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A B S T R A C T

During the (re-)design of manufacturing systems, geometrical limitations on the available floor space may
seriously impact the applicable resource configurations, including the selection of machines, robots, as well
as auxiliary equipment. In current practice, such cases are managed by arduous manual iterations over the
selection of resources and their geometrical arrangement. To overcome this inefficiency of existing approaches,
the paper introduces a generic, integrated configuration-and-layout problem where the configuration sub-
problem can encode arbitrary application-specific constraints on the selection of items (e.g., CNC machines
and robots), while the layout sub-problem ensures geometrical feasibility, via a 2D rectangle packing
representation. The generic model is demonstrated on an industrial application that involves the design of
a flexible manufacturing system: items corresponding to CNC machines and robots must be selected, assigned
to multiple manufacturing cells, and placed in the workshop blueprint to ensure that a given mix of products
can be manufactured in the desired volume. For solving the generic configuration-and-layout problem, a logic-
based Benders decomposition method is proposed. The efficiency of the approach is ensured by adding lifted
cuts, symmetry breaking, and redundant constraints inspired by 2D bin packing lower bounds to the core
Benders framework. Thorough computational evaluation is performed on a large set of problem instances,
whereas practical applicability is verified in a real industrial case study.
1. Introduction

The design of complex engineering systems inevitably involves a
wide range of elementary decisions, associated with constraints and
objectives of different nature, which require different types of engi-
neering knowledge, and accordingly, are made at different divisions
of the enterprise along a complicated workflow. At the same time,
these decisions are strongly interrelated, and selecting an attractive
alternative at one decision step may easily result in sub-optimality or
even infeasibility at a later phase of the workflow. In industrial practice,
such cases are managed by iteratively revisiting the affected decisions
until an acceptable compromise is attained.

In the (re-)design of manufacturing systems, it is typical to de-
compose the overall decision workflow into manufacturing system
configuration (i.e., selecting the manufacturing resources and assigning
production tasks to them), geometrical layout planning, motion plan-
ning and control design stages [1]. A plethora of different techniques
is available in the scientific literature to tackle any of these planning
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levels in itself. Yet, according to this decomposition approach, system
configuration (resource selection) is performed without considering
geometric aspects. The selected configuration may turn out to be in-
feasible during geometrical layout planning if the selected equipment
does not fit into the given floor space, or during motion planning if
the selected single robot cannot serve all the machines in the workcell
due to limited reach. In current practice, these cases are handled
by tedious iterations between the different levels of planning. The
iterations can be avoided only via tighter integration of the different
planing levels. The current paper focuses on integration between manu-
facturing system configuration and layout planning. In order to tackle
the above challenge, the paper introduces a generic, abstract model
for integrated configuration-and-layout problems. The configuration
sub-problem involves the optimal selection of items to be placed into
containers (e.g., CNC machines and robots into cells in a manufacturing
application), whereas the layout sub-problem is responsible for the
precise geometrical arrangement of the selected items in the containers.
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Fig. 1. Overview of the problem variants considered in this paper.
Given that both the configuration and the layout planning problems
re NP-hard in themselves, solving the combined problem is partic-
larly challenging. Such complex optimization problems with hierar-
hical structures can be efficiently addressed by a divide-and-conquer
pproach called logic-based Benders decomposition [2]: the overall prob-

lem is subdivided into an upper-level master problem (the configuration
problem in this case) and a lower-level sub-problem (layout planning).
During the search for an upper-level solution, each candidate solution
is verified by solving the corresponding lower-level problem as well.
Upon lower-level infeasibility, new constraints, so-called Benders cuts
are fed back to the upper-level problem to eliminate similar sources of
infeasibility in the future. This process is iterated until a joint optimal
solution is found for both the upper- and the lower-level problems.
This paper proposes a logic-based Benders decomposition to the above
generic configuration-and-layout problem.

