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Abstract: Digitization in pathology and cytology labs is now widespread, a significant shift from
a decade ago when few doctors used image processing tools. Despite unchanged scanning times
due to excitation in fluorescent imaging, advancements in computing power and software have
enabled more complex algorithms, yielding better-quality results. This study evaluates three nucleus
segmentation algorithms for ploidy analysis using propidium iodide-stained digital WSI slides. Our
goal was to improve segmentation accuracy to more closely match DNA histograms obtained via
flow cytometry, with the ultimate aim of enhancing the calibration method we proposed in a previous
study, which seeks to align image cytometry results with those from flow cytometry. We assessed
these algorithms based on raw segmentation performance and DNA histogram similarity, using
confusion-matrix-based metrics. Results indicate that modern algorithms perform better, with F1
scores exceeding 0.845, compared to our earlier solution’s 0.807, and produce DNA histograms that
more closely resemble those from the reference FCM method.

Keywords: digital pathology; cytometry; image analysis; object segmentation; fluorescence; ploidy;
data mining analysis; imaging diagnosis

1. Introduction

DNA ploidy analysis is a laboratory technique that assesses the DNA content in a
cell’s nucleus, helping classify cells based on their ploidy status. This indicates the number of
complete chromosome sets in a cell. Ploidy analysis is particularly important in cancer research
for identifying abnormal DNA content, supporting diagnosis and treatment decisions.

To measure DNA content, the sample must be stained with a dye that stays in the
sample in amounts proportional to the DNA content of the sample at the given location.
There are multiple staining options; the samples of this study were propidium iodide-
stained. This type of sample can be digitized using fluorescent imaging. The dye, after
being excited with a light of specific wavelength, emits light of a different wavelength that
can be measured.

The sample can be cell nuclei, extracted from any body tissue that contains DNA.
These analyses are usually done on a flow cytometer (FCM), an appliance that processes
the sample in a liquid form, examining the objects passing in a single row in a capillary
tube between usually a laser source and a detector [1]. This technology is prevalent
today, and developments are added to the original concept, both on the appliance and the
reagent side [2]. Our project explores an alternative approach to achieve the same goal,
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via digital imaging. The light emitted by the fluorochrome is captured by a digital camera,
creating input data for image processing technologies. This technique is called image
cytometry (ICM). It takes merit from the digitalization of pathology and cytology labs
being equipped with machines to digitize glass slide specimens, especially those capable
of fluorescent operation. In the beginning, research-oriented users adopted the benefits of
digital samples. Then brightfield, immunohistochemistry (IHC) samples were evaluated
more and more frequently [3–5]. Today, diagnostic laboratories are progressively adopting
digital pathology [6,7], with a continually expanding range of applications [8–10]. Recently,
deep learning-based methods are explored not only for object segmentation but for quality
control, denoising or as an upscaling technology [6–8].

This project is to create an approach based on image processing that produces the
DNA content measurements needed for ploidy analysis; from nuclei segmentation through
feature extraction, to comparison of results to FCM ones derived from the same samples,
calibration (Figure 1) and finally ploidy analysis.
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Figure 1. The current state of the project that is the greater environment of this study. Creating an
ICM-based approach to parallel flow cytometry regarding ploidy analysis, with option for calibration.

The evaluation of these samples can be done via computer-based image processing
means. This choice holds possible benefits: lab desk space, a fixed cost, can be reduced
by consolidating tools, thereby reducing maintenance expenses. Small diagnostic labs
considering digital pathology or handling a higher imaging workload, may opt for the
ICM approach as a replacement for FCM. For those adopting ICM, the introduction of
ploidy analysis is streamlined, requiring only the extension of the sample preparation
process to include placement on a glass slide and coverslipping. For labs with a heavier
imaging workload, a glass-slide-only workflow becomes feasible. Additionally, the benefit
of extended specimen storage, whether as a glass slide or in this case as a digital image, is
crucial for future research projects, case consultation or teaching.

Measuring the overall accuracy of an image analysis algorithm can be defined on
multiple levels, and through multiple metrics. In this study we applied two approaches:
one is to measure the segmentation algorithms’ raw accuracy compared to the ground
truth; the other is to measure the population-level DNA content’s similarity to the
FCM method.

