing activities, making them less useful for our purposes.
To efficiently filter these out, we adopted a statistical
test-based method, the independent t-test, to compare
variations in metrics before and after scaling actions.
The choice of independent t-test as our analytical tool
was influenced by the extensive research in the field of
feature selection. As highlighted in the comprehensive
survey by [31], numerous established methods exist for
addressing similar challenges in feature selection.

First, synthetic workloads were used to stress the
system in our experiments. This workload was designed
so that the load gradually increased to a certain point
then decreased in the same way, and this process was
repeated several times. During this stress test we sys-
tematically increased and decreased the number of
resources to observe and measure the changes in met-
rics and the system’s response time. With the data
gathered through these controlled manipulations, we
were able to train our models, enabling a data-driven
approach to scaling decisions.

In the metric selection process, we conducted thor-
ough analyses using measurement series of varying
lengths, specifically with sample sizes of 200, 400,
and 720 observations. Although we performed several
long measurement series, our analyses showed that the
set of metrics selected based on the independent t-test
remained consistent across the different lengths of data
collection. We included only those metrics in our analy-

sis where the t-test indicated a significance level of less
than p < 0.001. The t-test may indicate statistical sig-
nificance for large sample sizes even in cases when the
effect size is small. As a consequence, we suggest that
the metric selection criteria may be altered by Cohen’s
d especially in cases where the training sample is large,
as the t-test can be significant even when the effect of
up- or down-scaling for a given metric is small.

This method ensures that our scaling strategy is pre-
cise, tailored to individual application requirements,
and grounded in rigorous statistical analysis. It allows
us to focus on metrics that genuinely influence the
system’s response time and overall performance dur-
ing scaling activities. Metrics exhibiting no substantial
differences in response to both scaling up and down
are considered irrelevant for that specific application’s
scaling context and are excluded from further consider-
ation. This approach enhances the efficacy and sophis-
tication of our autoscaling solutions.

We identified two advantages of metric selection app-
lied on the baseline algorithm. First, the scope of metrics
used for scaling has been significantly expanded beyond
the initial 8 metrics identified by the baseline algorithm
presented in [27], increasing our estimations reliabil-
ity. Second, it became possible to effectively exclude
metrics that are irrelevant for the scaling of a specific
application, thereby increasing the effectiveness of the
algorithm and reducing computational overhead.

4.2 Metric Selection Based on Accuracy

Our investigations revealed that there are metrics for
which post-scaling values could not be accurately esti-
mated using a linear regression model. This may cause
significant inefficiency in our scaling algorithm. To
overcome this inefficiency, we investigated further cri-
teria for metric selection.

If we estimate a metric’s post-scaling value using
(1), then this estimate must be sufficiently accurate for
us to use in regulation. Sufficient accuracy is deter-
mined by comparing the actual observed m′

i value with
the model’s estimated value, and in case the model’s fit
exceeds our predetermined acceptable level, we con-
tinue using that metric in future estimates; otherwise,
it is excluded from further use. This predetermined
acceptance level is defined here by the proportion of
variance explained by the model, or the R2 value calcu-
lated in (4). We used the R2 > 0.9 acceptance threshold
to keep a particular metric.
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While during metric selection based on dynamicity
in Section 4.1, we only examined whether the value of
a given metric changes as a result of scaling, in the next
step the metric has been investigated to decide whether
it can be used for estimation i.e. to estimate a metric’s
post-scaling value based on its pre-scaling value and
scaling.

We demonstrate that the range of relevant metrics
varies application by application, necessitating auto-
mated selection of appropriate metrics when training
the regulator using metric selection based on dynamic-
ity and accuracy. Otherwise, the neural network might
’perfectly’ estimate response times, even on unseen test
data, but we would not be able to effectively regulate
the system with it.

4.3 Periodic Evaluation

The main goal of a scaling algorithm is to keep one
of the target metrics within a predefined range. In the
aforementioned situation, the target metric was the
response time in case of the web service as an example.
In the baseline algorithm, the calculation to decide on
a possible scaling action was initiated when the value
of response time has left the predefined range. It is evi-
dent that a scaling action therefore was only initiated
after the target metric exceeds its minimum or maxi-
mum value and the service can only recover after a cer-
tain time when scaling happened. The aforementioned
operation is considered a reactive scaling.

The next proposed improvements is to make the ini-
tiation of decision on scaling independent of external
signals and metrics. The scaling logic should indepen-
dently decide on the necessity of scaling at regular inter-
vals, based on the measured metrics, without reacting
to QoS violations happened already. The advantage of
this improvement is to let the control loop start a scaling
action significantly before the QoS violation happens
i.e. when the estimated value of metrics predicts QoS
violation in the near future.

Therefore, the scaling procedure consists of peri-
odic evaluation of the observed metrics together with
the predicted response time (utilising the LR compo-
nent). In case the response time is estimated to leave
the predefined range, the required scaling action can be
calculated (utilising the NN component). This periodic
evaluation results a proactive scaling method which is
able to foresee and handle the threshold violation of the
target metric.

As a result, the proposed solution can respond more
swiftly to changing loads. Additionally, scaling algo-
rithms tied to external rules often result in slower reac-
tions, as the triggering signals need to appear con-
secutively in multiple measurements before scaling is
initiated. This is especially problematic for applica-
tions where such delays can accumulate, exponentially
increasing response times.

4.4 Online Learning

The underlying NN an LR models can be easily retrained
to adapt to changes in the workload. This can be advan-
tageous for workloads that are continuously changing in
real time (e.g., newer versions of an existing web page,
service, REST API, or backend). To make the scaler adap-
tive, the training of the models are periodically repeated
on the dataset extended with the latest observations.

The Neural Network is retrained with one epoch using
the observed past data in one batch with a given learning
rate with a configurable number of observed events.
However, in situations when the type of load generated
by the underlying system suddenly changes from e.g.
cpu intensive to data intensive, a more sophisticated
method is needed. A method for handling this situation
(for example re-execution of the metric filtering phase
or retraining the NN) is out of scope of this paper.

However, during our experiment when we slightly
and slowly changed the load by increasing and decreas-
ing the computational complexity of the given service,
the above-mentioned procedure successfully adapted
the scaler to the changes.

For retraining the LR models, we had to apply a dif-
ferent approach. When the error in estimation of LR
models occurred for example predicted after scaling
metrics values deviates from the observed after-scaling
metrics values significantly then we adopted an incre-
mental update strategy, applying the stochastic gradient
descent method to adjust our LR model’s coefficients
in an incremental and online way. Which means that we
updated the the previous model coefficients c0, c1, c2

as described in (1) with a certain learning rate factor of
0.01. We found that, with the help of this extension, our
scaler was able to adapt to subtle and slight changes.

Altogether, by applying the online learning strat-
egy, the scaling algorithm is able to adapt to the slowly
changing type of load generated by the observed service
and the adaptability has been considered as a significant
step ahead in our research.
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4.5 Enhancing the Neural Network

Several enhancements related to the structure of the
Neural Network (NN) of the scaling algorithm have been
applied. First, the number of intermediate layers of the
NN has been increased from one to two in order to better
capture a) the increased number of metrics and b) the
nonlinear relationships between the metrics. Further-
more, the activation function has been changed from
sigmoid to LeakyReLU. As a consequence, there is no
need to normalize the incoming values of the metrics.

Due to the more complex architecture, the NN com-
ponent of our scaling algorithm can easily become
prone to overfitting. To avoid overfitting, we introduced
a Dropout layer after the intermediate layers, which is
considered justified based on the following study [32].

As a further protection against overfitting, instead
of a fixed number of training epoch, we used a specific
stopping criterion. During each epoch, we used 90%
of the training data for training and 10% for valida-
tion of the estimates. Training stopped when the error
measured on the validation data did not reach a new
minimum within 100 consecutive iterations or when
the number of iterations reached 500.

