
Received 1 August 2024, accepted 12 September 2024, date of publication 25 September 2024, date of current version 10 October 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3467228

Automated Debugging Mechanisms for
Orchestrated Cloud Infrastructures With
Active Control and Global Evaluation
JÓZSEF KOVÁCS 1,2, BENCE LIGETFALVI 1,3, AND RÓBERT LOVAS 1,3
1Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), 1111 Budapest, Hungary
2Centre for Parallel Computing, University of Westminster, W1W 6UW London, U.K.
3Institute for Cyber-Physical Systems, John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary

Corresponding author: József Kovács (jozsef.kovacs@sztaki.hun-ren.hu)

This work was supported in part by the National Research, Development and Innovation Office (NKFIH) through OTKA under Grant K
132838; in part by the ÚNKP-22-5 New National Excellence Program of the Ministry for Innovation and Technology from the Source of
the National Research, Development and Innovation Fund; and in part by European Union’s Horizon Europe Research and Innovation
Program under Grant 101131207 (GreenDIGIT). The work of Bence Ligetfalvi was supported by the Doctoral School of Applied
Informatics and Applied Mathematics, Óbuda University. The work of Róbert Lovas was supported by the János Bolyai Research
Scholarship of Hungarian Academy of Sciences.

ABSTRACT Orchestration methods at Infrastructure-as-a-Service (IaaS) level automate the deployment,
scaling, and management of virtualized resources, typically across multiple hosts and data centres. While
orchestration provides many advantages, it also introduces several challenges in testing and debugging
phases, particularly due to the distributed nature of the virtualized resources. Even the proper initial
deployment of interdependent virtual machines (VM) may cause fatal errors since the unpredictable
timing conditions may change the overall initialisation method, which can lead to abnormal behaviour, i.e.
in complex, non-deterministic environments, the set of VM configurations can drift from their expected
states (‘configuration drift’). The overall motivation of our research is to improve the reliability of
cloud-based infrastructures with minimal user interactions and significantly automate the time-consuming
debugging process. This paper focuses on the examination and behaviour of cloud-based infrastructures
during their deployment phase. We continued the adaption of a replay-active control based debugging
technique, called macrostep, in the field of cloud orchestration. In order to provide efficient support for
developers troubleshooting major deployment related errors, the fundamental macrostep mechanisms have
been enriched and significantly extended including 1) the automated generation of collective breakpoint
sets, 2) parallel and robust traversal method for such consistent global states with 3) automated evaluation of
global predicates in each global state of VM set. Furthermore, the novel methods have been 4) generalized
towards wider user scenarios by targeting the Terraform orchestration tool as well (besides the already
supported Occopus). The paper describes the significantly enhanced approach, our design choices, and also
the implementation of the experimental debugger tool with a use case for validation purposes by addressing
the deployment of a SLURM (HPC) cluster.

INDEX TERMS Cloud, IaaS, debugging, orchestration, replay, active control, troubleshooting, macrostep,
evaluation, global predicates.

I. INTRODUCTION
Modern Infrastructure-as-a-Service (IaaS) cloud computing
systems allow automated construction and maintenance of
virtual infrastructures [1] leveraging on the concept of virtual

The associate editor coordinating the review of this manuscript and

approving it for publication was Ali Kashif Bashir .

machines (VMs) as the fundamental building block and the
concept of cloud orchestration [2], [3].

A. CHALLENGES
In the fields of distributed computing and cloud computing
the following key challenges are discussed.

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

143193

https://orcid.org/0000-0002-7293-3016
https://orcid.org/0000-0001-7277-170X
https://orcid.org/0000-0001-9409-2855
https://orcid.org/0000-0003-2601-9327


J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

1) Concerning complexity and dynamism, the resource
allocation mechanisms may raise issues, since orches-
trated systems dynamically allocate resources. More-
over, the software engineers and testers facemulti-layer
abstraction, i.e. debugging becomes more difficult with
multiple layers of virtual machines, containers, and
complex orchestration mechanism (see example of
MiCADO [4]).

2) Handling the distributed nature of the system is
unavoidable, multiple nodes and network complex-
ity require complex troubleshooting method in the
non-deterministic environment coping with the probe
effect, the non-reproducibility and the completeness
problem [5]. For instance, let us assume that a
given orchestrated cloud deployment scenario always
generates correct configuration on a particular cloud
platform or on a set of cloud platforms in hybrid
and federated clouds (where the software engineers
intended to develop and deployed their services) but
often fails on other cloud platforms operated by other
IaaS providers. Mostly, the reason for this behaviour
is the varying relative speeds of deployment tasks
together with the untested race conditions in the
non-deterministic environments. The different timing
conditions might be occurring more frequently on
cloud-based platforms than on dedicated clusters
or traditional supercomputers because of the dif-
ferent implementation of the underlying operating
systems/communication layers and the unpredictable
network traffic, CPU loads or other dynamical changes
in the multi-tenant environment. The above-described
phenomenon can be very crucial because one cannot
ensure that the cloud-based deployment always provi-
sions (captures) the same computing nodes with almost
the same timing conditions in case of (re)deployment or
VM failure.

3) The testers have to tackle with configuration and
dependency related problems, including the phe-
nomenon of ‘configuration drift’ when the configura-
tions for a set of often interdependent VMs can drift
from their intended states, leading to software bugs,
e.g. failed deployments. For detection of such drifts in
complex or large scale scenarios, cloud logging and
monitoring tools [6] may aggregate logs that become
too large to manage effectively. Furthermore, metrics
overload may occur, i.e. too much data can obscure the
real issues in case of failed deployment.

4) Most of the existing debugging tools with limited
capabilitiesmay not scale or adapt well to orchestrated
IaaS environments (see Section II).

Furthermore, specialized knowledge is also often required
from testers, raising a barrier to effective debugging or trou-
bleshooting. Security restrictions can also limit debugging
capabilities, and debugging itself might expose sensitive data,
complicating the entire process. These last two topics are out
of the scope of this paper.

B. MOTIVATION AND GOALS
Reference architectures serve as foundational blueprints in
cloud computing, encapsulating best practices and facilitating
standardization across deployments. Their reliability is cru-
cial for several reasons. First, they guide the implementation
by adequately designed and tested components together with
proven technologies, thereby reducing potential points of
failure. Second, they ensure interoperability and consistency,
essential for system-wide reliability. Additionally, these
architectures help in risk mitigation by offering guidance and
extensive documentation on failure scenarios. Furthermore,
they provide a scale-able and future-proof framework, crucial
for maintaining reliability as the system evolves. Given their
role in shaping cloud systems, the reliability of reference
architectures is not merely an added benefit, but a critical
requirement for ensuring the overall credibility of cloud
computing solutions.

Our research motivation is three-fold: (i) automate further
the mechanisms for the development of reliable cloud-based
research infrastructures leveraging on the concept of ref-
erence architectures, (ii) accelerate the debugging process
taking the benefits of feasible parallel testing of the given
reference architecture candidate, (iii) significantly reducing
human interactions during the automatised and accelerated
debugging process of reference architecture candidates.
In this way, the development and operation costs of research
infrastructures might be significantly reduced, and the cloud
users may get a higher quality of service. This paper focuses
on all these motivations.

C. BACKGROUND AND PROPOSED APPROACH
According to the literature [5], the distributed debugging
methodologies can be categorised according to the level of
support they provide to the software developers and testers
concerning the global predicate specification and detection,

FIGURE 1. Classification of general distributed debugging
methodologies [5] extended with our planned results in orchestrated IaaS
environment.

143194 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

and the search for the origin/cause of the special software
bugs in the distributed program.

In this section, these approaches are briefly introduced
based on [5]. The outlined methods begin from the most basic
one, and the introduced four approaches are complementary
to each other, i.e. each of them attempts to extend and also
eliminate the barriers of the previous ones (see Figure 1).
In case of remote sequential processes, interactive debug-

ging is heavily relying on (or a sort of extension of) the
widespread sequential software debugging functionalities.
This approach enables the online observation as well as
the control of the execution of sequential and remotely
running processes one-by-one. This method can be used for
examining only the local states and histories of individual
processes; it is considered as its main drawback.

In order to address the complex issue of non-
reproducibility, the ‘Trace, replay and debugging’ approach
collects traces (see 2nd row in Figure 1). The trace contains
of a set of well-selected (relevant) events generated and
collected during the first execution of the distributed program.
The collected trace represents a so-called computation path
(i.e. a consistent run) that can be analysed post-mortem
(after the execution); if one or more suspicious or erroneous
situations are found, then the software developer or tester
can run the distributed program again but under the strict
control of a proper supervisory mechanism. During the re-
execution, the traced sequence of events is used to force the
distributed computation to follow and repeat exactly the same
computation path with the same timing conditions.

The integrated testing, active control and debugging
attempts to tackle the barrier of the simple and passive log
collection and replay approach (see 3rd row in Figure 1).
The proposed solutions are different ones concerning the
method they produce the desired computation path (i.e.
consistent run), which is to be followed during a controlled
execution.

At the most advanced level, the main goal of the predicate
detection, active control and debugging approach is to help
the user increasing the confidence on the outcome of the
previous approach and highly automate the verification (see
4th row in Figure 1). That is why, it allows the user
to specify the correctness criteria using so-called global
predicates. These global predicates are automatically eval-
uated by special detection algorithms during the consistent
runs.

One feasible way to prove the reliability (including the
cloud platform-agnostic feature) of complex deployment
and maintenance strategies is to leverage on advanced
systematic debugging/troubleshooting methods in order to
find the timing or architecture dependent failures in the
designed deployment description and orchestration steps. For
this purpose, our research team applied and extended the
macrostep-based debugging [7] methodology that has been
introduced originally for message-passing parallel programs
and developed in the P-GRADE graphical programming
environment [8]. The macrostep-based debugging not only

follows the ‘‘Automated detection of global predicates, active
control and debugging’’ approach but also extends it with
some useful mechanism and functionalities.

The main essence of the macrostep methodology is
to discover the different timing combinations among the
concurrent behaviour of distributed events. While in the
message-passing environment, the communication primitives
were analysed by macrostep, in cloud orchestration, the
parallel deployment of entities (software components on
virtual machines) represent the source of possible concurrent
behaviour. In the original macrostep technology, the central
controller was able to enforce the program to be executed in a
way to simulate or enforce all possible timing conditions, i.e.,
to execute the program through all possible execution paths to
find the issues related to concurrent behaviour. The technique
is based on applying (collective) breakpoints at certain points
in the execution of concurrent activities performed by the
various software components. Once the breakpoints are set,
the execution of the components are controlled in a way
to traverse the entire deployment process towards extreme,
unexpected situations that may have a low chance in normal
conditions.

For orchestration, the goal is to apply this technique
to investigate the behaviour of the VM deployment steps
of a cloud orchestrator for a particular cloud reference
architecture, i.e., a network of VMs with installed software
components and services interconnected to each other as they
described in the last column (‘Planned results in IaaS environ-
ment’) in Figure 1. As the result, not only the deterministic
re-deployment of a set of VMs but the systematic exploration
of the state space of orchestration process becomes available.
Moreover, the correctness properties (e.g. the undesired
‘configuration drifts’) in the orchestrated deployment process
of a set of VMs might be detected as well by properly defined
global predicates.