In our previous work, we proposed a calibration method to align image cytometry
(ICM) results with those of flow cytometry (FCM) for DNA ploidy analysis, using healthy
samples with known properties as references. The calibration approach involves analyzing
the DNA content histograms from both methods, with the goal of developing a transfer
function that ensures ICM can replicate the accuracy of FCM. Specifically, healthy samples
containing at least two object populations—one with theoretically double the DNA content
of the other—serve as a reference point, with these populations represented by their mean
values on the DNA histogram’s x-axis. Ploidy analysis examines these peaks, and their
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relation allows for an evaluation of the accuracy of our technique. In the current study, we
extend this work by focusing on optimizing nucleus segmentation, a key step in enhancing
the accuracy of ICM histograms, thereby further improving the calibration process and
ensuring better alignment with FCM.

The image analysis pipeline is usually comprised of a segmentation step to localize
the nuclei on the sample. A separation step of some kind is necessary. The sample being
a solution, the nuclei tend to form groups or clumps. Those are frequently segmented as
one single object, thus greatly influencing the detection quality. After that, features are
measured, like integrated optical density which represents the amount of DNA content of
an object. These features then can be used to classify the nuclei, and consequently conclude
the ploidy analysis: classify the cell population to be normal, or whether some deviation
can be detected. Comparison of FCM and our proposed ICM method was published in [9].
This article focuses on the object detection/segmentation part of the process, highlighted in
Figure 2.
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The quality of such an algorithm is usually measured via comparison to a reference or
ground truth. This type of information is hard and costly to obtain, though public datasets
for similar purposes can be found [10]. The ground truth dataset was created to establish a
means of measurement for the counting problem, to be able to count the matching pairs of
annotation and detected object along with all the other remaining cases.

The resulting ground truth is a set of coordinate pairs that mark the location of
each object (nucleus) visible on the digital sample. In this article we aim to evaluate the
algorithms examined regarding their object detection capability. Our priority goal was to
evaluate object localization, but not extent.

We propose that by increasing object segmentation performance, the similarity be-
tween the FCM and ICM results will also measurably increase.

Digital pathology tools, able to create and store single-point annotations, have been
on the field for a long time. It is safe to assume that there are many projects where such
annotations were used to designate objects of interest. Generating a reference dataset is
one of the main expenses in an image analysis (object detection, segmentation) project. It
seems logical to explore the possibility of re-using them, in some cases, when creating the
annotation from scratch is a costly solution, or data are scarce, similarly to this project.

Based on the pair of reference and measurement results, each object can be classi-
fied into four classes: true positive (TP), true negative (TN), false positive (FP) and false
negative (FN). This information is collected into a confusion matrix, and algorithm qual-
ity measures are calculated from that. This gives the framework of comparison for the
algorithms examined.

Image processing on fluorescent samples is quite different from analyzing brightfield
samples. Fluorescent samples are generated in smaller quantities, caused by the cost of
the technique itself. Digitization time is heavily dependent on the appliance and is mostly
governed by the excitation time. Glass slide samples can take more than an hour, or
even multiple hours to digitize. The data to measure are usually separated into single
image channels, which simplifies the image processing task. In the case of this project, low
exposure times and single channel demand resulted in a 5–10-min long digitization process.
Sample thickness and light scatter in the sample makes the object boundaries harder to
discern. Generally, the task of detecting/segmenting objects on fluorescent samples can be
a less complex problem, that enables the usage of algorithms of simpler construction. This
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is fortunate, because more complex supervised deep learning AI models need considerably
more annotated training data, and usually unsupervised methods need even more data.
Achieving improvements in that direction seems to be an endeavor gradually more and
more complicated. Transfer learning might be an option to consider, using available models
and using and extending their training set with task-specific samples.

In diagnostics, AI image analysis is less widespread/accepted now, but this is changing
rapidly. Explainability and tractability are among the causes (through regulatory aspects).
There are projects investigating better explainable segmentation algorithms [11], that try
to deal with these aspects of modern AI. The algorithms we selected have the advantage
of still being simple in concept and solving only the segmentation part of the problem,
thus the risks involved remain controllable, while maintaining the equilibrium of cost
and performance.