In the new setup, the input and output variables of the
neural network are not standardized or normalized. We
realised that the Adaptive Moment Estimation (Adam)
optimizer [33] with an initial learning rate of 0.01, led
to a smooth and steady decrease of the error during
training.

4.6 Eliminating the Request Rate

Many studies dealing with automatic scaling of virtual
resources focus on the number of incoming requests in
case of web services. This approach is commonly used
as changes in the number of requests directly affect sys-
tem load, thereby providing a clear measure to foresee
the load and to decide on scaling. The correlation of
the number of incoming request and the load generated
by the requests are very high, so that in certain situa-
tions even a single metric, the request rate, is enough to
decide on scaling even without machine learning algo-
rithms. For those web/internet services where requests
may generate different load, this approach can be
utilised with a significantly limited success.

Decision on scaling based solely on internal metrics,
without the knowledge of incoming request rate, is not
so straightforward. The proposed improvement deals

with this direction. We modified the scaling procedure
to exclude the request rate as obligatory metric (but still
keep it as optional). We investigated the new mecha-
nism and found that the scaling algorithm is able to opti-
mally adapt to the specified QoS level/requirements.

This approach marks a new direction compared
to the baseline algorithm since the scaling logic can
scale independently from the number of incoming
requests and as a consequence it supports incoming
requests generating varying load without a correspond-
ing change in the rate of requests.

Indeed, there are load scenarios where not only the
number of requests varies, but also the complexity of
the request submitted. This can be particularly crucial
in cases where the system’s performance depends not
just on the quantity of requests, but also on the com-
plexity or computational demands of those requests.

5 Improvements by Metric Selection Techniques

Regarding the baseline algorithm, it relies on eight met-
rics and the frequency of incoming requests. In con-
trast, we significantly expanded the number of metrics
examined from 8 to 128, to gain a more comprehensive
understanding of the state of scaled applications.

These metrics were chosen arbitrarily and generally
include CPU (21 metrics), RAM (30 metrics), BUD
(memory fragmentation), DSK (9 metrics), INODE (4
metrics), NET (18 metrics), and TCP (32 metrics), with
potential for expansion to include application-specific
metrics. For complete and detailed documentation of
the metrics that has been collected, please see the man-
ual of the collectl1 software.

The key is not the specific metrics chosen, but select-
ing a set that will be responsive to load changes and cor-
relate with response times for a particular application.
Our decision to focus primarily on hardware resource
metrics was motivated by a goal to maintain compara-
bility in our measurements across diverse applications,
ensuring a consistent and standardized basis for our
analysis.

In our enhanced procedure, we automatically select
the set of relevant metrics, thereby increasing the accu-
racy of our estimations. This improvement in estima-

1 Ubuntu 22.04 LTS collectl (2023). https://collectl.sourceforge.
net
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tion accuracy, in turn, enhances the efficiency of our
scaling regulation.

We denote the metric value recorded before scaling
as mi , and the value after scaling as m′

i . The difference
between these two values is represented by �mi

The change in the number of VMs, compared to any
preceding point in time t , is denoted by �V Mt and is
dichotomously coded such that if �V Mt < 0, then it
is coded as −1; if �V Mt > 0, then as +1. A value of
�V Mt = 0 is not considered, as it indicates no change
in the number of VMs.

Based on statistical hypothesis [31] we examined
whether there is a statistically significant difference in
the �mi changes for each metric mi during scaling up
and scaling down. To do this, we perform an indepen-
dent two-sample t-test for each metric separately.

H0 : avg(�m−
i ) = avg(�m+

i ) (11)

The null hypothesis (see (11)) states that there is
no significant difference in the means of �mi between
scaling up and scaling down for each metric in the con-
text of the examined application.

H1 : avg(�m−
i ) �= avg(�m+

i ) (12)

The alternative hypothesis (see (12)) suggests that
there is a significant difference in the means. We con-
duct this analysis at a 5% significance level, denoted by
an alpha value of 0.05, considering only those metrics
where the test shows significant results.

If the p-value obtained from the t-test for a specific
metric is less than 0.05, we reject the null hypothesis,
indicating that there is a statistically significant differ-
ence in the �mi changes between scaling up and scal-
ing down for that metric. In such cases, we conclude
that scaling significantly affects this metric in the con-
text of the examined application. Conversely, if the p-
value is greater than or equal to 0.05, we fail to reject the
null hypothesis, suggesting that scaling does not signif-
icantly impact that metric. This conclusion guides us
to exclude metrics with non-significant changes from
further consideration in our scaling algorithm.

By setting the significance level at 5%, we maintain
a balance between sensitivity to changes and avoid-
ance of false positives. This means we are 95% confi-
dent that the metrics deemed significant truly vary with
scaling activities. Metrics that do not show significant
changes at this threshold are deemed insensitive to scal-
ing and are thus excluded from further consideration in
our scaling process. This methodological rigor ensures
that our scaling algorithm is based on metrics that are

Fig. 1 Variation examples for six different metrics
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genuinely responsive to the changes in resource allo-
cation, enhancing the precision and reliability of our
scaling decisions.

Figure 1 shows how the values of six chosen metrics
changed due to scaling up or down. In examining how
the value of a specific metric changes with scaling, the
upper row of the diagram reveals significant variations
in three metrics - [CPU]User%, [CPU]Interruption per
second and [TCPD] passive open sockets - as a result
of scaling. Conversely, in the lower row, three met-
rics - [CPU]L-Avg5, [INODE] open files and [MEM]
Used - demonstrate no significant changes in their val-
ues regardless of scaling up or down for a particular
application.

Three applications (JavaSpring, MongoDB, JavaML)
have been selected and investigated to determine the
relevance of various metrics in response to scaling.
Using the independent t-test, we segregated metrics
based on whether their changes due to scaling were
statistically significant or not. It showed that the set of
pertinent metrics varied across different applications,
confirming our hypothesis that application type influ-
ences which metrics are affected by scaling. This find-

ing underscores the importance of precise and targeted
metric selection for efficient scaling.

Figure 2 illustrates 7 randomly selected metrics with
3 applications. A comparative analysis of the normal-
ized metric value changes for JavaSpring, MongoDB,
and JavaML applications are presented. The box plots
highlight the median, quartiles, and variability within
each metric category. For each metric scaling up (+) and
scaling down (-) are shown for the three applications.

The investigation showed that the intensity met-
rics respond to scaling differs from one application to
another. For example, as depicted in Fig. 2, the met-
ric called ”[CPU] interrupts/sec” exhibited change for
the JavaSpring application, while no significant change
was observed for MongoDB and JavaML. Similarly, the
metric ”[CPU] ProcRun” responded to scaling in Mon-
goDB, but not in JavaSpring or JavaML. The aim of this
illustration is not to delve into each metric’s detailed
analysis, but to highlight the variability in the metrics
affected by scaling across different applications.

Principal Component Analysis (PCA) of two load
scenarios shown in Fig. 3 has been conducted to exam-
ine how the values of 128 metrics changes under the

Fig. 2 Normalized metric value changes for 7 metrics
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Fig. 3 PCA of 128 metric values under two load scenarios

influence of load in all three applications. Two sub-
spaces in which the metric values were projected do
not carry intrinsic meaning but serve as a means to
visualize the data.

According to the definition of PCA, it establishes
orthogonal dimensions that maximize the variance of
the data. Therefore, the first principal component is the
one on which the variance of the data is the highest,
and the second principal component is orthogonal to
the first one. In this subspace, we visualized the metric
values associated with different types of applications,
observing that the metric values corresponding to each
application type cluster distinctly in different locations
within this subspace, forming separate clusters.

Based on the results shown on PCA the conclu-
sion is that metrics exhibit unique shifts in response
to load for each application, but the directions of these
shifts remain consistent irrespective of scaling effects.
In other words, among the applications examined, there
was no case where the metrics changed positively (i.e.,
increased in value) in response to scaling for one appli-
cation and exhibited an opposite direction of change
for another application.