The paper investigates three variants of the problem as presented in
Fig. 1. All solution techniques are developed for the generic configuration-
and-layout problem. This is an abstract problem, without a precise
definition of the decision variables and the constraints in the model, but
only with the assumptions on the problem structure that are required
for the solution approaches to work. This allows the application of the
algorithms to specific problems in various, seemingly very different
domains. In this paper, the solution techniques are demonstrated and
evaluated on a specific flexible manufacturing system (FMS) design
problem, which is an instantiation of the generic configuration-and-
layout problem. Finally, the results from a real industrial case study are
reported. The case study involves numerous practical extensions of the
above FMS design problem model, and hence, it is another instantiation
of the generic configuration-and-layout problem. Since these extensions
are very specific to the given application, while they are less relevant
for the research community, they are presented only in a brief textual
description.

The main contributions of the paper are the following:

• A formal model and a Benders solution approach are defined
for generic configuration-and-layout problems. The generic model
comprises various applications, studied separately earlier in the
literature, with different application-specific side constraints, as
long as these side constraints satisfy some well-defined assump-
tions.

• The application of the generic configuration-and-layout approach
in the manufacturing domain is illustrated on a specific FMS
design problem.

• Various computational techniques, including new lifted cuts, sym-
metry breaking, and redundant constraints adapted from known
2D bin packing lower bounds are proposed for making the Ben-
ders approach computationally efficient.

• The methods are evaluated on a large set of FMS design problem
instances that were generated randomly partly based on real

industrial data.
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• Results of a real industrial FMS design case study are reported.

The rest of the paper is structured as follows. First, a brief review
of the related literature from manufacturing and operations research is
given (Section 2). Then, the generic configuration-and-layout problem
is defined (Section 3), and its application to FMS design is presented
(Section 4). The proposed solution methods are introduced in Section 5
and evaluated in thorough computational experiments in Section 6.
The lessons learnt from the real industrial case study are summarized
in Section 7. Finally, conclusions are drawn and directions for future
research are proposed in Section 8.

2. Literature review

2.1. Configuration and layout planning in manufacturing

Production system configuration addresses finding the optimal com-
bination of resources for manufacturing a product or a family of prod-
ucts in the requested volume. A recent review of design approaches
for manufacturing systems according to different flexibility paradigms,
including cellular, flexible, and reconfigurable systems is given in [3].
The scientific literature on production system configuration can be di-
vided into two substantially different approaches: (1) the sophisticated,
multi-criteria evaluation and comparison of candidate configurations
given in the input, usually designed by human engineers, and (2) the
automated synthesis of the optimal configuration for well-defined re-
quirements. The former direction is particularly relevant in applications
where it is difficult to set up a clear-cut, deterministic optimization
model, typically due to severe uncertainties related to product life
cycles, demand volumes, or manufacturing processes. Contributions
include techniques for evaluating complete system configurations, such
as [4], where the evaluation and filtering of the candidate configura-
tions of a complex FMS are performed on different levels of hierarchy
using a combination of analytic methods and simulation; [5], where a
fuzzy Analytic Hierarchy Process (AHP) approach is proposed for eval-
uating candidate configurations based on a large number of criteria; as
well as papers focusing on the selection of a single resource at a time,
such as [6], which addresses choosing the most suitable collaborative
robot for a application using a hybrid AHP-TOPSIS methodology.

In the sequel, we focus on the second direction, i.e., mathematical
optimization approaches to the automated synthesis of system configu-
rations from well-defined requirements. These approaches take as input
the specification of the product mix, the corresponding process plans,
as well as the forecast demand volumes, and ask for the combination of
resources from a given resource library that can produce the requested
product mix in the most efficient way, usually, with the lowest possible
investment cost. The elementary decisions to make depend greatly
on the architecture of the production system and the model features.

Many contributions formulate optimization models heavily tailored to
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the requirements of a specific application: [7] captures the configura-
tion problem of flow lines composed of reconfigurable machines for
batch production in the form of a mixed-integer linear programming
(MILP) model; [8] addresses system configuration for fully exploiting
the potential of co-platforming via optimal mapping between product
platforms and machine platforms, and again formulates the problem as
a MILP; [9] decomposes the overall configuration problem of an auto-
motive Li-ion battery pack assembly line into task grouping, sequence
planning, and equipment selection sub-problems, and apply custom
enumeration methods with recourse between the sub-problems to solve
it.