2. Materials and Methods
2.1. Samples

For this evaluation we used 15 samples of leftover healthy human blood samples
containing only propidium iodide-stained cell nuclei. We placed samples on a glass
slide after serving their original purpose in a flow cytometer. We coverslipped and
digitized them using a glass slide scanner produced by 3DHISTECH Ltd., Budapest,
Hungary (Pannoramic Scan, fluorescent setup, 5 MP sCMOS camera, 40× (Carl Zeiss AG,
Jena, Germany) objective lens and an LED-based light source). The resulting resolution
of the images was 0.1625 µm/pixel (compressed with jpeg, to quality 80). The ICM
measurements were taken on sub-samples of these samples, sampled as lab protocols
demand, in the amount to fit on a glass-covered glass slide. We identified the samples by
their sequential indices throughout the assay (1M01–1M20). The samples could contain
a droplet of sample of the size of approximately 15 mm in diameter. This meant an
approximately 180 mm2 area populated with nuclei, roughly 7 gigapixels to process. The
algorithms’ input was an 8-bit, single channel image, that was ingested by the algorithms
in a tiled manner.

The FCM measurements were conducted using a Becton Dickinson FACSCAN flow
cytometer with the CellQuest software (version 3.1, both hardware and software by Becton
Dickinson, Franklin Lakes, NJ, USA). The samples were stained with PI for visualization of
DNA content and contained more than 10,000 measured nuclei each.

2.2. Annotation

Annotation of medical images is a complex topic [12]; the task at hand is complex
because of the simplicity of the available annotation data.

For the development of Algorithm 1 more than 20,000 objects were annotated with
single-point markers. This is usually called landmark annotation. We used these data to
evaluate and compare the selected algorithms.

To reduce the annotation workload, we selected 1 mm2 rectangular regions on the
sample for validation, containing from ~830 to ~2200 annotated nuclei. We worked with an
expert with laboratory experience in placing the annotations. Cells visible on the digital
samples were annotated using the Pannoramic Viewer (1.15.4) software’s Marker Counter
tool. For this purpose, we selected regions without visible artefacts (bubbles, clumping,
unwashed/overexposed staining). The annotation process took 20–40 min per slide, based
on nucleus content.

Multiple approaches can be taken when using these types of annotation data for the
evaluation, but the template is simple, as summarized in Figure 3.
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2.3. Environment

Both the segmentation algorithms and validation were run on a mobile PC with Intel(R)

Core(TM) i5-9400H CPU (manufactured by Intel Corporation, Santa Clara, CA, USA), 32 GB
RAM, with Python 3.11 (Python Software Foundation, Beaverton, OR, USA) on Microsoft
Windows 10 Pro 22H2 (Microsoft Corporation, Redmond, WA, USA).

2.4. Segmentation Algorithms

The algorithms evaluated were implemented as a plugin for QuantCenter 2.1.0 RTM,
the image processing software suite of 3DHISTECH. This system provides segmentation
previews of regions on the fixed magnification that the algorithm is run on. To enable
parameter fine-tuning and close to instant visual feedback, the algorithms must be com-
putationally simple enough for the user to wait for a 2-megapixel segmentation result, to
be useful.

We concluded the examination of the algorithms of three levels of complexity. We
reference them as Algorithms 1, 2 and 3 respectively.

2.4.1. Algorithm 1

The first is the algorithm (our earlier proposal for the problem) described in [13–16];
it is a simple, threshold-based approach enhanced by a clump-splitting algorithm of our
own development, similar in approach to [17], developed in the same period. The image
pipeline consists of the initial nucleus segmentation, a step for clump separation and a step
to enhance the ability of detecting low-intensity objects on the image.

Figure 4 shows the improvement in Algorithm 1 accuracy during the develop-
ment process:
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During the development of Algorithm 1, the polygon-to-polygon comparison type was
used, with a homogeneous representation of the predictions, using half of the object radius
as diameter, from the average object size calculated from all the samples [15]. If a single
pixel overlap was present, it was considered a match [18]. In that part of the examination,
the measurement and elimination of 1: n, m: 1 prediction-measurement matches. The goal
during development was to follow a “test-driven” approach, so that changes made can be
evaluated in a framework that produces comparable results.
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2.4.2. Algorithm 2

The second method is a relatively advanced classical algorithm that utilizes adaptive
thresholding. This local technique assesses each pixel and its surrounding neighborhood,
computing the Gaussian mean of pixel intensities to classify the pixel. The image pipeline
used in this method is illustrated in Figure 5 of the article [19].
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2.4.3. Algorithm 3

The third algorithm chosen is a more modern, CNN-based algorithm. We chose to
use StarDist [20] as the algorithm, and the pre-trained “2D_versatile_fluo” model included
in the Python library. It has great advantages in separating staining anomalies from cell
nuclei, by being constructed to segment round shapes; compared to Algorithm 1, which
has no such integrated knowledge. Another aspect of this model is the diversity of the
data it was trained on; multiple modalities and imaging techniques produced the input,
which enhances segmentation robustness. For training our own model, we would need
annotation data, of a polygonal type (in mask/label image representation); we plan to
utilize these algorithms to consensually generate a ground truth and present the results in
a different article.