Finally, it is essential to note that the selection of
metrics was not performed through Principal Compo-
nent Analysis but rather using the procedure previously
described and presented. PCA was utilized solely to
illustrate and investigate the relationships among met-
rics within a lower-, two-dimensional subspace.

Considering metrics that carry only noise and not
useful information in system control would signifi-

cantly impair the effectiveness of the scaling mecha-
nism. This principle stems from the operational logic
of the proposed scaling procedure relying on a trained
machine learning model. In case the metrics are
selected in a way that their values after scaling are
inaccurately predicted or not predictable with sufficient
precision, feeding these erroneous estimations into a
well-trained neural network for response time predic-
tion would inevitably lead to inaccurate and unreli-
able outcomes. Therefore, a crucial prerequisite of our
method is the accurate prediction of post-scaling metric
values. This condition, however, is not necessarily met
for all metrics and is not self-evident. Our observation
indicated that: (1) as previously mentioned, some met-
rics irrelevant for one application might be relevant for
another, and (2) even if a particular metric significantly
changes for a given application, its value post-scaling
might not be precisely predictable. Consequently, it
became essential to further filter the metrics, consid-
ering only those whose prediction accuracy reaches a
predetermined threshold of R2 > 0.9.

As previously described, the foundation of the base-
line algorithm is to estimate the post-scaling value of
each metric based on the current metric value (m), the
current number of virtual machines (VMs) (w), and
the desired change in VM count (k). For every met-
ric measured we compute the m′

i value base on the
(1). For each metric calculation, we seek the coeffi-
cients ci,0, ci,1, ci,2 associated with the respective met-
ric, which minimize the squared error between the esti-
mated values and the actual data.
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While it is possible to find the values of ci,0, ci,1, ci,2
that satisfy this condition in every case, it is not guar-
anteed that the resulting equation adequately describes
the observed data and its variability. Therefore, we use
the coefficient of determination, R2 as defined in (4) to
measure how well the estimation of each metric aligns
with the actual data. (R2 = 1 indicates a perfect fit of
the model to the estimated metric.)

The coefficient of determination, R2, is a statistical
measure that indicates the extent to which our model
can explain the variability in the observed data.

The value of R2 ranges between 0 and 1. A higher R2

value indicates that the model provides a better expla-
nation for the variability in data. Meaning, if the R2 for
a given metric is high, then the model for that metric
is capable of accurately predicting what the values of
this metric will be after scaling.

Metrics for which we cannot accurately estimate post-
scaling values based on the model fitted to observed
data are excluded from further analysis. Otherwise
using those metrics could result in imprecise predic-
tions during the control process. Metrics where the R2

indicator for estimating their post-scaling values does
not reach an R2 > 0.9 threshold are not considered.

Since the number of selected metrics ’dynamically’
changes according to the specific application, as pre-
viously described, the corresponding neural network
architecture also changes accordingly based on several
considerations.

The number of neurons in the first intermediate layer
is set to twice the count of selected metrics plus one. In
the second intermediate layer, the number of neurons
is determined as half the number of neurons in the first
layer, rounded up to the nearest whole number, plus
one. The neural network exclusively uses metrics that
have successfully passed the previously outlined metric
selection process. This results in a variable number of
inputs based on the outcome of the preliminary selec-
tion.

6 Improvements by Proactivity
and Hyperparameter Optimization

6.1 Proactive Scaling

The baseline mechanism only triggers the calculation
and decision on scaling when response time exceeds a

predefined interval. In contrast, the proposed method
conducts continuous (periodic) evaluations to prevent
delays. The new approach allows to anticipate QoS vio-
lations based on metrics, thus proactively managing the
expected deviation of response time from the desired
range.

The key is to provide ongoing estimates with the afore-
mentioned predictive models, even for the scenario
where the number of resources remains unchanged.
This evaluation happens at regular measurement inter-
vals, even if the QoS has not yet been breached and
the response time is within the desired limits. If the
models are trained accurately and effectively, potential
QoS violations can be foreseen based using the function
RT ′ = fnn((m′

k=0)). This not only ensures more effi-
cient resource utilization but also enhances the overall
performance and reliability of the system.

Therefore, the proposed method calculates the RTest
value as a function of theM metrics, is capable of ”fore-
seeing” changes in the system’s response time. This is
why, based on the model’s estimate, the algorithm may
react before, or as soon as, a QoS violation would occur
in the response time as described in (8) and (9).

Thus, the decision to scale is based on these esti-
mated RTest values, rather than any external signal,
and depends solely on the metric values and the trained
machine learning models. This means that the decision
to initiate or stop scaling is based exclusively on the
estimations of the machine learning models, and not
on the actual measured response time.

Thealgorithmperforming thedecisiononscalingaction
is presented by Algorithm 1. It calculates the optimal
delta of VMs (kop) required to maintain or improve the
system’s response time within specified limits.

The algorithm starts by accepting inputs such as the
maximum allowable response time (QoSmax ), the min-
imum (Kmin) and maximum (Kmax ) allowable changes
in VM count, a vector of metrics (M) representing the
actual system resource usage, and the actual number of
VMs (w). The output is the optimal number of VMs
to scale (kop) between Kmin and Kmax , ensuring that
the QoS criteria are met or at least as close as possible
considering the limitations.

It is important to note that unlike the baseline algo-
rithm, here it is sufficient to define only the upper limit
QoSmax , and it is not necessary to determine the lower
limit at which the scaling algorithm should start scaling
downwards.
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Algorithm 1 Selecting the Optimal Number of VMs to
Scale (kop)
Require:

QoSmax : Upper limit of QoS (RT)
Kmin : Lowest delta VM (e.g.: -7)
Kmax : Highest delta VM (e.g.: +7)
M : Vector of Metrics (e.g., CPU usage)
w: Actual number of VMs

Ensure:
kop: Optimal delta VM to meet Quality of Service (QoS)

1: Initialize kop as None
2: for k ∈ [Kmin, Kmax ] do
3: M ′ ← empty list
4: for i = 1 to len(M) do
5: m′

i ← ci,0 + ci,1 × mi × w
w+k + ci,2 × mi × k

w+k
6: Append m′

i to M ′
7: end for
8: RTest ← fN N (M ′)
9: if RTest < QoSmax then
10: kop ← k
11: break
12: end if
13: end for
14: if kop = None then
15: kop ← Kmax
16: end if

Initially (line 1), kop is set to None, indicating that
no optimal scaling action has been identified yet. The
algorithm then iteratively explores each potential scal-
ing action k within the range [Kmin ,Kmin] (line 2),
and calculates the expected system metrics m′

i for each
and every metrics (line 4-5) after applying k change
in VM count based on (1). The estimated metric value
is appended to M ′ (line 6) which represents the esti-
mating the system’s state after scaling by k. The vector
M ′ is then fed into the trained neural network model
fN N (line 8), which estimates the response time (RTest )
associated with the new metrics values M ′.

If the estimated response time for a given scal-
ing action k is below the maximum acceptable limit
QoSmax (line 9) the algorithm updates kop to the actual
k value (line 10) and further computation for other k
values is terminated (line 11).

Since we start executing the loop from Kmin towards
Kmax , this algorithm guarantees that it always selects
the smallest possible adjustment to the number of VMs
k with which the response time can still be kept below
QoSmax , thereby optimizing resource use.

In scenarios where no scaling action within the
explored range Kmin and Kmax can achieve the desired
QoSmax , the algorithm defaults to (line 14-15) the

maximum possible scaling action Kmax . This decision
reflects a conservative strategy to ensure that the sys-
tem’s performance does not degrade below acceptable
levels, even if it means utilizing additional resources.

We deliberately choose to initialize the value of kop
to be None in a way that provides a means for us to dif-
ferentiate the case where an optimal k was not found
from the ones checked to the case where Kmax was
picked as the optimal just because of algorithmic deci-
sion. This difference makes sure that the employment
of the maximum resources is a calculated decision. This
allows flexibility for other strategies where an optimal
k is not identified.