Beyond these highly application-specific models, well-established
families of optimization models and solution approaches are available
for configuration problems arising in certain system architectures, such
as flow systems and cellular manufacturing systems. For flow systems,
classical optimization approaches rely on different variants and exten-
sions of the assembly line balancing problem. Models and classification
schemes are discussed in [10,11], whereas an excellent survey on
recent developments is presented in [12]. Typical solution methods
include mathematical programming, custom branch-and-bound algo-
rithms, and (meta-)heuristics [13,14]. Benders decomposition has been
applied to solving assembly line balancing with sequence-dependent
setups in [15] by decomposing the problem into an assignment mas-
ter problem and a sequencing sub-problem. Further applications of
the Benders approach to richer models include line balancing and
sequencing subject to stochastic demand [16], line balancing with
walking workers [17], as well as balancing multi-manned stations [18].
Line balancing is more and more frequently solved in combination
with other related planning problems, including process planning, task
sequencing [19], the detailed configuration of resources at individual
stations, or detailed scheduling [20]. The problem of adapting an ex-
isting assembly line to meet altered requirements, i.e., the industrially
relevant brownfield problem instead of the most commonly studied
reenfield problem, is investigated in [21].

A strongly related problem in cellular manufacturing systems is
alled cell formation [22]. In the basic version of this problem, a
iven set of machines must be assigned to cells in the manufacturing
ystem in order to minimize logistic cost or effort. This is solved
ften in combination with the intra-cell layout problem, looking for
n optimal placement of the machines within a cell, or the inter-cell
ayout problem, responsible for locating the cells within the plant [23].
ince the combined problem is computationally challenging, it is solved
ypically using meta-heuristic approaches, such as simulated anneal-
ng [24], tabu search [25], or a genetic algorithm [26]. However,
ost of these approaches make simplifying assumptions compared to

he problem investigated in this paper: the set of machines is fixed
hence, no investment cost is considered), and geometry is simplified
o uniform slots [23,24], one-dimensional sections in a single-row [25],
ouble-row [27], or multi-row arrangement [26]. Some contributions
ssume that items can be placed arbitrarily in the continuous 2D
pace, resulting in a so-called open-field layout [28]. The choice of the
eometrical model depends primarily on the selected material handling
ystem, since a single-row layout can be efficiently operated using a
heap conveyor belt, whereas in flexible manufacturing systems with
utomated parts handling using automated guided vehicles (AGVs), an
pen-field layout can lead to significantly lower travel distances and
aterial handling costs. A common characteristic of the above layout
lanning approaches is the application of abstract geometry in order
o ensure a rough geometrical feasibility and to optimize the chosen
ogistic objective.

Obviously, in various delicate applications, such as the design of
obotic assembly cells, the detailed layout must be planned meticu-
ously before building the cell in physical reality, based on precise
eometric and kinematic models. Such approaches include [29], where
he optimal robot base placement in a welding cell is determined

onsidering the given end-effector trajectory, robot kinematics and
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reachability, as well as collision avoidance. [30] investigates optimal
workpiece placement in the robot workspace in additive manufacturing
to maximize the geometrical precision of the product and to minimize
the energy consumption of the manufacturing process. Nevertheless,
working with such detailed geometries and motion plans is clearly
out of scope in the early system configuration stage considered in the
current paper.

2.2. Layout planning as a packing problem in operations research

Since the open-field layout planning sub-problem of the model
investigated in this paper corresponds to a rectangle packing problem,
exact solution methods for the latter are of particular interest. A recent
survey of such exact methods, covering mathematical programming ap-
proaches, enumeration techniques, as well as relaxations and heuristics,
is presented in [31], whereas an earlier, classical review is available
in [32]. Lower bounds and a heuristic for 2D bin packing where a subset
of the items can be rotated by 90◦ are proposed in [33].

Logic-based Benders decomposition has been applied to packing
problems in various ways. [34] and [35] propose two similar ex-
act solution methods using Benders decomposition for 2D orthogonal
cutting stock problems, without and with rotation, respectively. The
upper level looks for 𝑥 coordinates, whereas the lower level assigns
𝑦 coordinates. Various techniques to strengthen the Benders cuts are
introduced, including lifting techniques and the heuristic identification
of a minimal infeasible set of items. Pre-processing techniques that
adjust item and container sizes to tighten relaxations, applicable to
rectangle packing with 90◦ rotation, are also presented in [35].