The algorithms evaluated were selected based on their tractable behavior, which is
important in clinical applications, their ability to handle the specific challenges of fluo-
rescent sample analysis, and their computational efficiency, which is crucial for real-time
diagnostic processes.

Initial evaluations of advanced approaches were carried out. Cellpose [21,22] per-
formed well on fluorescent samples but was too computationally intensive for our use.
Other options, such as HoVer-Net [23], U-Net [24], Mask R-CNN [25] and DeepLab v3+ [26],
showed promise but require further comparison based on their computational demands
and performance relative to the methods in this study. Our focus remained on how segmen-
tation accuracy impacts population-based comparison to FCM results and the proposed
calibration method.

2.5. Segmentation Validation: Matching, Counting

For the comparison to the manual, earlier, we used correlation-type metrics or a simple
ratio of error classes to the whole population count [18]. For the current article, we did
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not need the depth and detail of that approach, so we opted to use a confusion matrix-
based approach [27] to compare our segmentation algorithm candidates through sensitivity,
precision and F1 score, as has been already successfully performed in [28].

The comparison is based on object-level matching between annotations and measure-
ments, considering both representational and algorithmic options. Matching can involve
reducing polygonal results to a single point for simple inclusion checks or assigning dimen-
sions to landmark annotations for various matching methods. Figure 6 provides a visual
summary of these techniques.
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All the above are considered one-to-one assignments. It is possible to choose a more 
complex solution: registering multiple entities on either the annotations or on the object 
side (1:n, m:1). This can facilitate investigations of object clump splitting causing over- or 
undersegmentation, as was done during development of Algorithm 1 [15]. 

It is also possible to use more sophisticated, optimization-type methods (linear sum 
assignment problem [29,30]) for the matching, for example, minimizing the global cost 
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2.6. Algorithm Comparison 
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Figure 6. Annotation-segmentation matching options: (a) landmark-to-landmark, (b) landmark-to-
polygon, (c) polygon-to-polygon (intersection), (d) polygon-to-polygon (Jaccard). X-es designate the
landmark locations: in yellow or (m, M) the marker/annotation representations, shapes in blue (O,
A1 and c) are the corresponding object representation. Pixel set operation results (intersection, union)
in purple.

All the above are considered one-to-one assignments. It is possible to choose a more
complex solution: registering multiple entities on either the annotations or on the object
side (1:n, m:1). This can facilitate investigations of object clump splitting causing over- or
undersegmentation, as was done during development of Algorithm 1 [15].

It is also possible to use more sophisticated, optimization-type methods (linear sum
assignment problem [29,30]) for the matching, for example, minimizing the global cost
function comprising of the distance sum of every pair.

2.6. Algorithm Comparison

For comparison of the algorithms in this article we chose the landmark-to-polygon
method of simple inclusion. We followed the greedy method: the first match was registered,
and the involved elements excluded from further matching.

We used a confusion matrix-based evaluation method, with the following model:

• TP: predicted location is included in the segmented object.
• FP: the segmented object does not include any predictions.
• FN: the prediction does not have any matches.
• TN: none.
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Predictions only represent positive findings; where no predictions and no result are
present, there is no useful information. There are many possible locations where there are
no detected objects, and that is correct.

Because no TN values are available, specificity and negative predictive value is zero.
Sensitivity, precision and F1 score can still be calculated.

2.6.1. Precision

This metric designates the algorithm’s strength in detecting only the relevant objects.
It is also called positive predictive value (PPV):

Precision = PPV =
TP

TP + FP
(1)

The values produced by the algorithms for this metric can be found in second table of
Section 3.1, with arithmetic mean and standard deviation values added.

2.6.2. Sensitivity

This value designates the algorithm’s strength in detecting all the relevant objects. It is
also called recall, or true positive rate (TPR):

Sensitivity = TPR =
TP

TP + FN
(2)

The values produced by the algorithms for this metric can be found in third table of
Section 3.1, with arithmetic mean and standard deviation values added.