Since the evaluation of scaling is no longer initiated
based on external signals, but purely on the estimates
made by the models, we introduced the ability for the
model to also estimate the response time in cases where
the number of resources remains unchanged. Conse-
quently, the model can assess whether the QoS level can
be maintained without initiating scaling, based solely
on the actual available resources. If the models suggest
that the response time meets the QoS requirements,
our system will not perform scaling. This innovation
ensures that the scaling decision is based solely on the
models’ estimates. If the models and their estimates
are accurate enough, the presented algorithm will not
unnecessarily or mistakenly scale the system. How-
ever, it may recommend scaling even before the QoS
is breached.

When the estimated response time (RTest ) is less
than the upper limit of the QoS requirements, the
scaling is executed, and the specified number (k) of
resources are withdrawn from the system. If this esti-
mated value exceeds the QoS upper limit, the algorithm
examines the possibility of using one less resource and
repeats this process until it finds a solution - a k value
- with which the estimated RT falls below the upper
limit of QoS. Thus, it always selects the solution that
removes or adds as many resources to the system as
necessary to bring the RT below the QoS upper limit.

It is important to understand that in many cases
actual measured response time is not equal to the
response time predicted by the model. As a conse-
quence, the algorithm may suggest scaling even for
the situation when actual measured response time is
still within the QoS range. The reason for this situa-
tion lies in the dynamics of system overload, where
changes in metrics become apparent before changes
in response time. Response time only becomes visi-
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ble after task servicing, while metrics are available by
real-time monitoring.

This also explains why the actual measured response
time of executed requests might still comply with QoS
and remain within the desired range, while the model,
based on current metrics monitoring the actual system
load, predicts that the next measurement cycle will have
higher response times exceeding the QoS thresholds.

6.2 Proactive vs Reactive Scaling

The aim of this section is to illustrate the difference
between the operation and behaviour of reactive and
proactive scaling policies based on the enhanced neural
network. In reactive scaling policy, the scaling proce-
dure is invoked when the response time leaves the pre-
defined range. In contrast the proactive scaling policy,
the scaler periodically evaluates how many resources
is required to keep the response time within the range
and can perform changes regardless the actual response
time is within or outside the predefined range. During
this experiment both scaling policy utilised the same
trained model.

When comparing proactive versus reactive scaling
policies, it is important to consider that in the case
of reactive scaling policies, the setting of the upper
and lower threshold values itself is a hyperparameter.
In case of proactive scaling policies, we have elim-
inated the lower threshold value, which is beneficial
because we have observed that determining the ideal
lower threshold value is not straightforward, and its
value impacts the scaling.

Figure 4 introduces the different behaviours of the
reactive and proactive scaling policies. There are two

graphs above each other, both have the elapsed time on
their x-axis synchronised. The upper graph for its y-axis
shows the value in time for three measured variables: 1)
actual load (request rate, green dashed line), 2) response
time in case of reactive scaling (reactive policy RT, blue
line) and 3) response time in case of proactive scaling
(proactive policy RT, orange line). Moreover, the upper
graph also shows the QoS target and lower limit of
the response time to be kept by the policies, they are
marked with horizontal dashed lines. The lower graph
shows the calculated number of virtual machines in
time, represented by blue line for reactive and orange
line for proactive scaling policy.

Figure 4 clearly shows the dynamic behavior of
proactive and reactive scaling policies, with some
important observations marked by vertical lines labeled
from (a) to (e), which have a correspondence with
important moments of the experiment where the proac-
tive policy is far ahead in scaling actions compared to
the reactive policy when load increases or decreases.

Before point (a), when load starts to increase (t=7),
the proactive policy initiates gradual up-scaling. This
very early response is what significantly reduces the
number of QoS violations against the reactive pol-
icy, which requires that scaling starts only at point (a)
(t=10), when response time has already exceeded tar-
get QoS. Due to this delay, the reactive policy leads
to a larger number of QoS violations and also requires
a more extensive up-scaling, as can be noticed by the
sharper increase in the VM count.

Similarly points (b) and (d) show the benefits that
the proactive policy has in cases of load decline: It
down-scales earlier, reducing the number of active VMs

Fig. 4 Comparison of proactive and reactive scaling policies, focusing on response times (RT) and the number of virtual machines
(VM) over time
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more effectively than the reactive policy. This earlier
down-scaling not only minimizes resource usage but
also prevents over-provisioning.

As illustrated in the figure, due to these timely
settings, this proactive policy has significantly fewer
QoS violations. Only 0.72% of all submitted 335,000
requests exceeded the upper limit of the QoS level com-
pared to 5.10% with a reactive policy. Moreover, during
this experiment, the proactive strategy used 11% fewer
virtual machines.

This is a direct consequence of the proactive policy
design that periodically evaluates system metrics and
triggers scaling actions before QoS violations occur,
rather than reacting after the event.

In our proactive solution, the average number of
VMs used was 6.0 with a standard deviation of 3.1,
while in the reactive case, it was 6.3 with a standard
deviation of 3.3.

The number of QoS violations substantially decreases
because the VM count can react to impending workload
changes based on metrics, before any violation occurs.
It is crucial to understand that this adjustment is not
based on the forecasted workload, but rather on internal
metrics that monitor the system’s internal state.

A slight drawback of the proactive scaling policy
is that - by nature - it requires more computational
resource, since the model needs to be evaluated not
only in cases of QoS violations but periodically. How-
ever, based on our measurements, we found that this
additional computational cost is negligible, the model
evaluation took a few tens of a second in case of
Kmin = −7, Kmax = +7.

6.3 Hyperparameter Optimization

As detailed previously, the autoscaling process applies
two models executed consecutively. The first set of
models estimate the post-scaling values of the metrics
(m′) as a function of changes in the number of VMs
(k), while the second model estimates response time
(y) based on these metrics (m′). The first model can
be mathematically represented as g(k) → m′, and the
second as f (m′) → y. Together, these models can be
expressed as f (g(k)), where the result of g(k) becomes
the input for f (m′).

The composition of the two models, when (k = 0),
serves to estimate the response time in the scenario
where the number of Virtual Machines (VMs) remains
unchanged. The process involves using g(k = 0)

to predict metric values assuming no change in VM
numbers, followed by f (m′) estimating response time
based on these metrics.

Comparing the estimated RT from f (g(k)) with
the actual observed RT is possible only when k = 0.
Because we do not have observed RT values which tells
us what would be the RT if k would be other then 0.

For example, what the response time would have
been with an addition of +7 VMs to the system, is never
known. Therefore, the error of the f (g(k = 0)) predic-
tion of our two models’ composition can be calculated
otherwise, it is not possible.

This particular case when k = 0 enables valida-
tion of the neural network (NN) and linear regression
(LR) models by comparing estimated response times
against actual measured response time, thus evaluating
our combined model predictions’ error.

We use Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) to assess performance
of the trained neural network model. MAE computes
the mean absolute deviation between expected and
observed values in relation to the number of predic-
tions.

MAE and RMSE were measured using K-fold (3-
fold) Block Cross Validation as discussed by Barrow
at al. [34], where the collected dataset was divided into
three equal parts with the original order of the data
preserved within each partition. In each iteration, two-
thirds of the dataset were used for training, while the
remaining one-third was used for validation to calcu-
late the MAE and RMSE. This process was repeated,
rotating the validation set, ensuring that each part was
used for testing exactly once.

Candidate Neural Network models with different
hyperparameter settings were compared to each other
and ranked by their RMSE calculated as

RMSE =
√√√√1

n

n∑

i=1

( f (g(k = 0))i − yi )2 (13)

The most appropriate hyperparameters of a given
Neural Network were not unambiguous. Some hyper-
parameters led to higher RMSE and resulted in a less
useful model, while others led to lower RMSE and bet-
ter approximations.