In some applications, the packing problem is combined with other
higher-level problems. A review of routing problems with loading
constraints is presented in [36]. For a variant of this problem, [37]
proposes a branch-and-cut approach where an embedded branch-and-
bound algorithm checks the feasibility of the involved loading sub-
problems. Integrated lot-sizing and cutting stock problems are surveyed
in [38]. The reviewed papers differ in the number of levels in the in-
ventory management sub-problem, as well as the involved cutting stock
(equivalently, packing) sub-problem. For the latter, one-dimensional
problems are typical, but two- or three-dimensional variants are also
identified. In [39], feasible cutting patterns are generated and then a
Lagrangian-based heuristic is applied for computing a close-to-optimal
solution for the integrated problem. [40] and [41] address the prob-
lem using column generation approaches. [42] introduces a heuristic
method motivated by the network shortest path problem. The gener-
ation of cutting patterns, i.e., the pricing sub-problem is solved using
the classical method of Gilmore and Gomory [43] for 2-stage guillotine
cuts.

While the above problems fit into the generic model introduced in
this paper, the computational challenge is somewhat different: in the
above routing and inventory problems, the set of items is fixed; they
must be assigned to containers according to very simple rules; yet,
the emphasis is on solving large-size problems efficiently. In contrast,
in the manufacturing system configuration problem investigated here,
the items (machines and robots) must be selected subject to a set
of complex constraints (i.e., the upper-level configuration problem is
computationally challenging in itself), while real industrial applications
can be covered by solving moderate-size problems.

2.3. Positioning of the paper

The above literature review showed that both manufacturing system
configuration and layout planning have received significant attention in
the scientific literature in themselves, separately. Yet, there are hardly
any results available on the integration of these two interrelated prob-
lems. There exist models that can be positioned on the borderline
between these two levels of the planning hierarchy, e.g., integrated

cell formation and layout planning in cellular manufacturing. Yet,
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the scope of these models is different, in a way narrower than what
is addressed in this paper: they do not consider resource selection,
perform layout planning using an abstract representation (e.g., uniform
slots or linear layout), and they focus on minimizing internal logistic
effort, rather than investment cost. Overall, there is a lack of well-
established methods in the literature for integrating manufacturing
system configuration and layout planning.

Logic-based Benders decomposition is a typical divide-and-conquer
strategy for solving combinatorial optimization problems that can be
separated into loosely coupled upper- and lower-level sub-problems.
Yet, in applications where both the upper- and the lower-level sub-
problems are difficult, i.e., NP-hard, achieving computational efficiency
is still a challenge. Developing problem-specific inference techniques,
such as lifted cuts or algorithms for identifying minimal infeasible sets,
can boost the performance of the approach.

The current paper takes a step beyond the state-of-the-art in two
different ways. In terms of modeling, it defines a generic configuration-
and-layout problem model; the generic model integrates the system
configuration and the layout planning aspects of manufacturing system
design into a single problem model, while it allows adding application-
specific side constraints as long as these satisfy some well-defined
assumptions. In terms of algorithms, the paper proposes a logic-based
Benders decomposition approach to the generic configuration-and-
layout problem, and defines various computational techniques, namely,
symmetry breaking, lifted cuts and redundant constraint, that help
achieve computational efficiency. The effectiveness and efficiency of
the proposed approach is illustrated both in computational experiments
on a large set of problem instances and in a real industrial case study
involving engineers of the industrial partner.

3. The generic configuration-and-layout problem

The generic configuration-and-layout problem addresses selecting
items from a predefined set, assigning each selected item to one of
the multiple containers according to application-specific constraints
and objective (configuration sub-problem), and then geometrically
arranging the assigned items in each container (layout sub-problem).
The geometry of the items and the containers, as well as the number
of available containers is given in the input. The assignment between
items and containers is modeled via so-called slots. A slot is an abstract
position within a container that can host at most one item. Slots do not
have any geometrical meaning: they do not have predetermined sizes
or geometrical positions within the container. Yet, the number of slots
within a container is given in the input, and this implies an upper bound
on the number of items that can be assigned to the container. Both the
configuration and the layout sub-problems are defined formally in the
following sections, whereas a specific application of the abstract model
is presented in Section 4.