2.6.3. F1 Score

This score combines sensitivity and precision symmetrically (both are valued the same)
in one metric:

F1 =
2PPV × TPR
PPV + TPR

=
2TP

2TP + FP + FN
(3)

Comparison of algorithms is done based on the calculated F1 scores. Using macro
averaged F1 values for comparison is not advised according to [31]. A voting system can be
set up, where a sample is considered a voter and votes for the best algorithm of the three,
based on the F1 score achieved.

2.7. Population Level Comparison

The segmented objects are used in the project for defining the region contributing to a
nucleus. Features are extracted within this region to describe each data point contributing
to a population-based evaluation. The most important is the integrated density (ID) for
modeling DNA content. A schematic representation of how it is measured is visible in
Figure 7. The FCM DNA histogram results are also available as a reference for each
examined sample. This is the basis of the measurement of accuracy on the population level.

This measurement was conducted on a grayscale digital image, and in discrete format,
as follows:

ID = ∑i=m,j=n
i=j=1 ((Im,n × Jm,n)− BkgInt) (4)

where ID is the integrated density, and I denotes the image intensities in the m, n neighborhood.
If Oi is the currently analyzed object:

Oi = ∪Jm,n Im,n (5)

then J is an indicator function that has the value of 1 when it is a pixel corresponding to the
measured object Oi, and 0 otherwise.
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Figure 7. Method of measuring integrated density (ID), a background-compensated intensity sum.
The resolution of the system is visible; the objects are only tens of pixels in size.

The neighborhood m, n was defined to ensure at least D distance from Oi. D was
selected to be 35 pixels (the average object size in pixels at this magnification) so as to
exclude other entire objects from the neighborhood; d was selected to be 5 pixels based
on visual inspection (this is the distance where the bulk of the effect of object proximity is
eliminated from intensity values).

We have shown that ID models the FCM method’s DNA content measurements well [9].
The nucleus populations identified in both datasets with the same process enables us to
evaluate the difference that the segmentation algorithm change causes in the system. The
mean values of the two populations of the DNA histogram of a healthy patient represent
the 2n and 4n peaks. The peak ratio is the measured ratio of the DNA content at the 4n
peak to the DNA content at the 2n peak. This theoretically equals 2.0 because, during
mitosis, a normal body cell first replicates/doubles its DNA content before dividing into
two new daughter cells. The location of these peaks showed great variance (even within
the FCM result set), but the peak ratios show that the model parameters and the population
classification are well defined.

Greater resemblance of these ratios to the ones measured on the FCM data means
better overall performance.

For data manipulation and statistical evaluation, MATLAB (version R2019b) was used.

3. Results
3.1. Comparison of Algorithm Performance

We compared each algorithm to the ground truth in a pairwise fashion. Table 1 shows
how the algorithms performed relative to each other, the comparison being based on the
ground truth dataset.

Table 1. F1 score for each sample and algorithm, with arithmetic mean and standard deviation over
all the samples, calculated in a macroscopic manner.

Sample ID Algorithm 1 Algorithm 2 Algorithm 3

1M01 0.8159 0.8817 0.8825
1M02 0.8076 0.8372 0.8440
1M03 0.8145 0.8270 0.8078
1M04 0.8468 0.8617 0.8423
1M06 0.8201 0.8480 0.8530
1M10 0.8502 0.8618 0.8920
1M11 0.8279 0.8583 0.8787
1M12 0.8065 0.8848 0.8718
1M13 0.8219 0.8488 0.8474
1M14 0.8041 0.8450 0.8351
1M15 0.6787 0.8265 0.7748
1M16 0.7929 0.8217 0.8214
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Table 1. Cont.

Sample ID Algorithm 1 Algorithm 2 Algorithm 3

1M17 0.8082 0.8271 0.8110
1M18 0.7708 0.8771 0.8523
1M20 0.8422 0.8278 0.8776

Mean 0.8072 0.8490 * 0.8461
SD 0.0397 0.0206 * 0.0314

* Algorithm 2 gave the most accurate result, along with more consistent results over the samples than the other
two, but differences to Algorithm 3 are very small.

In Figure 8, it can be seen how these algorithms are only slightly influenced by sample
density (at least to the extent of this digital slide set).
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Figure 8. The F1 scores are calculated from the confusion matrices calculated for each algorithm, for
each sample. The horizontal axis values are in increasing order of sample density and a normalized
value of this is also present on the chart (dashed green, with rectangular data points). F1 score
decreases only slightly with increasing density in the case of all three algorithms.