During our measurements, we observed that the
learning behaviour of our neural network varied with
different settings, reflecting a range of performance lev-
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els during inference. This observation led us to apply
hyperparameter optimization. Reflecting on the preci-
sion attained post-training, we always selected the best
hyperparameter configurations according to the scaled
service or application.

Following this procedure was particularly useful
because hyperparameters are settings that do not
change during the training process but can significantly
influence the learning outcomes.

The entire hyperparameter space is constructed as
follows: 1) types of optimization include RMSProp,
SGD, Adam, AdaGrad; 2) learning rate ranges between
0.001 and 0.1; 3) activation functions are one of sig-
moid, tanh, ReLU or LeakyReLU; 4) dropout rate
ranges between 0.1 and 0.5; 5) the batch size is 24 - 210;
6) type of input metric normalization is either MinMax
or Standardized and 7) the loss function of the Neural
Network itself is either MSE or MAE.

To find appropriate hyperparameters for a given neu-
ral network, we applied Random Search [35] in the
hyperparameter space, setting the number of possible
searches to 20 to efficiently explore the hyperparam-
eter space. The investigated hyperparameter configu-
ration could be trained for no more than 100 epochs,
while Early Stopping [36] was applied on the valida-
tion dataset with a patience of 50 epochs. This means
that the training was stopped when the error (RMSE)
did not reach a new lowest point within 50 consecu-
tive epochs. However, this procedure does not guaran-
tee that the best hyperparameter configuration will be
found but it offers a reasonable trade-off to identify a
good candidate.

This performance evaluation allows us to measure,
compare, and rank the generated models, optimizing
hyperparameters and producing a reliable model before
deploying the scaling procedure in a real-world envi-
ronment.

We could potentially incorporate so-called exoge-
nous variables into the neural network that are not
affected by scaling activities, however they are use-
ful for increasing accuracy in prediction. For example,
the time of observation can be an exogenous variable,
which may contain information related to day-night
effects. Another group of exogenous variables could be
the past values of the metric or their calculated moving
average. These exogenous variables could improve the
goodness of the neural network model. However this
could serve as a basis for further investigation.

7 Measurements and Validation

The purpose of this section is to demonstrate the teach-
ability and applicability of the proposed model in situ-
ations where the number of incoming requests in time
(request rate) is constant while the complexity (gener-
ated load) of the requests may change randomly.

The experiment presented in this section, will
attempt to validate the hypothesis that the proposed
model can learn the necessary number of resources
based solely on internal metrics, independently of the
frequency of incoming requests, in order to maintain
the response time.

7.1 Definitions and Environment

This subsection will contain the main definitions and
environment applied during the experiments we are
going to introduce.

For better understanding the examination of the
hypotheses, we divided the measurements into two fun-
damental experimental groups.

1. “Contant Request Rate”: applies constant request
rate over time, while complexity of the requests
was altered randomly

2. “Variable Request Rate”: applies request rate chang-
ing over time (using different load patterns) with
constant complexity of the requests

The autoscaling performance can be measured by
the time it takes to make a scaling decision and the time
required to start additional virtual entities. There are
approaches focus on user-level performance metrics,
such as the number of QoS violations for the applica-
tion [37] (Jindal et al., 2017). In terms of application-
level metrics, the fraction of autoscaler latency dur-
ing which QoS requirements are violated is crucial. To
measure the performance of the autoscaling solution,
we define the following metric. Response time viola-
tion is defined as the fraction of the sum of concurrent
requests, where the corresponding QoS requirement
was violated, divided by the total number of requests.

During the measurements we are going to compare
our proposed scaling solution with two basic scaling
policies:

1. RT: RT-threshold based scaling policy: add 1 VM
when RTactual > RTmax and remove 1 VM when
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RTactual > RTmin . This scaling logic was intro-
duced only for the purpose of having a baseline
comparison with the other methods.

2. CPU: CPU-threshold based scaling policy: add 1
VM when CPUactual > CPUmax and remove 1
VM when CPUactual < CPUmin . This scaling
logic was introduced only for the purpose of having
a baseline comparison with the other methods.

3. OPT: proposed scaling solution presented in this
paper is signed by the ”OPT” label

During the measurements, for each application and
for each load profile (i.e. load characteristic, see later),
we have to empirically find the ’best’ or ’optimal’
lower and upper RT/CPU threshold limits. This task
was not straightforward as many approaches in the field
of autoscaling face significant criticism due to their lack
of flexibility, such as the challenge of defining appro-
priate scaling thresholds and related settings. As previ-
ously mentioned, configuring an autoscaler can be chal-
lenging, and this complexity is amplified when con-
figurations vary across different scaling applications.
Frequently, multiple configuration parameters are con-
tingent on achieving the desired balance between costs
and QoS violations, reflecting the degree of conser-
vatism the autoscaler should exhibit.

Altogether, we compare the above mentioned two
scaling policies (RT, CPU) with our proposed scaling
policy (OPT) to demonstrate under what conditions the
proposed scaling algorithm works well, and to identify
the limitations of CPU and response time-based scaling
policies.

Three applications have been selected for testing
the scalability where these applications are different
regarding the resource type they are utilising during
their operation. The goal is to examine how scaling
behaves in applications that are known a priori to be
measurable by different metrics. Primarily, we investi-
gate if the metric selection process is operational and
effectively selects the metrics based on which we can
then regulate the resources running under the appli-
cation. On the other hand, we wanted to check if the
proposed scaling algorithm also functions adequately
with different types of applications. Therefore, these
three applications allowed to carry out the test mea-
surements without aiming for comprehensiveness. The
appplications are as follows:

1. JavaSpring: a JavaSE-based Spring web applica-
tion. The hosted VM contains Apache TomCat2

web server with computationally-intensive bench-
marks.

2. MongoDB: a NoSQL MongoDB3 application. The
database contains read-only of 2 million collections
of randomly generated 1024-length strings. Here,
the queries were formed by various but fixed-length
regular expressions.

3. JavaML: a JavaSE machine learning application
based on the WEKA [38] open-source machine
learning library. The application was trained to per-
form a classification task where incoming data had
to be preprocessed, classified, stored, and the results
sent back to the requester. In this case the the request
could be evaluated independently.

The experiments were conducted in the HUN-REN
scientific research cloud [39]. Depending on the types
of applications, we used configurations of (1vCPU,
4GB RAM), (2vCPU, 4GB RAM), and (4vCPU, 8GB
RAM), supplemented with 500 GB SSD storage.
The virtual machines ran on Supermicro SuperServer
1029GQ-TVRT servers, equipped with two Intel®
Xeon® Gold 6230R processors, each with 26 cores
running at 2.1GHz and a 35.75MB cache (150W).
These servers also featured twelve 64GB PC4-23400
2933MHz DDR4 ECC RDIMM memory modules,
two 480GB Intel® SSD D3-S4610 Series 2.5” SATA
6.0Gb/s solid-state drives, and four NVIDIA® Tes-
la™ V100 GPU Computing Accelerators with 32GB
HBM2 memory and SXM2 NVLink. The network per-
formance was further enhanced by a Mellanox 100-
Gigabit Ethernet Adapter ConnectX-5 EN MCX516A
with dual QSFP28 ports and PCIe 3.0 x16.

The environment used for running the experiments
contained the following main elements:

• Apache JMeter4 application is responsible for gen-
erating load

2 Apache Software Foundation. Apache Tomcat, Version 8.0.23.
(2023). https://tomcat.apache.org
3 MongoDB, Inc. MongoDB, Version 5.0. (2023). https://www.
mongodb.com
4 Apache Software Foundation. Apache JMeter, Version 5.4.
(2023): https://jmeter.apache.org
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• Apache Load Balancer5 serves as the access point
to cloud services. The Load Balancer’s role is to
route requests (generated by JMeter) to the appro-
priate virtual machine hosting the application

• SpringBoot6 application receives the requests from
the Apache Load Balancer and serves (executes) the
incoming request(s). This component is hosted by
the VM performing computational tasks and is also
responsible for collecting performance metrics for
the Scaler entity

• the Scaler (realising different scaling policies)
based on the collected data decides on the num-
ber of VMs hosting a particular application to be
tested. This is the component representing/realising
the scaling policy

The Scaler application is responsible for scaling and
regulating resource demands. It functions as a com-
plex resource manager, recording currently connected
resources based on their IP addresses or other identi-
fiers. The Scaler monitors which resources are attached
to the cluster, to which the Load Balancer can direct the
load. The Load Balancer measures response time (RT),
essential for determining Quality of Service (QoS), and
forwards this data to the Scaler, which utilizes it in
model development.