The first experimental prototype of our macrostep debug-
ger for cloud was introduced in paper [9] based on the
Occopus cloud orchestrator [10], [11] framework, and
supported debugging at the level of ‘‘Integrated testing, active
control and debugging’’ (see 3rd row in Figure 1). Occopus
is an open-source cloud orchestrator software tool that has
been designed and implemented by SZTAKI to support the
research and experiments in the field of cloud orchestration.
Similarly to other orchestration tools, Occopus applies the
de-facto standard Cloud-init tool to contextualise the newly
launched virtual machines in order to start the services. The
contextualisation itself is the place where the deployment
of the infrastructure can be manipulated, i.e., artificially
influenced in order to reach the desired (faulty) behaviour of
the reference architecture.

In order to provide efficient support for developers
troubleshooting major deployment related errors, the first
experiment prototype has been enriched and significantly
extended, including the following methods:

1) the automated generation of collective breakpoint sets
at the ‘Trace, reply, and debugging’ level,

VOLUME 12, 2024 143195



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

2) the parallel and robust traversal method for such
consistent global states at ‘Integrated testing, active
control and debugging’ level, together with

3) the automated evaluation of global predicates in each
global state of VM set at the ‘Predicate detection, active
control and debugging’ level.

Moreover, these novel methods have been generalized
towards wider user scenarios by targeting the Terraform
orchestration tool as well (besides the already supported
Occopus). The paper describes the significantly enhanced
approach, our design choices, and also the implementation of
the experimental debugger tool with a use case for validation
purposes by covering the whole orchestrated deployment
process of a SLURM [12] (HPC) cluster.

The rest of paper is structured as follows:
• Section II introduces related works on the field of
debugging and troubleshooting on cloud orchestration,

• Section III helps understanding the concept of
Macrostep-based debugging and collective breakpoint-
based troubleshooting,

• Section IV describes the architecture and operation
of the new version of the prototype, and dives into
the descriptions of the interdependent components and
operation mechanisms,

• Section V is about the abstraction of orchestration and
application scenarios (towards other orchestrator tools
such as Terraform),

• Section VI provides details on the new automated
breakpoint generation methods for both supported
orchestrator tools,

• Section VII introduces the new facilities for the
automated evaluation of global predicates describ-
ing/evaluating the expected behaviour (correctness) of
the orchestrated deployment process of VMs,

• Section VIII shifts the focus further for real life appli-
cation scenarios by introducing the parallel traversal
of paths in the given execution tree (state space) for
accelerating the debugging and testing process,

• Section IX contains the validation of the recently
elaborated mechanisms and debugger prototype with a
use case (SLURM cluster deployment),

• Section X contains conclusions and future works.

II. RELATED WORK
In the literature, some related research achievements are
described for e.g. HPC applications [13], but the typical
example is the remote cloud debugging [14] feature for
Windows Azure Cloud Services [15] that can be considered
the most basic functionality of all distributed debuggers.
Oczan et al. [16] extends the remote debugging towards
containerized applications in edge computing environments.

Smara et al. [17] proposed a fault detection method for
clouds leveraging on the concept of acceptance tests. In their
framework, the main aim is to construct fail-silent cloud
components, which have the ability of self-fault detection.
On the contrary, our approach can create a series of consistent

global cuts (or states) for error checking and debugging in the
distributed environments.

According to Zhang et al. [18] two main categories of
cloud fault detection can be distinguished: rule-based or
statistical detection. Rule-based detection methods are built
on simple rule sets on the error message and record
components, or basic decision trees can be built using
multiple rules and queries. Our approach is to support both
categories. However, our work focuses on the mechanism
of how to traverse the state space where such rule-based or
statistical approaches might be applied later on.

Goossens et al. [19] also introduced a communication-
centric debugging method, but their work covers the problem
at the hardware level and their work is oriented towards
transactions.

Debugger [20] developed by Google is able to follow the
application states in real-time without the need of slowing
down or stopping the application. It can take a snapshot
from a desired state of the program, i.e., the call stack, and
the variable values are searchable and verifiable. Another
important feature is the so-called logpoints, which is able to
create custom string and variable logging mechanisms in the
code. This debugger cannot provide (among others) advanced
functionalities for handling multiple, orchestrated VMs.

Merino and Otero [21] enhanced a record and reply
mechanism for microservice debugging by a checkpoint and
restart mechanism for software containers. The proposed
architecture and solution can handle the non-deterministic
execution environment but limited to microservices, and
active control and testing features are not supported.

Quroush and Ovatman [22] described a record and replay
mechanism for cloud-basedmulti-tenant services that enables
software developers to debug their application in the replay
phase after a failure detected in the recording phase. Their
approach has promising results, but there is no support for
systematic traversing of the state space and is limited to
script-based deployments.

Sharma et al. [23] developed an endpoint-basedmonitoring
solution that allows tenant-level monitoring. In addition, the
system stores the history of the metric data for other uses,
e.g., history evaluation or validation for SLA compliance.
The solution offers monitoring customisation, extensibility
and portability, but the use of the tool is limited to
OpenStack-based cloud resources, and there is no active
control mechanism offered for debugging purposes.

Gan et al. [24] have developed an online cloud performance
debugging system (Seer) leveraging on big data to navigate
the complexity of cloud debugging. Moreover, deep learning
models had been used for proactive QoS violation detection
of cloud microservices. Seer applies distributed tracing and
copes with the unpredictable timing conditions similarly to us
but their main scope is the performance (and not correctness)
debugging of the interdependent components.

Baek et al. [25] created amonitoring solutionwhere special
loggers are inserted into the cloud components. The solution
processes the logs and creates a resource graph from them.

143196 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

The resource graph presents the changes of the resource
events and can be queried to define previous state changes.
However, the functionality of the tool is limited because it
does not investigate the guest system in detail and needs
to inject the components into the system. It works only in
an OpenStack environment without active control or other
advanced debugging mechanisms.

Cotroneo et al. [26] described a run-time failure detection
method via non-intrusive event analysis in a large-scale
cloud computing platform. They follow a black-box tracing
approach, and able to perform run-time verification (checking
correctness of a system execution on-the-fly according to
specific properties) while executing a campaign of fault
injection experiments in a multi-tenant scenario using
OpenStack. Despite several similarities, our active control
attempts to provide a more generic solution focusing on the
non-deterministic behavior of the examined cloud system,
and leveraging on white-box approach.

Some promising methods are described by
Manner et al. [27] to troubleshoot serverless functions in the
cloud with a combined monitoring and debugging approach.
In their paper, a semi-automated troubleshooting process is
presented to improve fault detection and resolution based
on enhanced log data quality, automatically detected failed
executions with test skeletons. Similarly to our approach,
their method leads to an increased test coverage, a better
regression testing and more robust functions of cloud-based
systems but they narrowed the scope to one particular class
of cloud applications with serverless functions.

Gulzar et al. introduced not only new debugging primitives
in their BigDebug [29] tool (e.g. simulated breakpoints,
guarded watchpoints and forwards/backward tracing) for
interactive big data processing in Apache Spark but auto-
mated debugging of big data analytics in data-intensive
scale-able computing as well. BigSift [28] adds even more
advanced testing features to their solution by so-called Delta
Debugging. One of the main limitations of their proposed
solution is the tight binding to the Apache Spark framework.

Our team is involved in a joint research where we have
already published some of our experiments and promis-
ing results and experiences with deep learning enhanced
steering mechanisms for debugging of fundamental cloud
services [30]. The main objective of our work was to
start integrating some selected stochastic modelling and
verification techniques based on deep learning methods into
the debugging cycle in order to handle large state spaces
more efficiently, i.e. by steering the process of traversing
state space towards suspicious situations that may result in
potential bugs in the actual system.

Table 1 contains an overview of the ten most relevant
implementations discussed in this section. As can be seen
in the table, all of these provide basic functionalities like
tracing (trace & replay column), but only half of them
have replay functionalities, making them capable of repro-
ducing previous runs. While half of these implementations
provide correctness checking, most of them do not utilize

active control or integrated testing. Only three out the ten
implementations in the table provide full-scale debugging
functionalities, starting from tracing to correctness checking.
In summary, implementations with tracing capabilities are
present in a variety fields (cloud, edge, microservices), while
more complex debugging systems are limited to certain parts
of cloud computing.

By combining the macrostep debugging (see Section III)
methodology and the features of Occopus and Terraform
cloud orchestrators, the presented work attempts to overcome
the limitation of existing debugging solutions since not even
the most widely used cloud providers, nor the state-of-the-
art debugger tools offer high level and advanced debugging
facilities to their users that are similar to the described
macrostep-based concept.

III. MACROSTEP-BASED DEBUGGING
A. ORIGINAL CONCEPT FOR MESSAGE-PASSING
PROGRAMS
During debugging parallel and distributed programs, several
aspects have to be taken into account, one being that
parallel programs show non-deterministic behaviour, making
the reproduction of erroneous runs a difficult problem (see
details in Section I). This can be due to several factors,
like differing relative CPU and/or memory speeds, operating
system scheduling, network latency, etc. Another aspect
is that sequential debugging methods, like breakpoint-to-
breakpoint execution, cannot be applied to parallel programs
only with strong limitations.

Early debugging methods in parallel systems relied on
the so-called ‘‘monitor & replay’’ approach [7]. In the first
monitoring (or recording) phase, the monitoring tool collects
as much data about the parallel program as required to
reproduce the run in a deterministic way in the second replay
phase. In this approach, replay is driven by the previously
gathered program information. This approach does provide
a solution for the debugging of parallel programs, but a
new problem, the probe-effect is introduced. This means that
the monitoring of the parallel program affects its timings.
Although one can mitigate the impact of the probe-effect
by reducing the amount of collected information during
monitoring, the effect cannot be completely eliminated itself.

Another approach for parallel program debugging is the
so-called ‘‘control & replay’’ method (or active control),
in which we make use of systematically generated test
cases to exhaustively and completely test every possible
timing condition in the parallel program. Replay is not
performed according to collected data, but according to
the generated test cases. The most important part of this
debugging approach is to find a suitable solution that can
generate these test cases [7], [31].
The aforementioned macrostep-based debugging method-

ology utilises this ‘‘control & replay’’ approach by
introducing the concept of collective breakpoints and
macrosteps. An early implementation of this debugging
method was DIWIDE (DIstributed WIndows DEbugger) [7].

VOLUME 12, 2024 143197



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

TABLE 1. Comparison of the ten most relevant debugging methods which have an implementation.

Macrostep-based debugging builds on the following con-
cepts: local breakpoints, collective breakpoints, macrosteps,
the execution tree and meta-breakpoints.

Local breakpoints are implemented on the process level,
and a process is halted when it hit a local breakpoint.
A collective breakpoint is a set of local breakpoints,
preferably covering each process. If a collective breakpoint
contains local breakpoints from every process, then it is
a complete one, otherwise it must be considered partial.
If a collective breakpoint contains local breakpoints for all
possible alternative paths for each process, then the collective
breakpoint is strongly complete. A macrostep is the executed
code region between two collective breakpoints. The original
macrostep-debugging concept distinguishes pure and com-
pound macrosteps, meaning that if communication-related
code is found only as its last element, then the macrostep is
pure, otherwise it is compound. By using strongly complete,
pure collective breakpoints, the traditional breakpoint-to-
breakpoint debugging methodology of sequential programs
can be extended to parallel programs.While in sequential pro-
grams debugging is done in a step-by-step manner, in parallel
programs, it can be achieved macrostep-by-macrostep [7].
One order of consecutive collective breakpoint hits is an

execution path. The execution tree contains all execution
paths, all possible timing conditions in the parallel program.
It is built up of collective breakpoints and macrosteps,
collective breakpoints being the nodes and macrosteps
being the directed edges. The execution tree starts with
the root node. In the original macrostep concept there are
3 distinct type of nodes: fork, alternative and deterministic.
Deterministic nodes do not create new execution paths,
however at alternative and fork nodes, it is possible to
force the parallel program towards different execution paths.
Breakpoints can be placed in the execution tree as well,
in which case they are called meta-breakpoints, essentially
meaning that the parallel program is steered to a specified
node in the execution tree. Using an appropriate debugging
tool that can generate suitable collective breakpoints [7], one
can achieve the complete [31] and exhaustive testing [32] of
parallel programs.