Taking a second glance at Figure 8, sample 1M15 seems to be an outlier, and seemed
useful to investigate. Figure 9 shows the main difference to the other samples. We inten-
tionally selected an adjacent sample regarding density for comparison. Both samples are
around average density, but most objects are in the groups visible on the image. These
clumps are closely packed, and with the relatively high image intensity the objects are
harder to separate. Sample intensity is also visibly different.

Table 2 shows a comparison of the algorithms based on precision calculated from the
confusion matrix. Algorithms 2 and 3 are close, but interestingly Algorithm 1 performs
better than both.

Table 3 contains data for the sensitivity metric. In this regard, Algorithm 2 performs
best of the three algorithms based on our findings.

Figure 10 shows the same sample region segmented by all the algorithms for better
visibility of differences. See how each algorithm solves the segmentation on this somewhat
problematic region.
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Figure 9. Region exported from sample 1M11 (left) and 1M15 (right) to show cause of relatively bad
segmentation metrics: object clumping.

Table 2. Precision value for each sample and algorithm, with the arithmetic mean and standard
deviation over all the samples, calculated in a macroscopic manner.

Sample ID Algorithm 1 Algorithm 2 Algorithm 3

1M01 0.9564 0.8879 0.8706
1M02 0.9312 0.8773 0.8981
1M03 0.9148 0.7830 0.7866
1M04 0.9500 0.8773 0.8514
1M06 0.9315 0.8766 0.8785
1M10 0.9495 0.8269 0.8796
1M11 0.9517 0.8790 0.9153
1M12 0.9636 0.8823 0.8555
1M13 0.9477 0.8801 0.8713
1M14 0.9317 0.8744 0.8676
1M15 0.8409 0.8491 0.7954
1M16 0.9031 0.8494 0.8724
1M17 0.9448 0.8666 0.8767
1M18 0.8901 0.9018 0.8829
1M20 0.9628 0.7798 0.8792

Mean 0.9313 0.8594 0.8654
SD 0.0318 0.0352 0.0327

Table 3. Sensitivity value for each sample and algorithm, with the arithmetic mean and standard
deviation over all the samples, calculated in a macroscopic manner.

Sample ID Algorithm 1 Algorithm 2 Algorithm 3

1M01 0.7114 0.8756 0.8948
1M02 0.7130 0.8007 0.7961
1M03 0.7341 0.8762 0.8301
1M04 0.7639 0.8465 0.8335
1M06 0.7325 0.8212 0.8290
1M10 0.7697 0.8997 0.9048
1M11 0.7327 0.8386 0.8449
1M12 0.6934 0.8872 0.8888
1M13 0.7255 0.8198 0.8248
1M14 0.7072 0.8175 0.8050
1M15 0.5689 0.8051 0.7552
1M16 0.7067 0.7959 0.7761
1M17 0.7062 0.7910 0.7545
1M18 0.6796 0.8536 0.8238
1M20 0.7485 0.8821 0.8761

Mean 0.7129 0.8407 0.8292
SD 0.0453 0.0353 0.0459
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Figure 10. Segmentation results of Algorithms 1 (blue), 2 (white), 3 (red) respectively from left to 
right on the same region. Yellow spots are hand-placed annotations. Algorithms 2 and 3 are visibly 
more sensitive to weakly stained objects, with this also producing more false positive finds. 

Algorithms 2 and 3 are more sensitive to low-intensity nuclei, but produce false pos-
itives, due to the nature of the manually generated annotations. To compare the algo-
rithms, we used their geometric data only. The task was to find a segmentation object pair 
for a reference marker. We executed the same matching algorithm for each of the three 
algorithms. 

Algorithm 3 seems to follow object outlines best, resulting in more robust results 
from the validation point of view (markers are inside the segmentation objects by a greater 
margin). Clump separation is problematic with all three algorithms, but Algorithm 3 has 
further options for fine tuning in this regard. A few object clump separation cases are vis-
ible in Figure 11. 
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Figure 10. Segmentation results of Algorithms 1 (blue), 2 (white), 3 (red) respectively from left to
right on the same region. Yellow spots are hand-placed annotations. Algorithms 2 and 3 are visibly
more sensitive to weakly stained objects, with this also producing more false positive finds.

Algorithms 2 and 3 are more sensitive to low-intensity nuclei, but produce false
positives, due to the nature of the manually generated annotations. To compare the
algorithms, we used their geometric data only. The task was to find a segmentation object
pair for a reference marker. We executed the same matching algorithm for each of the
three algorithms.