Load generation is executed from an external net-
work using the JMeter software, which generates and
sends client requests to the Apache Load Balancer,
evenly distributing them among the available virtual
machines. Load Balancer is also configured to apply
no replicas, no timeout and no retry. This is necessary
to observe the operation of the algorithms without other
factors influencing the results.

Communication with the applications occurs via
HTTP REST API, where the applications received
incoming requests through HTTP GET and POST
protocols. For observation purposes, each response
includes the response data generated by the applica-
tion, unique identifiers of the requests, the response
time, the start time of the request, and the parameters
attached to the request. Based on these data, it is possi-
ble to perform a detailed analysis and evaluation of the
scaling algorithm’s performance.

5 Apache Load Balancer, Version 2.4. (2023). https://httpd.
apache.org
6 Pivotal Software. Spring Boot, Version 2.5. (2023). https://
spring.io/projects/spring-boot

7.2 Experimenting with Constant Request Rate

In this section, we introduce an experiment where
the goal is to validate our proposed model’s ability
to control resources effectively, particularly in sce-
narios where a direct correlation between VM count
and response time as well as between request rate and
response time was intentionally obscured.

Essentially, we intend to show that the pattern of
incoming request (rate) is only one variable based on
which the response time of the scaled system can be
determined. However, the complexity degree of the
submitted requests can also affect the response time.
Therefore, systems built solely on the pattern or pre-
diction of incoming requests would not be able to scale
the resources appropriately in such a situation.

In this experiment the training datasets contained
250 observations, with each observation in 1-minute
time intervals. This means that data collection went on
for a period of 4 hours and 10 minutes.

The key factor to investigate the aforementioned sit-
uation is that the experiment varies the complexity of
the requests and the number of VMs during the train-
ing phase of the models. During training, the request
rate constant was kept constant continuously to elim-
inate its influence on system response time. The only
factor that can influence the system’s response time
is the complexity degree of the submitted request in
the given experiment. The essence of this experiment
is to investigate whether the machine learning models
could uncover the relationship between system metrics
and response time independently of the request rate and
VM count.

For further clarification, here is an explanation.
First, there are clear linear or exponential relation-
ships between the complexity of the submitted requests
and response time (RT). The processing time for more
complex requests is bigger than for simpler requests,
thus the response time (RT) of the system is also big-
ger. However, during the experiment, while we load
or perturb the service with the load (to generate some
observation and also collect the observed data and the
behaviour of the real system), we vary the complexity of
the requests as well as the number of Virtual Machines
(VM) in such a way that this functional relationship
between the VM number and the RT cannot be observ-
able. We achieve this by having the system receive
both light and quickly serviceable requests when there
are few virtual machines connected to the system and
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also when there are many virtual machines connected.
Similarly, the system receives complex and slowly pro-
cessable requests when there are few Virtual Machines
in the system and also when there are many Virtual
Machines connected. Thus, the response time obvi-
ously changes due to two factors: (1) the number of
Virtual Machines connected to the cluster and (2) the
complexity of the submitted requests. However, when
we trained the models on the observed and collected
data the machine learning models are not informed
about the actual value of the complexity of the request.

This means that although the changes in response
time depend on the complexity of the requests, we
deliberately do not give the machine learning models
direct access to this information, so they must use inter-
nal metrics to learn the relationship between the internal
metrics values and the response time. And also models
have to learn how the change of the VM number affect
the metric values themselves.

In this experiment, we designed a setup that resulted
in a dataset where no direct relationship between
Response Time (RT) and the number of VMs exists.
However, this does not imply the absence of any rela-
tionship between VM count and response time. Other-
wise, it would not be possible to control the response
time through the number of VMs. The key point is that
our experiment was structured in a way that this rela-
tionship couldn’t be directly identified, observed, or
established.

In order to investigate how well our proposed scal-
ing model learns the relationship between the response
time and the available internal metrics compared to
models relying on response time and/or number of vir-
tual machines, we have trained our scaling model five
different ways for comparison. They are as follows:

• Model RR: scaling decision is based on request rate
• Model VM: scaling decision is based on the number

of virtual machines
• Model RR+VM: scaling decision is based on the

combination of request rate and number of virtual
machines

• Model OPT: scaling decision is based on the inter-
nal metrics

• Model OPT+RR: scaling decision is based on the
internal metrics + request rate

The five different trained models have been tested
to investigate how precisely they are able to calculate
the response time based on the different parameters.
The result is visualised in Fig. 5 by five separate dia-
grams. The diagrams show the goodness of the mod-
els, where x-axis represents the actual response time,
while y-axis is for the predicted response time. If the
individual points that represent a specific measurement
are in the main diagonal from the lower left corner to
the upper right corner, this means that the response
time estimated by the model and the actually measured
response time match, therefore the model is accurate.
Based on this, we can tell at a glance which model’s
estimation is good and which model is not. Moreover,
the average error (MSE) estimated by each model and
the fraction (R2) explained by the model from the stan-
dard deviation of the dependent variable have also been
shown in the diagrams. Based on the second metric, we
can say that the closer this value is to 1, the more accu-
rate the model’s estimation is.

Our findings are summarised as follows. Model RR
indicates that estimating response time based solely
on the request rate is ineffective. This is not surprising
since the request rate was constant throughout the entire
experiment. Model VM shows that relying on the num-

Fig. 5 Scatter plots for five models comparing the observed
RT against the predicted RT, each with a 95% prediction and
confidence interval. The correlation coefficient (R2) and Mean

Squared Error (MSE) for each model are displayed. The diagonal
blue line represents the line of perfect prediction
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ber of VMs is even less effective, since we generated
training dataset in a way that it contained all the com-
bination of number of VMs and response time. Model
RR+VM attempts to predict response time based on a
combination of VM number and request rate, which
also proves to be ineffective - this aligns with our goal
to demonstrate that such a joint estimation is not viable.
Model OPT successfully estimates response time using
internal metrics, resulting in a good predictive model
and finally Model OPT+RR incorporates both internal
metrics and request rate in its estimation.

Between Model OPT and Model OPT+RR, we obser-
ved minimal improvement, which, however, stems
from the phenomenon of the minimal ramp-up time
of the requests as they escalated from 0 to 40 req/sec
(theoretically, the two Models should completely coin-
cide). Another point is that this discrepancy between
the two models, even in this state, is entirely negligi-
ble.

Our conclusion is that the addition of request rate
does not significantly improve the model’s predictive

accuracy. However, response time can be quite well
estimated based on internal metrics, while estimations
based solely on the number of VMs or the incoming
request rate (individually or combined) are totally pow-
erless.

We emphasize that this experimental arrangement is
only valid for teaching, the teachability of the models,
and we only wanted to prove (show) that we can build
a scaling algorithm even for cases, when the number
of incoming requests or in other words request rate is
completely indifferent.

In order to give an insight the way the models were
trained in the above experiments, we add additional
details in Fig. 6 to illustrate how the Request Rate
and number of VM has been made independent from
Response Time during the training phase.

The upper left panel in Fig. 6 shows the actual num-
ber of VMs during the training. It demonstrates that
fluctuations, spikes and dips in response time did not
occur merely because of the low or high number of
VMs. Hence, there is no clear correlation between the

Fig. 6 (Top Left): Observed number of Virtual Machines (VMs)
over time. (Bottom Left): The observed ground truth and pre-
dicted Response Times (RT) by the models over time. (Top
Right): Boxplot of RT grouped by the observed number of VMs,
illustrating the distribution of RT across different VM counts.