B. MACROSTEP-BASED DEBUGGING IN CLOUD
ORCHESTRATION
IaaS systems can contain up to dozens or even thousands
of VMs, and contextualisation is usually done in parallel to

speed up deployment. It might be a challenging task to locate
and analyse errors due to the inherently non-deterministic
nature of cloud resources. Contextualisation processes may
depend on each other, VMs differing in configuration, the
actual load on physical resources used by the infrastructure
(physical CPU, memory, storage, etc.), among others, can
all influence timings during the deployment of a given
infrastructure (or reference architecture). Because of this
non-deterministic behaviour, it is not unusual that erroneous
situations cannot be reproduced reliably.

FIGURE 2. Macrostep concept in IaaS cloud infrastructures.

FIGURE 3. An example infrastructure containing four virtual machines.

Traditional parallel systems and infrastructure deploy-
ments showmany similarities, like potentially dependent pro-
cesses running concurrently, errors related to wrong timing
and problematic error reproduction. Thus, it seems promising
to apply the original macrostep debugging methodology (see

143198 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

FIGURE 4. Complete execution tree of the example infrastructure with four VMs and ten local breakpoints.

Figure 2) to cloud infrastructure deployment. Similarly to
the original concept, processes are running concurrently,
which, in the case of IaaS systems, are the contextualisation
processes of the VMs. By placing local breakpoints in each
virtual machine’s contextualisation process (see VM1 to
VM4 in Figure 2), the debugger can effectively suspend them
until an appropriate control signal is received. Then local
breakpoints can be organised into collective breakpoints, each
collective breakpoint (see M1 to M5 in Figure 2) containing
one local breakpoint from every contextualisation process.

Reaching a collective breakpoint in this context essentially
means the overall deployment of the infrastructure is
temporarily halted, forming a consistent global cut (or state).
At this point, each contextualisation process is waiting
to proceed. If the debugger may choose from multiple
contextualisation processes to continue, then the collective
breakpoint is an alternative collective breakpoint. The next
collective breakpoint can be reached by permitting one of the
waiting processes to progress. If there is only one process
waiting, then the collective breakpoint is deterministic.

The execution tree contains all execution paths, all possible
timings that can occur during an infrastructure’s deployment.
The execution tree’s root node is the set of the first local
breakpoints from each contextualisation process and is the
first collective breakpoint for all execution paths. Nodes in
the execution tree are connected by macrosteps, meaning
that a macrostep is the executed contextualisation code
between two collective breakpoints. In this way, IaaS system
deployment can be carried out macrostep-by-macrostep,
going from one collective breakpoint to another.

C. EXAMPLE FOR ORCHESTRATED INFRASTRUCTURE
DEPLOYMENT
An example (see Figure 3) for demonstrating the benefits
of macrostep-based debugging could be an infrastructure
containing two database-clients (‘‘cl1’’ and ‘‘cl2’’) and two
database-server (‘‘dbsrv1’’) and (‘‘dbsrv2’’).

Normally, timings can be correct in one deployment, and
clients would be able to connect to the already existing
database, but in another deployment it is possible that
the database-server is far behind in contextualisation to
handle any read-write request coming from the clients.
With the macrostep debugging method, the debugger can
systematically test each timing condition and find sufficient
ones where clients are able to connect to an already existing
database.

A synthetic execution tree has been generated manually
for illustration purposes in Figure 4 to understand the nature
of an execution tree using this example infrastructure. It has
the collection of all possible execution paths combined into a
tree at the point of branches. In this tree, the infrastructure
has two clients and two servers. The clients contain three
breakpoints, while the servers contain two breakpoints. Each
node represents a collective breakpoint and a 4-tuple in the
rectangles shows which breakpoints the virtual machines
are blocked in the order of client1, client2, server1 and
server2. On the top, marked by a rectangle with thick line,
is considered as the root node. That is the initial point
of every virtual machine waiting on their first breakpoints
(‘‘1-1-1-1’’), i.e., on the first collective breakpoint, which can
also be seen in Figure 2 denoted by M1. The final status

VOLUME 12, 2024 143199



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

FIGURE 5. High-level architecture of the experimental integrated debugger system.

for the entire infrastructure arrives when they are blocked
on their final breakpoints, which is marked with the label
of ‘‘3-3-2-2’’ on each leaf drawn by thin line rectangle
back in Figure 4. Between the root and final collective
breakpoints, we considered two more types of collective
breakpoints in this example. They are the deterministic
collective breakpoints marked by the dotted line and the
alternative collective breakpoints marked by dashed line. The
former means that there is only one path leading to the next
collective breakpoint, while the latter represents a branch, i.e.,
more than one paths leads out from that node to the next ones.

Looking at this execution tree, one may recognise that
several nodes in the tree are identical regarding their status,
i.e., these collective breakpoints represent the same consistent
global status. For example, in Figure 4, the node ‘‘3-2-2-2’’
can be found more than once since these states can be
reached through different execution paths. The most extreme
example is the collective breakpoint is the one denoted by
‘‘3-3-2-2’’, which is the final one since every path leads to this
collective breakpoint representing the final state. By merging
the common nodes in this tree, a new way of visualisation of
this graph could be created, where the graph starts with one
root node and ends with one final node. This conversion is
now skipped in this visualisation and the tree is kept just for
the sake of understand-ability and for the sake of not losing
information on which path a given node has been reached.

Using an appropriate tool, the macrostep-based debugging
of orchestrated cloud infrastructures can be achieved. With
this method, developers can systematically and exhaustively
test every possible timing condition that can arise during the
infrastructure’s deployment.

IV. PROTOTYPE: MACROSTEP DEBUGGER FOR
CLOUD-ORCHESTRATION
In order to prove the viability of our approach, we have devel-
oped a prototype for debugging cloud reference architectures.

The prototype utilises Occopus [11] and Terraform [33]
to orchestrate cloud resources, Cloud-init [34] for the
contextualisation of virtual machines, Neo4j [35] graph
database for storing and visualising the execution tree, and
a central Macrostep Debugger to coordinate the operation of
the supporting components. Figure 5 shows the components
and their interactions.

A. COMPONENTS
This subsection aims to introduce the components of our
prototype one after the other. The next subsection will detail
how they cooperate to realise macrostep debugging.

Occopus (see Occopus icon inside Cloud-orchestrators box
in Figure 5) developed by our laboratory is a lightweight
cloud-orchestrating tool that supports a wide variety of
cloud providers, including public (e.g. Amazon Web Ser-
vices [36], Azure [15]), private, community and hybrid ones
as well. It supports infrastructure management during its full
life cycle, including deployment, monitoring, scaling and
shutdown [10].
To create an infrastructure, Occopus uses a so-called

infrastructure descriptor that describes the infrastructure
components at a higher level as well, as the dependencies
among them. Infrastructure descriptors contain additional
information, such as scaling parameters and user-defined
variables. While the infrastructure descriptors describe what
to create, a node definition (one level down) describes
how to create the nodes. An infrastructure descriptor may
refer to several node definitions specifying the various
features of the nodes (virtual machines). These features are
image ID, flavour, network settings and many more cloud-
related settings, as well as the way how contextualisation
should happen. Contextualisation is realised by Cloud-init to
perform changes on the newly created virtual machine. Fur-
thermore, Occopus is able to utilise configuration manager

143200 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

FIGURE 6. Internal architecture of the cloud-based macrostep debugger.

tools like Chef [37] and Puppet [38], and it supports various
health-checking procedures (e.g. ping, port, URL, etc.).

Occopus comes with a built-in REST API that makes it
easier to build, maintain, scale and destroy infrastructures
or nodes remotely. Alternatively, Occopus itself can be
used as a CLI tool if needed. Upon the creation of an
infrastructure, Occopus allocates unique identifiers both
for the infrastructure and for the nodes comprising it.
In our initial version of Macrostep Debugger, Occopus was
integrated since it is open-source, easy to configure and use,
has a rich feature set and is compatible with most cloud
platforms.

Terraform (see Terraform icon inside Cloud-orchestrators
box in Figure 5) is a cloud orchestration tool [33], which
is developed by HashiCorp, and it provides similar func-
tionalities to Occopus. Terraform is capable of deploying,
maintaining, scaling and tearing down cloud infrastructures.
It can utilize private, public, community and hybrid cloud
providers. It is primarily working from so-called .tf and .tfvars
files. These files contain resource definitions, variables,
templates (for example for Cloud-init files) that will be used
for infrastructure deployment and maintenance. Resources
are essentially different components of the infrastructure,
for example virtual machines. The aforementioned .tf and
.tfvars files are stored in a working directory that in
Terraform terminology is called a root module. Compared
to Occopus, Terraform does not include a REST API,
making remote access and remote usage slightly more
difficult.

Since Terraform is a mature and widely used cloud
orchestration tool, capable of deploying and managing highly
complex infrastructures, integration with it enables the
Macrostep Debugger to provide debugging functionalities for
infrastructures deployed through Terraform.

Cloud-init (see bottom left corner in Figure 5) is a de-facto
industry standard tool for VMcontextualisation, supported by
a large set of cloud providers and major Unix distributions.
It enables infrastructure developers to customise VMs
according to their requirements. It supports handling of users,
files, permissions, network settings, configuration managers,
packages, disks and partitions. ACloud-init script can contain
different sections, of which one is runcmd, that can be used to
run user-defined, operating system specific code. Files with
custom content can be added to the write_files section as
well [34]. We will rely on its features when realising the
Macrostep technique.

Neo4j (see upper right corner in Figure 5) is a robust, pow-
erful graph database platform, suitable to store, handle and
visualise large graphs (e.g. execution trees for Macrostep).
Since the number of local breakpoints and execution
paths may increase dramatically in certain situations during
Macrostep execution, it was necessary to select a solution
that could handle a large set of nodes, links and their related
information.

The Macrostep Debugger (see Figure 5) is the core
component of the system, responsible for the coordination
of debugging sessions, like performing manual debugging,
automatic debugging through active control, replaying or
free-runs. The debugger instructs the orchestrators (Occopus
or Terraform) to deploy or destroy the entire infrastructure,
decides when to continue the deployment of a particular
virtual machine, and it is responsible for managing the
execution tree by instructing the graph database. The
debugger provides a command line user interface to receive
commands. TheMacrostepDebugger contains functionalities
for evaluating specifications at collective breakpoints, and it
is capable of generating the local breakpoints necessary for
the Macrostep technique.

VOLUME 12, 2024 143201



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

One of the most essential parts of the prototype is the
Macrostep Debugger component, which is shown with its
internals and interfaces in Figure 6. The central part of the
Macrostep Debugger is the Controller which is responsible
for decision-making, initiating communication with other
components (orchestrators, user, graph database, virtual
machines) and in general, keeping the entire system in
operation. It instructs and controls all the other components.
The Request handler provides an interface for incoming
user commands, e.g., for importing scenario descriptors,
generating local breakpoints, continuing execution, starting
debugging sessions, etc. All these incoming requests are
translated into commands for the Controller.