Algorithm 3 seems to follow object outlines best, resulting in more robust results from
the validation point of view (markers are inside the segmentation objects by a greater
margin). Clump separation is problematic with all three algorithms, but Algorithm 3 has
further options for fine tuning in this regard. A few object clump separation cases are
visible in Figure 11.
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Figure 11. Samples from the segmentation results of Algorithms 1 (blue) and 3 (red) on the same 
regions. Thresholding is inferior in segmenting exact object boundaries due to lack of information 
that the objects are round (a). This information also aids in the separation of clumps (b). In some 
cases even over-segmentation can be avoided on the same basis ((c) bottom center). On the other 
hand, it can cause problems when the goal is to count dividing nuclei; separating them into two 
cells can ruin the foundation of the measurement method (d). 
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to measure the significance of their differences. The natural choice would be the paired T 
test, but it is built upon assumptions that may not stand in the case of these datasets. The 
scores generated by Algorithm 1 cannot be considered to have normal distribution, based 
on the Shapiro-Wilk test (see Supplementary Materials). Because of this, and the small 
sample size, we chose the Wilcoxon Signed Rank test instead (see Supplementary Materi-
als), that tolerates the low sample count better, does not build upon a normality assump-
tion and tolerates outliers better. The pairwise comparisons (Table 6) show that there is a 
significant difference between A1 and the other two algorithms, but the difference be-
tween A2 and A3 is too small to call significant. 

Table 6. Results of the Wilcoxon Signed Rank test results (p-value). The test is symmetrical; only 
valuable data are presented. 

 Algorithm 1 Algorithm 2 Algorithm 3 
Algorithm 1  0.0003052 0.0006104 
Algorithm 2   0.5614000 

Figure 11. Samples from the segmentation results of Algorithms 1 (blue) and 3 (red) on the same
regions. Thresholding is inferior in segmenting exact object boundaries due to lack of information
that the objects are round (a). This information also aids in the separation of clumps (b). In some
cases even over-segmentation can be avoided on the same basis ((c) bottom center). On the other
hand, it can cause problems when the goal is to count dividing nuclei; separating them into two cells
can ruin the foundation of the measurement method (d).

The calculated confusion matrix-based metrics are visible in Table 4. We used the
micro-averaged F1 scores for the comparison(s).

Table 5 contains the counts used for the ranking of the algorithms. One of the options in
defining the order of algorithms in performance can be defined based on these rank counts.
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Table 4. Algorithm ranking based on micro-averaged F1 scores (calculated from the original confusion
matrices) of each sample.

Rank Algorithm 1 Algorithm 2 Algorithm 3

Mean Precision 0.9313 0.8594 0.8654
Mean Sensitivity 0.7129 0.8407 0.8292

Micro-averaged F1 0.8076 0.8499 0.8469

Macro-averaged F1 0.8072 0.8490 0.8461

Table 5. Ranked vote counts for algorithm evaluation. How many times an algorithm finished first,
second and third regarding the F1 score in evaluating the samples.

Rank Algorithm 1 Algorithm 2 Algorithm 3

#1 0 7 6
#2 3 7 8
#3 12 1 1

Only row #1 is used in the chosen voting model.

The algorithms show close performance to each other; we applied statistical methods
to measure the significance of their differences. The natural choice would be the paired
T test, but it is built upon assumptions that may not stand in the case of these datasets.
The scores generated by Algorithm 1 cannot be considered to have normal distribution,
based on the Shapiro-Wilk test (see Supplementary Materials). Because of this, and the
small sample size, we chose the Wilcoxon Signed Rank test instead (see Supplementary
Materials), that tolerates the low sample count better, does not build upon a normality
assumption and tolerates outliers better. The pairwise comparisons (Table 6) show that
there is a significant difference between A1 and the other two algorithms, but the difference
between A2 and A3 is too small to call significant.

Table 6. Results of the Wilcoxon Signed Rank test results (p-value). The test is symmetrical; only
valuable data are presented.

Algorithm 1 Algorithm 2 Algorithm 3

Algorithm 1 0.0003052 0.0006104
Algorithm 2 0.5614000
Algorithm 3

3.2. Comparison of Techniques

To measure the effect of algorithm performance on the technique’s ability to produce
valid DNA histograms, we compared it to the FCM results.

The peak ratio is the ratio of the DNA content at the 4n peak to the DNA content
of the 2n peak. This theoretically equals 2.0 because, during mitosis, a normal body cell
first replicates/doubles its DNA content before dividing into two new daughter cells. The
values measured by both techniques are visible in Figure 12 and Table 7.