(Bottom Right): Scatter plot comparing the observed ground truth
RT against the predicted RT by the model, with a 95% prediction
and confidence interval, showing the correlation coefficient (r2)
and Mean Squared Error (MSE)
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number of VMs and the RT. The missing correlation
was further strengthened by the equal distribution of
the number of VMs for all possible Response Time
used during the training set. This is shown in the upper
right panel of Fig. 6.

This is important because we wanted to eliminate
the possibility that the model could learn a relationship
between the number of VMs and RT. It is also important
to note that the number of VMs does not form an input
to our neural network, but it was crucial to produce a
training dataset where even the theoretical possibility
of a relationship between the number of VMs and RT
in the training data is excluded.

The lower right scatter plot shows the relationship
between the response time estimated by our model
(Model OPT) and the actual measured response time.
The horizontal axis represents the actual measured RT
value, and the vertical axis represents the correspond-
ing RT value estimated by Model OPT Data points
located along the diagonal line indicate accurate esti-
mation.

Finally, the lower left panel of Fig. 6 shows the actual
observed RT (with a blue line) alongside the model-
estimated RT (with a black dashed line) over time. The
horizontal X-axis of the upper left and the lower left
panels are synchronized to each other and display cor-
responding values. The proximity of the two lines indi-
cates that the prediction is accurate, so the training of
our proposed scaling model was finally proved to be
successful.

7.3 Experimenting with Variable Request Rate

In this section, we introduce an experiment where the
goal is to validate our proposed model’s ability to con-
trol resources effectively in scenarios where incom-
ming request rate is changing over time, while load
of each incoming request is constant. This experiment
is designed to observe the fluctuations in the number
of incoming requests over time and to monitor how our
proposed scaling solution compared to other scaling
policies (OPT vs RT, CPU described in Section 7.1)
adjust the number of virtual machines while concur-
rently tracking changes in response time.

The first experiment applies a load characteristic
from the traffic of a real e-commerce Web Shop for
2 days. An important characteristic of this load is the
absence of large and abrupt changes. Our assumption
is that the load can be easily followed and that all three
scaling policies (CPU, RT, OPT) will be able to scale
the resources effectively.

Table 1 presents a comparative analysis of QoS vio-
lations and resource utilization across three applica-
tions (JavaSpring, MongoDB, and JavaML described
in Section 7.1) under varying scaling policies. The data
illustrates each policy’s effectiveness in maintaining
QoS levels, with a lower percentage of violations indi-
cating better performance. It also showcases the aver-
age response times during these violations and the total
VM usage, providing insights into the efficiency and
resource demands of each scaling approach.

Table 1 Comparison of
QoS violations and VM
usage across 3 applications
for webshop load

The bold entries are
highlighting the winner
values in each row

App type Policy
RT CPU OPT baseline OPT proact

JavaSpring

QoS 23.93% 0.08% 4.16% 0.07%

RTavg 1005.0 601.0 977.7 760.1

VMused (%) 637 (33%) 1353 (70%) 1088 (56%) 915 (47%)

MongoDB

QoS 28.50% 0.08% 2.01% 0.12%

RTavg 1025.2 700.9 1071.9 581.6

VMused (%) 345 (45%) 560 (74%) 485 (64%) 462 (61%)

JavaML

QoS 6.3% 0.5% 1.3% 0.05%

RTavg 1886.8 1947.2 1982.4 2034.7

VMused (%) 350 (49%) 385 (54%) 414 (58%) 414 (58%)
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Figure 7 illustrates the dynamic relationship between
response time, VM number, and load during the test
for the JavaML application only due to space limita-
tions. The top plot shows the response times for each
request in the order they were processed, highlighting
spikes due to load surges and subsequent stabilization
as additional resources are allocated. While the graph
suggests more frequent QoS violations under the CPU
policy compared to OPT, the Table 1 clarifies that the
vast majority of CPU-managed requests were within
acceptable response times, with only 0.5% violating
QoS, against 0.05% for OPT.

Figure 7 serves to visually support our findings and
enhance understanding, complementing the quantita-
tive data provided in the Table 1. The observed ’run-
away’ response times and subsequent equalization post
resource integration underline the LoadBalancer’s role
in managing system efficiency and QoS compliance. It
is crucial to note that our conclusions are drawn from
a comprehensive analysis of the data, rather than the
graphical representation alone.

In our series of tests using load characteristics of a 2
days real e-commerce Web Shop, we observed a con-
sistent pattern across all three applications: response

times surged dramatically when additional resources
were lately introduced. This spike was a direct conse-
quence of request accumulation on an insufficient num-
ber of server units (VMs). This situation arose from our
test environment setup where we deliberately config-
ured the components to (1) disable request drop and (2)
avoid imposing upper time limits on request servicing.
While this may seem an unrealistic experimental setup,
we chose it to focus solely on how well the scaling
policies worked, without the influence of other system
features or technical solutions.

In our experiment, we found that the OPT scaling
strategy used slightly more resources than the CPU
approach, but it was more effective in keeping QoS
violations extremely low at just 0.05%, using 414 VMs
compared to 385 VMs in the CPU method.

It’s important to note, though, that for this partic-
ular load profile, we didn’t expect to see a significant
difference in performance between the CPU and OPT
policies. This load profile contained gradual increases
and decreases in load, without any sharp spikes. In such
a scenario, both methods are likely to perform well.
However, the true strength of the OPT policy is more
pronounced in situations with irregular and uneven load

Fig. 7 (Top) Individual
Response Time for each
request in chronological
order, with the QoS target
indicated by the dashed line.
(Middle) Worker Number
reflects the number of VMs
over time for RT, CPU and
OPT scaling policies.
(Bottom) Request Rate over
time, demonstrating the
load’s nature with step
changes
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changes, something we clearly observed in our next
experiment.

The final experiment is based on an artificial load to
explore the effects of sudden and unpredictable surges
in load. Our hypothesis is that this load scenario would
particularly highlight the advantages of the OPT scaling
policy.

We expect the OPT method to outperform the oth-
ers here because it is capable of quickly determining
the required number of resources. This rapid adjust-
ment can prevent request build-ups and, consequently,
can avoid increases in response times. We anticipated
that under these conditions, the OPT policy’s ability to
adapt swiftly would be especially beneficial, contrast-
ing sharply with the other two methods.

Before analyzing the values in the Table 2, let’s first
examine Fig. 8 corresponding to the middle row (Mon-
goDB) of Table 2 to understand the load pattern and
where delays in response times occurred.

The key observation of this experiment is the impact
of rapid, unanticipated fluctuations in load, particularly
evaluating the efficacy of different scaling policies. Our
empirical data revealed that under the CPU scaling pol-
icy, 13.34% of all concurrent requests encountered QoS
violations, in stark contrast to just 1.67% under the OPT
policy. This significant reduction in QoS breaches was
achieved with a minimal increase in resource alloca-
tion by the OPT policy: 1249 VMs (80% of maximum
capacity) for CPU and 1142 VMs (73% of maximum)
for OPT.

As seen in Table 2, the rate of QoS violation for
measuring MongoDB through the OPT Baseline strat-
egy was 8.16% of all the requests. When the OPT
Proact approach was used, this rate decreased to just
1.67%. This means that the number of QoS violations
is reduced five times, i.e., there is a decrement of 80%
compared to the original method.

This outcome was in alignment with our preliminary
hypothesis, where we anticipated that the OPT policy,
due to its ability to swiftly control the requisite resource
allocation, would effectively mitigate request conges-
tion and subsequent escalation in response times. Par-
ticularly in the context of MongoDB application, the
CPU-based policy’s reliance solely on CPU load met-
rics proved suboptimal. Conversely, the OPT policy, by
integrating a broader spectrum of metrics encompass-
ing both CPU and ohter metrics, was able to formulate a
more precise correlation between response times, met-
ric values, and VM count. A critical distinction of the
OPT policy lies in its capability to make substantial,
informed adjustments in resource scaling in a single
iteration, potentially adding or withdrawing resources
in significant quantities based on its computations.