The Controller also instructs the Orchestrator handler to
create or destroy infrastructure instances. The Macrostep
Debugger utilizes aRESTAPI, which responsible for commu-
nicatingwith the virtualmachines, i.e., receiving notifications
on local breakpoints being hit and instructing the virtual
machines to continue their deployment. The Macrostep
Debugger includes an Internal database (implemented via
SQLite [39]) for storing the internal status of each debugging
session. The Execution tree handler performs execution tree
related operations, such as the creation or update of nodes in
the execution tree. The Breakpoint generator is responsible
for analysing Cloud-init files and then inserting necessary
local breakpoints, creating instrumented contextualisation
files.

The Macrostep Debugger requires an infrastructure-
independent configuration file called Scenario descriptor
containing the necessary information of the external compo-
nents, e.g., endpoint of the Neo4j graph database, type and
endpoint of the cloud orchestrator, as well as the name of
the infrastructure, etc. The Scenario descriptor also contains a
list of specifications that will be evaluated during debugging.
This descriptor is loaded by the debugger into the Internal
database. Further details about the Scenario descriptors can
be found in Section V.

B. OPERATION
In order to execute and debug the deployment of an
infrastructure, a complete set of descriptors (infrastructure
descriptor, node definition and Cloud-init file) is needed for
the Occopus cloud orchestrator. Terraform requires resource,
variable and template definitions. We assume that Occopus
and Terraform are both installed and properly configured,
and the necessary cloud credentials are provided to access
the cloud API through which the infrastructure is about to be
deployed. Once a ready-to-use infrastructure was imported
(in case of Occopus) or initialised (in case of Terraform),
the orchestrators are ready to use. The user has to import a
Scenario descriptor into the Macrostep Debugger after which
macrostep debugging can be started.

The Execution tree handler (Neo4j plugin) and the
Orchestrator handlers (Occopus and Terraform plugins) use
the information provided in the Scenario descriptors to

find their external tools. Since the contextualisation of the
virtual machines is implemented by Cloud-init files, they
have to be instrumented to realise breakpoints. If needed,
users can utilize the breakpoint generation functionality of
the debugger. The Breakpoint generator analyses Cloud-init
files and inserts local breakpoints automatically. Further
information on breakpoint generation can be found in
Section VI.
With local breakpoints inserted into the Cloud-init files,

the debug session can be started by launching the Macrostep
Debugger with the infrastructure name and a type of
debugging mode (e.g.: automatic, manual debugging, replay,
free-run). First, the Macrostep Debugger instructs Occopus
or Terraform to create an infrastructure instance, after which
the debugger receives or retrieves the unique ID of the
infrastructure instance.

The cloud orchestrator starts building the infrastructure
and the virtual machines begin their contextualisation accord-
ing to the Cloud-init files. When a virtual machine hits a local
breakpoint during its contextualisation, a breakpoint script is
executed, suspending contextualisation until permission for
continuation is granted by the debugger.

The macrostep local breakpoint is realised by a script
deployed by the write_files section in the Cloud-init files,
so its invocation can be inserted at the boundary of service
installations. This special shell script (called breakpoint
script) temporarily suspends contextualisation, collects infor-
mation about the virtual machine’s inner state, sends it to
the breakpoint register and periodically polls for permission
to continue contextualisation. Arguments can be passed to
the breakpoint script to better describe operations previously
executed during contextualisation. The last call is expected
to contain the argument ‘last’ or ‘last_bp’ to indicate for
the Macrostep Debugger that no more breakpoint exists for
the virtual machine and that its deployment is finished. The
breakpoint script creates a JSON [40] structure containing the
necessary information. The unique ID of the virtual machine
along with the name of the infrastructure instance and the
virtual machine are part of the JSON descriptor by default
for identification. The JSON descriptor can also be extended
with user-defined key-value pairs as well. When the script is
invoked, it establishes a connection with the REST API of the
debugger and posts the JSON structure.

At startup, the Macrostep Debugger waits until the
infrastructure reaches root state which means that every
virtual machine has reached its first breakpoint. This is
considered as the root collective breakpoint, i.e., the root node
in the execution tree. At this point, the entire infrastructure
deployment is suspended and every VM is waiting for
permission to continue. The Macrostep Debugger registers a
root collective breakpoint for the infrastructure in the Neo4j
database.

Depending on the mode of the debugging session, either
the user or the Macrostep Debugger instructs one of the
waiting VMs to continue its contextualisation. The selected
VM continues its deployment, reaches/hits its next local

143202 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

breakpoint, the breakpoint script is executed again and
the contextualisation of the VM is suspended again. The
infrastructure at this point has reached another collective
breakpoint.

At each collective breakpoint, the Specification evaluator
component of the Controller evaluates the state of each virtual
machine and the global state of the infrastructure. Further
information regarding specification evaluation can be found
in Section VII.

As the contextualisation of the virtual machines are
developing, the execution tree is built by adding more and
more nodes. Each node in the execution tree stores the
following properties:

1) name of the infrastructure
2) collective breakpoint ID
3) previous collective breakpoint ID
4) process states
5) collected data
6) node type
7) instance IDs
8) exhausted flag
9) the result of specification evaluation
Collective breakpoints in the tree are associated with a

unique ID (2) upon creation. Additionally, each node refers
to its predecessor breakpoint (3). The Macrostep Debugger
relies on these IDs to keep track of the infrastructure
instance’s current position in the execution tree.

The process states (4) property defines the current local
breakpoint number for each virtual machine where they are
suspended when reaching the node. It is stored by using the
process names as keys and the values are the list of breakpoint
numbers for each instance of the process named in the key.
For example, the property with this value {‘‘client’’: [1,2],
‘‘server’’: [2]}means that there are two instances of the client,
where the first instance has been suspended at its first local
breakpoint, while the second instance is suspended at its
second local breakpoint. The server has one instance blocked
at the second local breakpoint. The next property in the list,
called collected data (5) stores every information collected
and received from the virtual machines at the time of reaching
the breakpoint.

The Macrostep Debugger is responsible for determining
the type of a node (6) in the execution tree: ‘‘alternative’’
if there are more than one unfinished contextualisation
processes or ‘‘deterministic’’ if there is only one such
process. In case a collective breakpoint is the last collective
breakpoint of an execution path, meaning there are no viable
contextualisation processes to continue, then the collective
breakpoint will be flagged as ‘‘final’’.

Infrastructure instances that traversed a node in the
execution tree will be listed in the node’s instance IDs
(7) property. The exhausted flag (8) is primarily used for
alternative breakpoints, indicating if every execution path
starting from that node was fully traversed. Accordingly,
if the root’s exhausted flag is set to true, then the whole
execution-tree was fully traversed.

Each collective breakpoint contains the result of specifica-
tion evaluation (9). This contains the result of process level
evaluation and global level evaluation.

Whenever a collective breakpoint is hit, the Macrostep
Debugger performs the creation and linking of appropriate
nodes in the execution tree as needed. When a new collective
breakpoint has been created in the Neo4j database, a continue
command is issued to one of the waiting, unfinished virtual
machines, either by the user or the Macrostep Debugger
depending on the mode of the debugging session.

This whole process is continued until all virtual machines
have finished their contextualisation. At each collective
breakpoint, the Macrostep Debugger checks the execution
tree of the infrastructure, updating, creating and attaching
new collective breakpoints if necessary. The Macrostep
Debugger eventually detects that infrastructure deployment
has been finished, once every virtual machine has finished
its contextualisation process. It then instructs Occopus or
Terraform to destroy the infrastructure instance.

The above described procedure represents the traversal of
one execution path in the execution tree. The execution tree
is built incrementally, i.e., another execution path can be
traversed in the next turn.

C. DEBUGGING MODES
The Macrostep Debugger provides the following four differ-
ent debugging modes:

• manual debugging,
• replaying,
• automatic debugging,
• free-run.
During manual debugging the user is prompted for

choosing a virtual machine of the infrastructure to continue
its execution. After selection, the virtual machine continues
its contextualisation process and eventually the infrastructure
instance will reach a new collective breakpoint, after which
the user is prompted again. This is repeated until all virtual
machines have finished their contextualisation, after which
the Macrostep Debugger instructs the cloud orchestrator to
destroy the infrastructure instance.

The replay mechanism is implemented through meta-
breakpoints, meaning that a collective breakpoint ID is
given at the start of the session by the user. The goal
of the Macrostep Debugger in this mode is to coordinate
the deployment of the virtual machines, breakpoint-by-
breakpoint, to reach a collective breakpoint selected by the
user. Initially, the debugger checks if the collective breakpoint
exists in the infrastructure’s execution tree. During replay, the
execution path leading to the targeted collective breakpoint is
followed. At each collective breakpoint hit, it is checked if the
targeted collective breakpoint has been reached. If not, then
the Macrostep Controller calculates which virtual machine’s
deployment needs to be continued in order to reach the next
state leading to the targeted collective breakpoint.

During automatic debugging, the Macrostep Debugger
itself decides which virtual machine will continue its

VOLUME 12, 2024 143203



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

deployment at each collective breakpoint. To select a
virtual machine, the Controller component of the Macrostep
Debugger creates an ordered list of the virtual machines
using alphabetical ordering by name and ID. From this list,
the debugger picks the first virtual machine that has not
yet finished its deployment and instructs it to continue its
deployment. This selection policy is applied at each collective
breakpoint until the infrastructure instance has finished its
deployment, after which the debugger instructs the cloud
orchestrator to terminate the instance. At this point, the
debugger backtracks the execution tree to the first non-
exhausted, alternative collective breakpoint and initiates a
replay session, targeting this collective breakpoint. The new
infrastructure instance will eventually reach the targeted col-
lective breakpoint and the Macrostep Debugger continues on
a new, unexplored execution path, selecting the appropriate
virtual machine. An alternative collective breakpoint will be
flagged as exhausted if every execution path starting from
that collective breakpoint is already explored. Automatic
debugging essentially means the depth-first traversal of the
execution tree, which continues until the root collective
breakpoint itself is flagged as exhausted.

During free-run mode, virtual machines are not blocked
upon reaching a local breakpoint, but rather are instructed
to continue their contextualisation processes. In this mode,
the debugger only notes/stores a timestamp of the virtual
machines reaching their breakpoints. From these timestamps,
an order of breakpoint hits can be constructed, which shows
the execution path that was traversed. Free-run mode is useful
for observing the behaviour of infrastructure deployment
when no hindering factors are present. Conducting more and
more free-runs eventually shows the tendencies in unhindered
infrastructure deployment (e.g.: the traversal of one execution
path is more likely than others).

V. ABSTRACTION OF ORCHESTRATION AND
APPLICATION SCENARIOS
Our Macrostep Debugger first introduced in paper [9]
was utilising the Occopus [10] tool in order to realise
the orchestrator related low-level functionalities such as
creation, contextualisation and shutdown of virtual machines
in the target cloud. The low-level orchestration in our
Macrostep architecture is designed to be outsourced to an
existing orchestrator tool in order to rely on more complex
functionalities and to speed up the development of the overall
architecture. This design goal is straightforward in such
environments, and we gained much advantage of it.

As every orchestrator tool, Occopus has also its limitations
in terms of functionalities, supported clouds or maturity.
At the beginning we have chosen Occopus as we had the
full control over this solution and know-how. In order to
overcome these limitations as well as to get rid of the
dependence on one single orchestrator tool, we decided to
generalise the interface of our Macrostep Debugger towards
the orchestrator tool. Introducing this capability has opened
up the way towards the capability to utilise any current or

future cloud orchestrator tool. Once the interface has been
redesigned to introduce an abstraction and the notion of
orchestration handler has been added to the architecture, the
Macrostep Debugger became independent of the underlying
orchestrator tool.