Table 7. Peak ratio properties of all the samples combined.

Population Mean SD

Algorithm 1 1.9349 0.039804
FCM 1.8868 0.022131

Algorithm 3 1.8894 0.034916
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4. Discussion

There is significant improvement in object detection accuracy from Algorithm 1 to
Algorithms 2 and 3, though the improvement is not consistent over all the samples (Figure 8).
Macro-averaged F1 score, micro-averaged F1 score and the voting model are in consensus
regarding the order of algorithms.

Looking at precision, Algorithm 1 performs better than Algorithms 2 and 3. In
sensitivity, Algorithms 2 and 3 perform considerably better than Algorithm 1, comprising
the differences visible in the F1 scores.

Visual inspection confirmed that Algorithms 2 and 3 perform better in two regards:
clump separation and low-intensity object segmentation. Algorithm 2 is both more sensitive
to darker objects and is a bit stronger in clump-handling than Algorithm 3; this results in
the best F1 score of the three. During the creation of Algorithm 1, the clump separation
module was a key step in creating an algorithm that would perform consistently on samples
of different object densities. Algorithms 2 and 3 were intrinsically better in this regard:
no performance decrease of notable measure was detected in relation to the density of
objects on the samples, though Algorithm 3 could still be improved in this regard (there is
possibility to fine-tune this behavior). Comparing the algorithms in this dimension might
be part of a future investigation.

Interestingly, the complex but still classical method of Algorithm 2 performs best of
the three on this sample set, though only very slightly—keeping in mind that Algorithm 3
can still be fine-tuned to this dataset (annotation with more information is needed).

It is important to note that clumps of objects are often comprised of objects of inhomo-
geneous intensities. It is also important to mention that low-intensity objects (on which
Algorithms 2 and 3 perform significantly better) are usually apoptotic/necrotic cell nuclei
that do not take part in the ploidy analysis result itself, and are filtered from the population
during the later stages of the data analysis process.

Considering all the above: replacing Algorithm 1 with any of the other two is
an improvement.

Based on the close results, the option for more fine-tuning and its extendibility, we
chose Algorithm 3 to proceed to the population-level evaluation.

5. Conclusions

The results show that using more complex algorithms for this problem gives us better
performance, but interestingly the increment is in the sensitivity measure. Precision was
already high with even the simplest algorithm proposed by us a good few years ago. We
were also able to show that the sample density, being an interesting factor in developing
Algorithm 1, is less important for these more complex algorithms. They perform similarly
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across the samples in that regard (though we have seen cases where there is still room
for improvement).

The results also show (Figure 12 and Table 7) that using a more accurate segmentation
algorithm increases the accuracy (similarity to the reference FCM measurements) of results
at the DNA histogram level.

Examining the samples #11 and #15, and comparing the algorithms regarding their
accuracy in segmenting objects of different intensities is also something that could be worth
pursuing, especially because during visual inspection multiple cases were encountered
where the annotations were self-contradictory in the case of low-intensity objects.

Revision of the ground truth both in location and intensity might be considered based
on the algorithms’ findings. Investigating the possibility to upgrade the ground truth data
automatically, utilizing the segmentation results generated by multiple algorithms seems a
challenging, though viable route for improvement.

While more complex algorithms such as U-Net, Mask R-CNN and DeepLab v3+ could
potentially enhance segmentation accuracy, the available data may limit the achievable
improvements (the non-significant difference between Algorithms 2 and 3 might be a
precursor to this). There may be diminishing returns where increasing algorithm complexity
yields only marginal accuracy gains, suggesting that the dataset itself—such as annotation
quality or sample variability—may hinder further significant performance improvements,
despite using more advanced models.

A focused study is needed to directly compare the (earlier) proposed calibration
technique to current calibration practices, particularly using a greater number of samples.
Such a study would provide more robust statistical validation of the system’s accuracy and
reliability, helping to confirm its suitability for broader clinical adoption. By expanding
the sample size and including various biological conditions, such research could better
evaluate the technique’s effectiveness in real-world settings.

It is interesting to note that though annotation time took 20–40 min per sample
depending on object count, all three algorithms took only seconds to run on the same
region, having a clear time benefit. Adding that to the scanning time of a mean six and a
half minutes (though the object segmentation step is only a part of the task), seems to be
comparable to the reference technique.
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