By inspecting the compiled data table, it is evi-
dent that the OPT policy consistently outperformed the
CPU-based approach in maintaining QoS compliance,
while not necessitating a disproportionate increase in
virtual resources. This underscores the OPT policy’s
superior adaptability and efficiency in dynamic load
environments, as evidenced in our meticulous exper-

Table 2 Comparison of
QoS violations and VM
usage across 3 applications
for artificial load

The bold entries are
highlighting the winner
values in each row

App type Policy
RT CPU OPT baseline OPT proact

JavaSpring

QoS 10.24% 13.60% 2.95% 2.39%

RTavg 2668.7 2838.3 2351.9 2241.1

VMused (%) 289 (18%) 260 (16%) 318 (20%) 301 (19%)

MongoDB

QoS 28.07% 13.34% 8.16% 1.67%

RTavg 2192.6 2909.3 2689.4 1485.0

VMused (%) 788 (50%) 1249 (80%) 942 (59%) 1142 (73%)

JavaML

QoS 42.40% 11.40% 8.34% 4.86%

RTavg 12145.3 9054.9 5887.8 4804.2

VMused (%) 758 (47%) 820 (51%) 806 (50%) 806 (50%)
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Fig. 8 Response time,
number of VM and Request
Rate for 3 scaling policies
for artificial load. (Top)
shows the individual
response times per request
(Middle) plot tracks the VM
count (Bottom) plot displays
the request rate over time

imental setup. The most significant improvement has
been observed in case of MongoDB experiment where
QoS violation from 8.16% to 1.67% resulting in a
79.53% change.

7.4 Advantages and Limitations

One of the main advantages of our method is its ability
to adapt to rapidly changing and unpredictable work-
loads. Unlike traditional autoscaling methods which
rely on load forecasting, our system can adjust to vari-
ations in load that are not easily predictable. This capa-
bility makes our approach particularly effective in envi-
ronments where workloads can change quickly and
unpredictably, maintaining optimal performance and
resource utilization.

Another significant benefit is the proactive con-
trol mechanism, which anticipates potential Quality of
Service (QoS) violations and initiates scaling actions
before they occur.

Additionally, the dynamic selection of metrics ensu-
res that the scaling decisions are based on the most
relevant data, improving the accuracy and efficiency of

the autoscaling process and reducing unnecessary data
collection.

Nevertheless, there are limitations. The system
learns from observed data, which means it requires
an initial period of operation to collect sufficient data
to accurately determine the relationships necessary for
effective scaling. Careful selection of workload data is
crucial during system perturbation. We found that if
the workload is not chosen with sufficient attention, a
training dataset may be produced in which the learning
algorithm could learn incorrect relationships. However,
this factor can be avoided if the load is gradually and
evenly increased and decreased in the synthetic load.
Data collection and perturbation phase should be long
enough to gather enough data to understand the work-
load patterns and resource requirements.

Metrics would be estimated inaccurately could
affect the quality of scaling decision as well as overall
system efficiency.

The neural network used for the estimation of
response times is most prone to overfitting. Hence, it is
indispensable to validate trained models against a test
dataset for generalizability.
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Moreover, the metrics being used while in training
may change with any reason in the operational environ-
ment, which degrades model accuracy. This can be cor-
rected with periodic comparisons of model predictions
against actual data from the operation. If deviations
exceed predefined thresholds in these comparisons, the
model should be reevaluated and update.

For instance, if the model is based on memory
utilization and the underlying infrastructure’s mem-
ory capacity is increased, then the prediction from
the model could be inaccurate. Continuous monitoring
with recalibration of the model is necessary to maintain
the accuracy of the predictions in such circumstances.

8 Conclusion

This paper presented sixdesign approaches for machine-
learning based scaling algorithms which delivered sig-
nificant improvements compared to the selected base-
line algorithm by Wajahat as well as to threshold based
scaling algorithms.

A novel metric selection procedure has been pre-
sented that identifies metrics relevant for scaling deci-
sions over a particular application. The procedure con-
sists of 1) a Two-sampled t-test filtering to identify met-
rics with significant effect (Section 4.1) and 2) a linear
regression estimation to further identify and exclude
metrics with low precision (r2 < 0.95) (Section 4.2).
As a result, we were able to raise significantly the accu-
racy of both the system state models (LR) and the output
model (NN) of the baseline algorithm. Measurements
(Section 5) have successfully validated the effective-
ness of the metric selection procedure.

New approach has been introduced in scaling deci-
sion mechanism which enables the calculation of
resource needs at any time (Section 4.3) during the life-
time of the application independently from any external
events (e.g. QoS violation). Based on this improvement
we successfully introduced proactivity (Section 6.1) for
the baseline algorithm which enables the controller to
intervene before a QoS violation may occur, preventing
service degradation. Measurements have been intro-
duced to validate (Section 6.2) these achievements and
to underline its importance for burst of loads.

Further improvements related to model accuracy
(Section 4.5) has been achieved by optimisation of the
hyperparameters (Section 6.3) for the neural network
of the scaling algorithm. The optimised hyperparame-

ters have been successfully selected based on the lowest
MAE and RMSE to reach the best performance of the
neural network.

The enhanced scaling algorithm resulted by apply-
ing the three aforementioned improvements on the
baseline algorithm has been evaluated by exhaustive
and comprehensive measurements (Section 7.3). Series
of experiments indicate that QoS violations may reduce
by up to 80% (see explanation for Table 2), while the
level of resource utilization either remains constant or
decreases slightly (by 3-4%) in certain applications. In
cases where there was no reduction in QoS violations,
the utilization of resources saw a significant decline,
falling between 20-50%.

While dependency on request rate is significant
among many scaling algorithms in literature, we suc-
cessfully eliminated this dependency (Section 4.6), so
our scaling algorithm is based purely on internal met-
rics. As a consequence, the algorithm is capable of oper-
ating in circumstances where request rate is constant
(complexity may still change over time) or irrelevant.
Related measurements are described and evaluated in
Section 7.2.

Moreover, our achievements will contribute to the
European digital research infrastructure developments
since the HUN-REN Cloud is a member of the EGI
Federated Cloud (a main pillar of the European Open
Science Cloud) and the SLICES-RI initiative supported
by the European Strategic Forum on Research Infras-
tructures.

9 Future Work

Our research has provided a strong base for the exten-
sion of autoscaling mechanisms in cloud computing by
using dynamic metric selection and proactive control.
Yet, some open questions remain to further optimize
our current approach.

Nonlinear estimation of metrics may help make bet-
ter predictions in environments where the workload
pattern is non-linear by investigating non-linear mod-
els such as polynomial regression or neural networks.
Further study might be done on how the accuracy of
metric estimation affects the efficiency of scaling and
how associated uncertainties may be best managed.

In our current solution, uncertainty is handled by
increasing the significance level for the t-test to strictly
high. However, it worth considering other statistical
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tests or methods. In the future, we plan to investigate
other metric selection methods such as (i) based on the
confidence interval of the estimation of a given metric,
(ii) implementing robustness check, such as sensitivity
analyses to investigate the effects of different selection
thresold levels.

One might be interested in estimating post-scaling
values of metrics, not based solely on their historical
values, but including the values of other metrics and
interaction between them. This could yield a better pre-
diction accuracy for individual metrics and hence the
overall composite estimation accuracy.

Applying this approach to multiple independently
scalable microservices while considering dependencies
between them, as done by [40, 41], could also be an area
for further investigation, and we would like to pursue
research in this direction.

The inclusion of energy consumption indicators
during the scale may imply sustainable cloud opera-
tion, where energy consumption is kept at the smallest
acceptable level, while performance requirements are
satisfied at acceptable levels.
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