The orchestration handler is intended to hide the details on
controlling (instantiating, shutting down and invoking various
methods of) the underlying orchestrator and to show a gen-
eralised interface towards the upper layers of the Macrostep
Debugger in its architecture. With this additional feature,
it is possible to add further cloud orchestrators serving the
requirements of our Macrostep Debugger. To showcase the
pluggability of the underlying orchestrator, we implemented
the integration of the Terraform orchestrator tool with the
Macrostep debugger.

Terraform is a cloud orchestration tool, developed by
HashiCorp, which provides similar features like Occopus
(e.g. instantiation, contextualisation, scaling and shutdown
functionalities) over (a set of) the virtual machines in a
cloud. Compared to Occopus, Terraform cannot be handled
as a service, it does not expose a REST API, instead it is a
command-line tool. This requires the orchestrator handler to
cover this gap of functionality.

Since Terraform CLI can only be used through CLI
commands, the orchestration handler in Macrostep debugger
launches Terraform as a child process with standard inputs
and outputs redirected and instructs Terraform via commands
to complete necessary operations. To create an infrastructure
instance, theMacrostep Debugger starts Terraform in the root
module with the command terraform apply -auto-approve.
As a result of this command, Terraform starts deploying the
infrastructure. Tearing down the deployed infrastructure can
be performed by issuing the command terraform destroy -
auto-approve.

The Macrostep Debugger architecture is composed of
several different components, such as a Neo4j graph-
database, orchestrators such as Occopus and Terraform,
infrastructure descriptors, cloud platforms etc. Most of these
components can be accessed through endpoints and APIs, use
various configurations and descriptors.

In order to make the configuration and setup of the
debugging simplified, the Macrostep Debugger relies on
so-called scenario descriptors. Scenario descriptors help in
integrating all the application and debugger related settings
into one entity. There are many settings such as the cloud
infrastructure that will be tested (essentially the debugee),
orchestrator related information, APIs and endpoints, Neo4j
related information. Furthermore, the specification of states
and conditions - which the infrastructure has to reach and
fulfill - are also contained here. These settings are finally
stored in a YAML file.

The detailed list of settings/configuration stored in a
scenario descriptor is as follows:

• the name of the scenario,
• the type of the cloud-orchestrator,
• endpoint of the cloud-orchestrator,

143204 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

• location of descriptor(s),
• Neo4j endpoint,
• Neo4j authorization information,
• a specification of states that the infrastructure has to
fulfil,

• and a global specification with predicates.
During any kind of debugging session (replay, manual

etc.), the Macrostep Debugger uses information stored in the
scenario descriptor to initiate the deployment or tear-down
of an infrastructure instance, to build the execution tree and
to check if the virtual machines of the infrastructure instance
has reached a specified state. The structure of the scenario
descriptor is shown in Code 1.
The type of the orchestrator can either be ‘‘Occopus’’

or ‘‘Terraform’’. When the orchestrator is ‘‘Occopus’’, it is
handled as a RESTful service, so an http URL points to
the endpoint of orchestrator specified under ‘‘url’’. In the
case of Terraform, the value of ‘‘local’’ is specified for the
key ‘‘url’’ since Terraform is not handled as a service.
The location of orchestrator specific descriptor files under
the key ‘‘infra_file’’ defines the location of the infrastructure
descriptor file in case of Occopus, or a working directory
storing the descriptor file in case of Terraform. Orchestrators
will utilize these to build infrastructure instances upon a
request from the Macrostep Debugger.

Code 1. Structure of scenario descriptor.

Under the execution_tree section, all the information
related to storing the execution tree inside the Neo4j tool is
defined. Neo4j endpoint (‘‘host’’) specifies a bolt protocol
URL where the Neo4j graph database is available. To access
the Neo4j database, username and password are required.
Based on these three parameters, the debugger can access
the Neo4j database and can create collective breakpoints,
macrosteps, or can simply run the necessary queries needed
for replaying or for automatic/manual debugging.

The section specification of the scenario descriptor struc-
ture contains specifications related to variables and their
values found in a virtual machine. The debugger queries
the value of the variable on a given virtual machine and
performs checking described under ‘‘expected’’ subsection
with values and operators. For further details about how these
specifications are evaluated, please see Section VII.

The developments above altogether aimed to decrease the
dependency on a single orchestrator and to introduce the
generalisation of the orchestrator interface of the Macrostep
Debugger. The developments towards other directions are
going to be detailed in the next sections.

VI. AUTOMATIC BREAKPOINT GENERATION
Previously, Cloud-init contextualization files had to be
manually instrumented, meaning that the insertion of local
breakpoints was the responsibility of the user. However,
this can be a tedious and error-prone operation, especially
in case of longer contextualization files. To automate this
process, a breakpoint generating component (or simply
Breakpoint generator) was developed, which is responsible
for generating instrumented Cloud-init files.

According to the concept of macrostep-based debugging
described in Section III, macrosteps have to be pure,
meaning that any communication-related command is also
the last command of a macrostep. In effect, this means
that local breakpoints have to be inserted right after these
communication-related commands. In the case of Cloud-init
contextualization files, the breakpoint generator component
of the debugger has to find all communication-related
commands, and then it has to insert a local breakpoint.

The current breakpoint generation technique relies on
finding commands in the runcmd section of the Cloud-init
files which contain a private IP-address. The assumption
is that these commands indicate communication points
between two virtual machines managed by the cloud-
orchestrators. A local breakpoint has to be inserted after these
communication points.

In order to find such commands, the Breakpoint generator
relies on the so-called macro feature of Occopus, and
the variable interpolation feature of Terraform. In both
cloud orchestrators, these features serve the purpose of
creating dynamic and more flexible contextualisation files.
In Occopus, one such macro is called getprivip(), which can
be used to inject the private IP-address of a given virtual
machine into the Cloud-init file. In Terraform, users can
insert user-defined variables, and then these variables will be
interpolated in the final Cloud-init file. Both in the case of
Occopus and Terraform-based infrastructures, it is assumed
that the presence of certainmacros and variable interpolations
indicate communication with other virtual machines, making
them communication-related commands.

In case of Occopus-based infrastructures, the Breakpoint
generator is parsing for commands containing the getprivip()
macro in the runcmd part of the Cloud-init files, while in
the case of Terraform-based infrastructures, the Breakpoint
generator is looking for commands which interpolate any
variable containing private_ip in their name (e.g.: pri-
vate_ip_server, private_ip_client).

In the first step during breakpoint generation, the Break-
point generator collects the commands which contain the
mentioned macros or variable interpolations. Then, the
Breakpoint generator inserts a local breakpoint (script call)

VOLUME 12, 2024 143205



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

after each of these commands. In addition, the Breakpoint
generator inserts a local breakpoint at the start and at the
end of the Cloud-init file. The last local breakpoint has the
additional argument ‘‘last’’. Thanks to this, the debugger
will know that this local breakpoint is the last one in the
contextualization process of the virtual machine, treating
the virtual machine contextualisation as a finished process
thereafter. At the very least, two local breakpoints will
be present in an instrumented Cloud-init file, one at the
very start and one at the very end of the contextualization
process. Additional local breakpoints will be inserted after the
above-mentioned communication points. An example Cloud-
init before breakpoint generation can be seen in Code 2.

Code 2. Cloud-init original version.

After breakpoint generation, the resulting instrumented
Cloud-init is shown in Code 3.

Code 3. Cloud-init instrumented version.

The above example contains one getprivip() macro (a
communication point with another virtual machine), and
therefore a local breakpoint is inserted after it. However,
it coincides with the last breakpoint. In effect, two local
breakpoints will be present in the instrumented Cloud-init
file.

Although the current breakpoint generation technique
provides a basis for more advanced procedures, it has its
limitations. A limitation in the case of Terraform, is that
only the interpolation of variables that contain private_ip in
their name are detected. If a private IP-address is inserted
into a command trough a variable that does not contain
private_ip in their name (e.g.: a variable named srv_ip_addr),
the breakpoint generator component can not detect it, and
will not insert a local breakpoint. We expect from the
user to follow the suggested naming convention or manual
breakpoint insertion is still possible in this situation.

VII. SPECIFICATION EVALUATION
Evaluating the internal state of an infrastructure can be a
cumbersome process [26], since this usually means verifying
if each virtual machine was deployed according to the
expectations of the user. This includes checking if the
necessary processes, services, files, etc. are running, existing

or have a specific content. In this section, we introduce the
specification evaluation feature of the Macrostep Debugger,
that helps users to automate this process and to detect the
situation when an infrastructure deployment went according
to their expectations.

Asmentioned in Section IV, the local breakpoint script cre-
ates a JSON structure which contains information about the
internal state of the virtual machine. It includes information
related to identification, as well as user-defined information
in the form of key-value pairs, whose value usually have the
output of a shell command (e.g.: the number of records in
an SQL database, the number of lines in a file, the content
of a file, etc.). This JSON structure is then forwarded to the
Macrostep Debugger, which stores this information in the
Neo4j database.

In a scenario descriptor, users can create a specification
which the infrastructure has to meet in order for the
deployment to be considered satisfying. Users can do so
by defining ‘‘global’’ variables, as well as statements that
are made up of these ‘‘global’’ variables. Statements are
logical expressions and can contain operators ‘‘and’’ or ‘‘or’’.
An example specification can be seen in Code 4.

Code 4. Description of specification.

In the example shown in Code 4, the specification contains
three variables. These are ‘‘numLinesInMyFile’’, ‘‘lastBp’’
and ‘‘fileContentOK’’. Each variable has several attributes:

• vm,
• name,
• group,
• expected.
The attribute called ‘‘vm’’ refers to a virtual machine

name as seen by the Macrostep Debugger. The attribute
called ‘‘name’’ refers to a user-defined key in the JSON
structure that was collected (which has a value that can be
tested against an expected value), essentially the name of
a ‘‘local’’ variable on that virtual machine. The attribute
called ‘‘expected’’ is the expected value or condition this
‘‘local’’ variable has to satisfy. It can be an integer, float,
or boolean, in which cases equality is tested. If the attribute
‘‘expected’’ is a string, then more complex expressions can be
specified (e.g. contains a string, less than or equal, between

143206 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

FIGURE 7. Execution tree of an infrastructure with four virtual machines.

two number). Lastly, the attribute called ‘‘group’’ can either
be ‘‘all’’, ‘‘any’’ or ‘‘none’’. Depending on this, either all,
any, or none of the ‘‘local’’ variables with the given ‘‘name’’
on the virtual machines with the given ‘‘vm’’ have to satisfy
the expectations.

After reaching a collective breakpoint, specification evalu-
ation takes place. First, the Macrostep Debugger iterates over
all ‘‘global’’ variables. At each variable, the debugger iterate
over all virtual machines with the given ‘‘vm’’ name. At each
corresponding virtual machine, the debugger evaluates if the
given ‘‘local’’ variable with the specified ‘‘name’’ satisfies
the expectations (i.e. its value is according to expectations).
The result of this ‘‘local’’ variable evaluation will be a
boolean value, true or false. After these ‘‘local’’ variable
evaluations, the debugger continues with a list of true and
false values. In the next step, the debugger decides if all, any,
or none of these values in the list are true. If the attribute called
‘‘group’’ was ‘‘all’’, then all the values have to be true in order
for the ‘‘global’’ variable to be true. If it was ‘‘any’’, any of
the values have to be true in order for the ‘‘global’’ variable
to be true. If it was ‘‘none’’, then none of the values in the
list have to be true in order for the ‘‘global’’ variable to be
true. Accordingly, the ‘‘global’’ variable will be either true or
false.

After the Macrostep Debugger evaluated all ‘‘global’’
variables, it iterates over the statements. At each statement,
it substitutes the ‘‘global’’ variable name with the evaluated
value of the ‘‘global’’ variable. As a last step, the debugger
evaluates the statement.

VIII. PARALLEL TRAVERSAL OF THE EXECUTION-TREE
Manually debugging the deployment of an infrastructure
can be a tedious and exhaustive process. In order to speed
up debugging, and ensure that each execution path is
traversed, users can utilize the automatic debugging mode
of the Macrostep Debugger. However, even with automatic
debugging, the complete traversal of the execution tree of
an infrastructure can take a considerable amount of time.
In [9] we showed that the complete traversal of a relatively
simple infrastructure containing four virtual machines can

take several hours. It was a consideration at the time to help
speed up the debugging process.

In order to achieve this, the Macrostep Debugger provides
the option to traverse an execution tree in a parallel manner.
This means that during automatic debugging, multiple and
independent execution paths are traversed at the same time.
At the start of an automatic debugging session, users can
define a parallelisation level. This parallelisation level defines
the maximum number of infrastructure instances that can be
deployed at the same time.

At startup of parallel automatic debugging, the Macrostep
Debugger waits until the first infrastructure instance reaches
the root collective breakpoint. Then it checks if the root
collective breakpoint is an alternative collective breakpoint,
which means that there are multiple execution paths leading
out from it. If that is the case, the Macrostep Debugger
calculates the number of infrastructure instances to be started.
The debugger tries to maximise parallelisation depending on
the given parallelisation level and the number of alternative
execution paths. Each of the running infrastructure instances
will traverse different execution paths, creating necessary
collective breakpoints on the way.

To investigate the advantages and behaviour of the parallel
debugging feature of our Macrostep debugger, we have

FIGURE 8. Required time for complete execution tree traversal during
sequential and parallel automatic debugging.

VOLUME 12, 2024 143207



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

selected two examples, the first one contains four virtual
machines, while the second one is built from only three virtual
machines but resulting a different category of execution tree.

Figure 7 shows the execution tree of the first example
which deploys an infrastructure containing four virtual
machines, eight local breakpoints and a total of twenty-four
execution paths. The execution tree consists of four big
subtree which owns the same amount of leaves i.e. execution
paths. We consider such trees a well-balanced graph affecting
the optimal number of parallelisation during deployment.
Since our initial parallelisation solution only considers the
second level of the tree during slicing, we assumed that for
this example two or four instances are the most optimal in
terms of efficiency.

Figure 8 shows the speed-up measured for the first
example. Parallelisation levels were set to two, three and
then four. At a parallelisation level of two, the time required
to complete the parallel traversal of the execution tree
was almost half compared to doing it sequentially. On a
parallelisation level of four, the time required for a complete
traversal was almost a quarter of a sequential traversal. At a
parallelisation level of three, no significant speed-up was
achieved compared to a parallelisation level of two. This is
due to parallelisation being achieved at a ‘‘depth’’ of one
from the root node. In the case of parallelisation level set
to three, the first three subtrees of the execution tree are
traversed at the same time (a total of eighteen execution paths,
six for each subtree), and the fourth subtree is only traversed
after that.

As a drawback, obviously resource consumption in cloud
was twice, three times, and four times as much as compared
to sequential debugging.

FIGURE 9. Execution tree of an infrastructure with three virtual machines.

Figure 9 shows the execution tree of the second exam-
ple (unbalanced), an infrastructure containing three virtual
machines, a total of ten local breakpoints, and twelve
execution paths. In this case we investigated the situation
when parallelisation level was set to three, meaning that
at most three execution paths were traversed at the same
time. In this case, the required time to complete a sequential
traversal was 2869 seconds, parallel traversal was almost
twice as fast compared to sequential at 1464 seconds, despite
the parallelisation level being set to three. This is due to the

execution tree being ‘‘unbalanced’’. In this case, two subtrees
of the execution tree contained three execution paths each,
while the third subtree contained six execution paths.

In summary, while sequential automatic debugging relies
on depth-first traversal, parallel automatic debugging relies
on the combination of depth-first and breadth-first traversal.
The current parallelisation technique can provide significant
speed-up in the cases of balanced execution trees. However,
more refined parallelisation techniques are needed to be
introduced in order to handle resource limitations (e.g.:
quotas) and unbalanced execution trees (e.g.: parallelisation
on deeper levels in the execution tree).

IX. DEMONSTRATION OF A REAL-LIFE USE-CASE
A. INTRODUCTION
In this section, we introduce a real-life use case in order to
demonstrate and validate the usage of macrostep debugging
for finding bugs in a reference architecture. Our selected
use case is the cloud reference architecture version of the
SLURM Workload Manager [41] which was developed by
our laboratory for our ELKH (HUN-REN) users. During the
development of the reference architecture, we successfully
used the Macrostep Debugger to identify and reproduce
erroneous timing conditions.

FIGURE 10. SLURM Master and SLURM Workers on the OpenStack
topology page.

SLURM is a popular, well-known resource and cluster
management system, that is capable of scheduling jobs on
smaller and larger Linux-based clusters or on Supercom-
puters. It is open source, fault-tolerant and highly scalable.
The cloud version of the SLURM reference architecture
we developed and used for demonstrating our Macrostep
debugger contains two types of virtual machines, a single
Master and multiple Workers. Figure 10 shows the master
and worker virtual machines (in a multi-tenant environment,
please note the Kubernetes nodes as well) using the
OpenStack network topology visualisation functionalities.

To understand its internal behaviour of the deployment,
we give an insight about the installation and configuration

143208 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

steps of the Master and Worker nodes. The deployment of
the reference architecture starts with the master setting up
an NFS [42] Server, which the workers can use later on for
sharing working directories storing files and configuration.
The master then installs and configures Munge [43], a scal-
able authentication service for creating and validating keys
and credentials. In the next step, it configures MariaDB [44],
an open source fork of the MySQL [45] relational database.
The deployment of the Master finishes with installing
SLURM daemons and creating configuration files.

The deployment of Worker virtual machines follows
similar steps during contextualisation. For the workers, the
existence of Master is defined as a dependency, so they
wait until a connection can be established with the master
on port 6819. Workers then continue with configuring the
NFS client in order to access the shared storage on the
Master. In the next step, they install and configure Munge
to synchronise credentials with Master. Finally, the workers
install the SLURM client and create/modify configuration
files. Since the reference architecture has been developed
for Terraform, we were able to use it natively (thanks
to the latest improvement described in Section V) as the
cloud-orchestrator to build and manage the infrastructure.

Code 5. Registration of workers.

On several occasions during the testing of the ready to use
SLURM reference architecture, we have experienced faulty
infrastructure deployment. The symptom of the incorrect
deployment was the missing entries from the slurm.conf
configuration file on Master, which caused the Workers to be
lost from the cluster. Ideally, this file should contain records
from all workers, however in rare situations (especially when
the amount of worker nodes was higher, such as above
ten) the configuration file missed the entries from a worker.
Upon closer inspection of configuration file manipulation,
we identified three lines (see Code 5) in the worker Cloud-init
file which are responsible for updating the configuration i.e.
registering the workers.

The slurm.conf configuration file is stored on the master
virtual machine in a directory shared with all the workers by
NFS. It is used (among others) to store relevant information
about the worker virtual machines. Upon deployment of the
infrastructure, this file is created by the master and later the
workers - during their contextualisation - insert their own
record into the file to inform the master and all other workers
about their existence.

B. PREPARATION
In order to find the reason of incorrect deployment,
we utilised the Macrostep Debugger, creating a scenario

descriptor, instrumenting the necessary Cloud-init files
and running an automatic debugging session. We used a
smaller (scaled-down) infrastructure with one master and
two workers since we believed that errors originated from
incorrect timings can be easily tracked through a scaled-down
version of the reference architecture due to the nature of
macrostep debugging [31]. As a result, we developed a
scenario descriptor (shown in Code 6) to set up the debugger.

Code 6. SLURM scenario descriptor.

The content of sections scenario_name, execution-tree and
orchestrator are straightforward and has been introduced in
details in Section V. However, it is worth to investigate
the content of the section called specification. It contains
two variables, namely numLinesEqual2 and lastBp. Variable
numLinesEqual2 is evaluated to True when both worker
virtual machines detect exactly two records in the slurm
registry file. At the same time, the variable lastBp is
only evaluated to True if both workers have reached their
last local breakpoint. Finally, the statements section (in
Code 6) contains an expression that needs to be evaluated.
The expression numLinesEqual2 and lastBp meant that we
consider a deployment correct when both variables, i.e.
numLinesEqual2 and lastBp are True.

Code 7. Instrumented cloud-init file.

To simplify/scale-down the execution tree generated by the
Macrostep Debugger we did not include the master in the
debugging process, we only instrumented the Cloud-init file
of the Worker.

VOLUME 12, 2024 143209



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

The instrumented Cloud-init file on the Workers contained
three local breakpoints, one at the beginning of the con-
textualisation process, one after the first step of the worker
registration and one local breakpoint at the very end of the
contextualisation. The shortened version of the instrumented
worker Cloud-init file is shown in Code 7.
Here, the preparation of the SLURM reference architecture

has finished. In the next phase, the debugging process will
happen to find the reason for the incorrect deployment.

C. DEBUGGING
After instrumenting the necessary Cloud-init file (Code 7)
and importing the scenario descriptor (Code 6), we utilised
the Macrostep Debugger and started an automatic debugging
session. During this session, the execution tree was automat-
ically generated. For each execution path, the deployment
of the reference architecture has started, the breakpoints
were hit, and the debugger has driven the execution of the
deployment to follow an execution path that is different from
the previously scanned ones. As a result, the execution tree
has been built, shown in Figure 11.

FIGURE 11. The execution-tree during the automatic debugging session,
after complete traversal.

Altogether, there were six different execution paths that the
debugger has traversed. The complete execution-tree with red
leaf nodes indicates collective breakpoints where the given
statement in the specification was evaluated to False. Leaf
nodes, where the given statement in the specification was
evaluated to True, are shown in green.
In cases of execution paths leading to the top-most

and bottom-most leaf nodes (seen in green in Figure 11),
we experienced that the slurm registry was correct. We have
also seen that each of the ‘‘local’’ variable numberOfLines on
the worker virtual machines (showing the number of worker
records read in the slurm registry) equalled to two.
However, execution paths leading to the middle four (red)

leaf nodes, the slurm registry was incorrect and each of
the ‘‘local’’ variable numberOfLines on the worker virtual
machines equaled to one. To inspect the faulty execution
lines, it is possible to execute the deployment of the reference
architecture to a certain point in the execution tree with
the help of the Macrostep Debugger. Utilising this feature,
it became clear that in the case of faulty deployments the

slurm registry was copied by both worker nodes to their
local disk before writing the updated content back to the
shared directory. As a consequence, this concurrent behaviour
resulted in the loss of worker update, performed by the virtual
machine that reached the end of its critical section earlier.

In summary, this use case showed that the Macrostep
Debugger was able to reproduce erroneous timing conditions,
helping us in confirming that missing records are the result
of concurrent file access. The debugger also successfully
showed execution paths which lead to deployments satisfying
a given specification.

D. COMPARISON WITH FREE-RUNS
In section IV we described a debugging mode of the
Macrostep Debugger, called free-runmode. During free-runs,
no active control happens, only timestamps are stored for
monitoring purposes. These timestamps represent the points
in time when the virtual machines hit their local breakpoints.
By observing the order in which breakpoints were hit, it is
possible to reconstruct the execution path the infrastructure
instance traversed during the run. Although free-runs can be
used to replicate faulty deployments, this debugging mode
cannot provide systematic testing, execution is uncontrolled.
The order in which the local breakpoints will be hit is
practically randomised. Due to random selection of execution
path, we observed that free-run debugging mode can only
cover a small portion of the existing execution paths.

FIGURE 12. Distinct execution paths covered during free-runs and
macrostep (three worker variant).

In order to demonstrate the advantage of automatic
debugging mode (see subsection IV-C), we have prepared
and fully tested two variants of the SLURM infrastructure.
The first variant contained three workers, while the second
consisted of four workers. The infrastructure and scenario
descriptors were identical except for the expected number of
workers in the slurm registry.
During macrostep-based automatic debugging/testing,

we successfully discovered that the three worker variant has
90 different execution paths, out of which 6 satisfies the
specification. In case of the four worker variant, there are

143210 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

FIGURE 13. Distinct execution paths covered during free-runs and
macrostep (four worker variant).

2520 different execution paths (test cases), out of which only
24 satisfies the specification.

In order to make a comparison with the free-run debugging
mode, we had to perform at the very least 90 free-runs
for the three worker variant and 2520 for the four worker
variant. We chose to make 90 free-runs for the three worker,
and 2520 free-runs for the four worker infrastructure in our
experiment. We have chosen these numbers respectively,
so that having the same resource utilization (infrastructure
cost) comparison could be made between the two debugging
modes.

TABLE 2. Summary of evaluation metrics measured and calculated for
the three worker SLURM deployments.

Figures 12 and 13 show overall execution path coverage for
the three and four worker infrastructure variants respectively.
In case of the three worker infrastructure (see Figure 12), the
collected monitoring information showed that during free-
runs only 11 out of the 90 different execution paths were
covered. In the case of the four worker infrastructure (see
Figure 13), a total of 165 distinct execution paths were
traversed during free-runs. In comparison, macrostep-based
automatic testing was able to cover all execution paths in both
cases.

We started 10 additional instances in free-run mode, and
10 additional instances in macrostep mode for the three
worker variant, which are visible in Figure 12 (instances
no. 91 to 100). It can be seen that the additional instances

TABLE 3. Summary of evaluation metrics measured and calculated for
the four worker SLURM deployments.

that were run in the macrostep mode did not cover any new
execution paths, meaning that theMacrostep curve plateaued
at 90 distinct execution paths. Additionally, it can be seen that
the instances that were run in free-run mode, did not cover
any additional distinct execution paths. This meant that the
Free-run curve plateaued at 11 distinct execution path.

Table 2 shows summarized data from free-runs and
automatic testing in case of the SLURM infrastructure
containing three workers. As mentioned before, out of the
90 distinct execution paths, 6 were satisfactory while the
remaining 84 execution paths were unsatisfactory. Both
free-runs and macrostep-based debugging were able to cover
all satisfactory paths, a rate of 100% for both test modes.
However, free-run mode was only able to cover 5 distinct
unsatisfactory paths (a rate of 5.9%), while automatic
debugging was able to test all 84 of them (a rate of 100%).
Overall, macrostep-based debugging was able to test all
distinct execution paths (an overall test coverage of 100%),
while in the case of free-runs, overall test coverage reached
only 12.2% after 90 instances started.

In case of free-run mode, the total number of satisfac-
tory deployments vastly outnumbers that of unsatisfactory
deployments (which have a rate of 8.8%), which is as
expected, since free-runs simulate deployments when no
blocking mechanisms are enabled. In the case of automatic
debugging it is the opposite, a high rate of unsatisfactory
deployments are observed. This is due to the low number
of distinct satisfactory execution paths (a total of 6), and
since each infrastructure instance traverses a separate test
case (execution path), automatic debugging will inevitably
yield higher unsatisfactory deployment rate (93.3%).

Table 3 shows summarized data for the four worker infras-
tructure. For this variant, a total 2520 different execution
paths existed, out of which only 24 were satisfactory. Auto-
matic debugging was able to cover all 2496 unsatisfactory
and all 24 satisfactory test cases, a rate of 100% for both.
In comparison, while free-run mode was able to cover all
satisfactory execution paths (a rate of 100%), it was able
to cover only 141 unsatisfactory test cases (a coverage of
5.6%). Overall, automatic debugging was able to cover all

VOLUME 12, 2024 143211



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

execution paths, while free-runs only managed to cover 6.5%
of them. In the case of the four worker variant (similarly to the
three worker variant), free-runs have a lower unsatisfactory
deployment rate (19%), while macrostep-based testing shows
a 99% rate in this aspect. This is due to the reasons mentioned
before.

Using previous information, the data in Table 2 and Table 3,
an observation can be made. With the increasing number of
workers (or virtual machines in general), the overall number
of test-cases (or distinct execution paths) increases, too.
In case of a two worker infrastructure there were 6 (see
Section IX-C), in case of a threeworker variant 90, and in case
of a four worker variant, there were a total of 2520 different
execution paths.While the number of VMs increases linearly,
the number of execution paths increases exponentially.

To summarize, utilizing macrostep debugging method
and active control shows clear advantages compared to
traditional free-runs. Using the automatic debugging mode,
each individual infrastructure instance is able to traverse
a separate and distinct execution path, which eventually
culminates in linearly increasing test coverage until it reaches
100%, in case total testing is required.

X. CONCLUSION AND FUTURE WORK
The paper introduces our latest results on applying the
macrostep debugging technique for cloud orchestration and
might be considered as the secondmajor step towards a novel,
generic, automated debugging framework for clouds.

In our first paper [9] we successfully identified the
theoretical background including processes, breakpoints,
collective breakpoints, and execution trees in the context of
cloud orchestration. In order to validate our work, a prototype
was developed relying on the Occopus orchestrator and
the Neo4j graph database tools. We introduced the basic
components and operation of the prototype as well as the
manual-/auto-debugging, replaying, visualisation and query
functionalities of the tool. The validation of the experimental
framework has been started with use case and measurements
with numerical results. Our mechanism was able to handle
the non-deterministic behaviour of the cloud environment
in terms of the unpredictable relative speed of resources
(including virtual machines, networks, and I/O devices).
Besides the reproducible errors, the described mechanism
allowed us to explore the state space systematically and help
in the detection of more possible erroneous situations with
higher coverage.

Regarding the current work presented in this paper,
we automated the instrumentation, i.e., the placing of the
local breakpoints into the cloud-init files of the orchestrated
nodes in the cloud infrastructure. The debugger prototype
has been generalised further by handling and supporting
the most widespread cloud orchestrator, the Terraform tool.
The described parallel version of execution tree traversing
may significantly improve the usability of the debugger tool
in complex use cases. Moreover, the automatic correctness
evaluation of consistent global states [32] at each macrostep

was also studied and implemented during our research. New
use cases have been evaluated to start demonstrating and
categorising the possible errors: our debugging experiences
concerning the deployment of the widely used SLURM
cluster were detailed in the paper. Therefore, in our
cloud debugger the fundamental macrostep mechanisms are
enhanced at each level (approach) of distributed debugging:

• for reproducible behaviour (‘Trace, replay and debug-
ging’ level): automated instrumentation and placing
breakpoints for macrosteps,

• for analysis of alternative paths (‘Integrated testing,
active control and debugging’ level): accelerated, par-
allel traversing based on macrosteps,

• for evaluation of correctness properties (‘Predicate
detection, active control and debugging’): deployment-
wide, global predicate evaluation at each macrostep.

• for generalization these new methods towards the most
widespread cloud orchestration tools.

Besides the presented achievements, we started studying
the maintenance phase of cloud infrastructures, including
new modelling and steering mechanisms towards possible
suspicious or erroneous situations in the generated execu-
tion tree during the debugging stage of the development
cycle. The first experiences have been published recently
in [30], where the introduced smart functionalities rely on
graph-based machine learning (GNNs) or autoencoders, and
the training data sets can be generated by formal modelling
and simulations.

In our research agenda, the next step is to integrate
the results of our past and ongoing work into one unified
framework, and develop further some crucial and challenging
functionalities, e.g. new debugger mechanisms for cloud con-
tinuum (including edge devices), and support for higher level
and more advanced specification languages, e.g. allowing
temporal logic expressions [32].

The impact of our results is expected to be wide, since
cloud computing has become a cornerstone of a large variety
of research and innovation activities: the European Open
Science Cloud (EOSC) [46] initiative and the Hungarian
ELKH (HUN-REN) Cloud [47] are two prominent examples.
The Occopus orchestration tool is a part of commercially
supported MiCADO [4] framework, and commercial clouds
are supported by Terraform, i.e. the possible impact of our
results is even wider (for example, Occopus has been applied
in the manufacturing sector as well [48]). Another way of
impact is related to the reference architecture (or blueprint)
concept [49] where the reliability and portability might
be improved of such complex architectures by using our
approach, and to be disseminated and exploited in strategic
research infrastructure programs of the EU, such as ESFRI
SLICES [50].

REFERENCES
[1] S Bhardwaj, L Jain, and S Jain, ‘‘Cloud computing: A study of

infrastructure as a service (IAAS),’’ Int. J. Eng. Inf. Technol., vol. 2, no. 1,
pp. 60–63, 2010.

143212 VOLUME 12, 2024



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

[2] M. Caballer, I. Blanquer, G. Moltó, and C. de Alfonso, ‘‘Dynamic
management of virtual infrastructures,’’ J. Grid Comput., vol. 13, no. 1,
pp. 53–70, Mar. 2015.

[3] R. Dukaric andM. B. Juric, ‘‘Towards a unified taxonomy and architecture
of cloud frameworks,’’ Future Gener. Comput. Syst., vol. 29, no. 5,
pp. 1196–1210, Jul. 2013.

[4] A. Ullah, H. Dagdeviren, R. C. Ariyattu, J. DesLauriers, T. Kiss, and
J. Bowden, ‘‘MiCADO-edge: Towards an application-level orchestrator for
the cloud-to-edge computing continuum,’’ J. Grid Comput., vol. 19, no. 4,
p. 47, Dec. 2021.

[5] J. Cunha, J. Lourenco, and V. Duarte, Debugging of Parallel and
Distributed Programs. Hauppauge, NY, USA: Nova Science Publishers,
2001, pp. 101–136.

[6] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn, ‘‘A
survey of cloud monitoring tools: Taxonomy, capabilities and objectives,’’
J. Parallel Distrib. Comput., vol. 74, no. 10, pp. 2918–2933, Oct. 2014.

[7] P. Kacsuk, R. Lovas, and J. Kovács, ‘‘Systematic debugging of parallel
programs in DIWIDE based on collective breakpoints and macrosteps,’’ in
Proc. Eur. Conf. Parallel Process., vol. 1685. Berlin, Germany: Springer,
1999, pp. 90–97.

[8] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton,
and G. Gombás, ‘‘P-GRADE: A grid programming environment,’’ J. Grid
Comput., vol. 1, no. 2, pp. 171–197, 2003.

[9] B. Ligetfalvi, M. Emődi, J. Kovács, and R. Lovas, ‘‘Fundamentals of a
novel debugging mechanism for orchestrated cloud infrastructures with
macrosteps and active control,’’ Electronics, vol. 10, no. 24, p. 3108,
Dec. 2021.

[10] J. Kovács and P. Kacsuk, ‘‘Occopus: A multi-cloud orchestrator to deploy
and manage complex scientific infrastructures,’’ J. Grid Comput., vol. 16,
no. 1, pp. 19–37, Mar. 2018.

[11] Occopus. Accessed: Oct. 23, 2021. [Online]. Available: https://occopus.
readthedocs.io/en/latest/

[12] A. B. Yoo, M. A. Jette, and M. Grondona, ‘‘SLURM: Simple Linux
utility for resource management,’’ in Job Scheduling Strategies for Parallel
Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds.,
Berlin, Germany: Springer, 2003, pp. 44–60.

[13] J. Zhang, Z. Luan, W. Li, H. Yang, J. Ni, Y. Huang, and D. Qian,
‘‘CDebugger: A scalable parallel debugger with dynamic communication
topology configuration,’’ in Proc. Int. Conf. Cloud Service Comput.,
Dec. 2011, pp. 228–234.

[14] J. Cai, J. Fei, X. P. Liu, H. Wang, Y. R. Wu, and S. Q. Zhong, ‘‘Remote
debugging in a cloud computing environment,’’ U.S. Patent 9 244 817,
Jan. 26, 2016.

[15] Microsoft Azure. Accessed: Oct. 30, 2021. [Online]. Available:
https://azure.microsoft.com/

[16] M. O. Ozcan, F. Odaci, and I. Ari, ‘‘Remote debugging for containerized
applications in edge computing environments,’’ in Proc. IEEE Int. Conf.
Edge Comput. (EDGE), Jul. 2019, pp. 30–32.

[17] M. Smara, M. Aliouat, A.-S.-K. Pathan, and Z. Aliouat, ‘‘Acceptance test
for fault detection in component-based cloud computing and systems,’’
Future Gener. Comput. Syst., vol. 70, pp. 74–93, May 2017.

[18] P. Zhang, S. Shu, and M. Zhou, ‘‘An online fault detection model and
strategies based on SVM-grid in clouds,’’ IEEE/CAA J. Autom. Sinica,
vol. 5, no. 2, pp. 445–456, Mar. 2018.

[19] K. Goossens, B. Vermeulen, R. V. Steeden, and M. Bennebroek,
‘‘Transaction-based communication-centric debug,’’ inProc. 1st Int. Symp.
Netw. Chip (NOCS), vol. 50, May 2007, pp. 95–106.

[20] Snapshot Debugger. Accessed: Aug. 30, 2023. [Online]. Available:
https://github.com/GoogleCloudPlatform/snapshot-debugger

[21] X. Merino and C. E. Otero, ‘‘Microservice debugging with checkpoint-
restart,’’ in Proc. IEEE Cloud Summit, vol. 40, Jul. 2023, pp. 58–63.

[22] M. S. S. Quroush and T. Ovatman, ‘‘A record/replay debugger for
service development on the cloud,’’ in Communications in Computer and
Information Science, V. M. Muñoz, D. Ferguson, M. Helfert, and C. Pahl,
Eds., Cham, Switzerland: Springer, 2019, pp. 64–76.

[23] P. Sharma, S. Chatterjee, and D. Sharma, ‘‘CloudView: Enabling tenants
to monitor and control their cloud instantiations,’’ in Proc. IFIP/IEEE Int.
Symp. Integr. Netw. Manage. (IM), May 2013, pp. 443–449.

[24] Y. Gan, M. Pancholi, D. Cheng, S. Hu, Y. He, and C. Delimitrou,
‘‘Seer: Leveraging big data to navigate the complexity of cloud debug-
ging,’’ in Proc. 10th USENIX Conf. Hot Topics Cloud Comput., 2018,
p. 13.

[25] H. Baek, A. Srivastava, and J. Van der Merwe, ‘‘CloudSight: A tenant-
oriented transparency framework for cross-layer cloud troubleshooting,’’
in Proc. 17th IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput.
(CCGRID), May 2017, pp. 268–273.

[26] D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, ‘‘Run-time failure
detection via non-intrusive event analysis in a large-scale cloud computing
platform,’’ J. Syst. Softw., vol. 198, Apr. 2023, Art. no. 111611.

[27] J. Manner, S. Kolb, and G. Wirtz, ‘‘Troubleshooting serverless functions:
A combined monitoring and debugging approach,’’ SICS Softw.-Intensive
Cyber-Phys. Syst., vol. 34, nos. 2–3, pp. 99–104, Jun. 2019.

[28] M. A. Gulzar, S. Wang, and M. Kim, ‘‘BigSift: Automated debugging of
big data analytics in data-intensive scalable computing,’’ in Proc. 26th
ACM Joint Meeting Eur. Softw. Eng. Conf. Symp. Found. Softw. Eng.,
New York, NY, USA, Oct. 2018, pp. 863–866.

[29] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein,
and M. Kim, ‘‘BigDebug: Debugging primitives for interactive big data
processing in spark,’’ in Proc. IEEE/ACM 38th Int. Conf. Softw. Eng.
(ICSE), New York, NY, USA, May 2016, pp. 784–795.

[30] R. Lovas, E. Rigó, D. Unyi, and B. Gyires-Tóth, ‘‘Experiences with deep
learning enhanced steering mechanisms for debugging of fundamental
cloud services,’’ IEEE Access, vol. 11, pp. 26403–26418, 2023.

[31] R. Lovas and B. Vécsei, Integration of Formal Verification and Debugging
Methods in P-GRADE Environment. Boston, MA, USA: Springer, 2005,
pp. 83–92.

[32] J. Kovacs, G. Kusper, R. Lovas, and W. Schreiner, ‘‘Integrating temporal
assertions into a parallel debugger,’’ in Proc. Eur. Conf. Parallel Process.,
B. Monien and R. Feldmann, Eds., Berlin, Germany: Springer, 2002,
pp. 113–120.

[33] Terraform. Accessed: Aug. 22, 2023. [Online]. Available:
https://www.terraform.io

[34] Cloud-Init: The Standard for Customising Cloud Instances. Accessed:
Oct. 23, 2021. [Online]. Available: https://cloud-init.io/

[35] J. Webber, ‘‘A programmatic introduction to Neo4j,’’ in Proc. 3rd
Annu. Conf. Syst., Program., Applications, Softw. Humanity, Oct. 2012,
pp. 217–218.

[36] Amazon Web Services. Accessed: Oct. 30, 2021. [Online]. Available:
https://aws.amazon.com/

[37] E. Luchian, C. Filip, A. B. Rus, I.-A. Ivanciu, andV. Dobrota, ‘‘Automation
of the infrastructure and services for an openstack deployment using chef
tool,’’ in Proc. 15th RoEduNet Conf., Netw. Educ Res., Sep. 2016, pp. 1–5.

[38] V. Sobeslav and A. Komarek, ‘‘Opensource automation in cloud comput-
ing,’’ in Proc. 4th Int. Conf. Comput. Eng. Netw., W. E. Wong, Ed., Cham,
Switzerland: Springer, 2015, pp. 805–812.

[39] M. Owens, The Definitive Guide to SQLite. New York, NY, USA: Apress,
2006.

[40] F. Pezoa, J. L. Reutter, F. Suarez, M. Ugarte, and D. Vrgoč, ‘‘Foundations
of JSON schema,’’ in Proc. 25th Int. Conf. World Wide Web, Apr. 2016,
pp. 263–273.

[41] Slurm Reference Architecture. Accessed: Sep. 2, 2023. [Online]. Available:
https://git.sztaki.hu/science-cloud/reference-architectures/slurm/-
/tree/v0.1.0

[42] Network File System Protocol Specification, document RFC1094: NFS,
Sun Microsystems, 1989.

[43] Munge: Munge Uid ’n’ Gid Emporium. Accessed: Sep. 3, 2023. [Online].
Available: https://dun.github.io/munge/

[44] Mariadb Server: The Open Source Relational Database. Accessed:
Sep. 3, 2023. [Online]. Available: https://mariadb.org/

[45] Mysql. Accessed: Sep. 3, 2023. [Online]. Available: https://www.
mysql.com/

[46] A. V. D. Almeida, M. M. Borges, and L. Roque, ‘‘The European open
science cloud: A new challenge for Europe,’’ in Proc. ACM Int. Conf.
Technol. Ecosyst. Enhancing Multiculturality, 2017, pp. 1–4.

[47] Elkh Cloud Portal. Accessed: Nov. 9, 2021. [Online]. Available:
https://science-cloud.hu/en

[48] S. J. E. Taylor, A. Anagnostou, N. T. Abubakar, T. Kiss, J. DesLauriers,
G. Terstyanszky, P. Kacsuk, J. Kovacs, S. Kite, G. Pattison, and J. Petry,
‘‘Innovations in simulation: Experiences with cloud-based simulation
experimentation,’’ in Proc. Winter Simulation Conf. (WSC), Dec. 2020,
pp. 3164–3175.

[49] E. Nagy, R. Lovas, I. Pintye, Á. Hajnal, and P. Kacsuk, ‘‘Cloud-agnostic
architectures for machine learning based on apache spark,’’ Adv. Eng.
Softw., vol. 159, Sep. 2021, Art. no. 103029.

[50] Esfri Slices Initiative. Accessed: Aug. 30, 2023. [Online]. Available:
https://www.slices-ri.eu/

VOLUME 12, 2024 143213



J. Kovács et al.: Automated Debugging Mechanisms for Orchestrated Cloud Infrastructures

JÓZSEF KOVÁCS received the B.Sc., M.Sc., and
Ph.D. degrees in parallel computing, in 1997,
2001, and 2008, respectively. He is currently a
Senior Research Fellow with the Laboratory of
Parallel and Distributed Systems (LPDS), Institute
for Computer Science and Control (SZTAKI),
Hungarian Research Network (HUN-REN). His
early research topics were parallel debugging and
checkpointing, clusters, grids and desktop grid
systems, and web portals. Recently, he has been

focusing on cloud and container computing, especially on infrastructure
orchestration and management. He gave numerous scientific presentations
and lectures at conferences, universities, and research institutes in many
places in Europe and outside. He is the author of more than 80 scientific
publications including, conference papers, book chapters, and journals. He is
a reviewer of several scientific journals and holds various positions at
conferences.

BENCE LIGETFALVI received the B.Sc. andM.Sc.
degrees from Óbuda University, in 2021 and
2023, respectively, where he is currently pursuing
the Ph.D. degree with the Doctoral School of
Applied Informatics and Applied Mathematics.
He is a Research Assistant with the Laboratory
of Parallel and Distributed Systems, Institute for
Computer Science and Control (SZTAKI), Hun-
garian Research Network (HUN-REN). He is also
an Assistant Lecturer with the John von Neumann

Faculty of Informatics, Óbuda University. His primary research interests
include cloud computing and debugging in cloud environments. His research
work was awarded at the 36th National Scientific Students’ Associations
Conference and supported by the Hungarian Scientific Research Fund.

RÓBERT LOVAS received the Ph.D. degree in
informatics from Budapest University of Technol-
ogy and Economics (BME). He is currently the
Deputy Director of the Institute for Computer Sci-
ence and Control (SZTAKI), Hungarian Research
Network (HUN-REN). He is a Habilitated Asso-
ciate Professor and the Founder of the Institute
for Cyber-Physical Systems, John von Neumann
Faculty of Informatics, Óbuda University. His
research and development experience in a wide

range of application fields of distributed and parallel systems has been
gained in various global, EU, and national collaborations with academic
organizations, universities, and enterprises focusing on computational
chemistry, numerical meteorological modeling, bioinformatics, agriculture,
connected cars, and Industry 4.0. He has coordinated four EU projects (FP7,
H2020, and Horizon Europe) and is responsible for managing national and
pan-European research infrastructures as the Project Director of HUN-REN
Cloud and an Executive Board Member of the EGI Foundation, which
provides key assets to European Open Science Cloud. His latest cloud,
big data, the IoT, and AI-related research achievements contribute to the
recently launched Artificial Intelligence and Autonomous Systems National
Laboratories. He is a member of the Committee on Information Science,
Hungarian Academy of Sciences.

143214 VOLUME 12, 2024