3.1. Configuration sub-problem

The generic configuration sub-problem is defined as follows. Let
𝑢𝑐,𝑠,𝑖 denote the binary selection variable whose value is 1 if and only
if item 𝑖 is selected to slot 𝑠 of container 𝑐. For the sake of generality,
the model allows a set of additional variables 𝑣, where 𝐽 denotes the
index set of these variables, and set 𝐼 ⊆ 𝐽 contains the indices of integer
variables. In order to encode arbitrary application-specific constraints
and objective, let 𝐴 ∈ R𝑛1×𝑚, 𝐵 ∈ R𝑛2×𝑚 be the coefficient matrices
f appropriate dimension, 𝑏 ∈ R𝑚 be a bounding vector and 𝑐 ∈
𝑛1 , 𝑑 ∈ R𝑛2 be components the objective function. Let 𝑁 denote the
umber of items, 𝑆 denote the number of available slots in a container
nd 𝐶 denote the number of containers. With this, the following MILP
ormulates the abstract configuration sub-problem:

inimize 𝑐𝑢 + 𝑑𝑣 (1a)
ubject to 𝐴𝑢 + 𝐵𝑣 ≤ 𝑏 (1b) s
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𝑣𝑗 ∈ Z ∀𝑗 ∈ 𝐼 (1c)

𝑢 ∈ {0, 1}𝐶×𝑆×𝑁 (1d)

.2. Layout sub-problem

The layout sub-problem addresses the geometrical arrangement of
he selected items in their assigned containers. As above, an abstract
efinition of the layout sub-problem is given first with the assumptions
hat are required for the proposed solution techniques to work, whereas
pecific instantiations of the generic model will be presented in detail
ater.

• It is assumed that both containers and items are rectangular, and
their dimensions are known a priori.

• Rotation of the items by 90◦ is allowed (although the approach
can trivially be adapted to the simpler case where rotation is
denied).

• All items assigned to a container must be placed fully within the
container, and they must not overlap each other.

• No constraints connect the layout sub-problems related to differ-
ent containers, and accordingly, layout planning can be solved
separately for each container.

• Layout planning is a feasibility problem, i.e., its solution does not
impact the objective value of the overall configuration-and-layout
problem.

• The layout sub-problem is monotonous in the sense that if a
feasible layout exists in container 𝑐 for a set of items 𝐼𝑐 , then a
feasible layout exists for subset 𝐼 ′𝑐 ⊂ 𝐼𝑐 as well.

In specific applications, this abstract model can be extended with ar-
itrary side constraints as long as they do not violate the above assump-
ion. A simple, specific instantiation of the abstract layout sub-problem
s presented in Section 4.3, whereas a richer, industrial application with
arious side constraints is discussed in Section 7.

. Application to flexible manufacturing systems

This section presents how the generic configuration-and-layout
odel can be applied to capturing a challenging industrial FMS design
roblem. For this purpose, detailed definitions of the configuration
nd layout sub-problems are given, accompanied by the corresponding
ILP formulations.

.1. The FMS configuration-and-layout problem

The application involves the configuration of an FMS composed of
ultiple manufacturing cells to produce multiple products. Each cell

ontains two types of items: multiple machines for executing the single
equired manufacturing task on each product, and a robot for feeding
he products into the machines before, as well as removing the product
fter the manufacturing task. Both machines and robots are available
n different types, which are characterized by different capabilities
e.g., product dimensions imply constraints on the applicable machines
nd robots), speeds, and costs.

The forecast demand 𝐷𝑝 per month is known in advance for each
roduct 𝑝, and exactly this amount must be produced during the given
lanning horizon. The production of the total demand of a product can
e divided among different cells and different machines in those cells.
he cells of the system can differ arbitrarily from each other, and also,
ifferent types of machines can be deployed into the same cell.

Manufacturing one unit of a product 𝑝 by robot type 𝑗 requires a
iven handling time 𝑇𝐻

𝑝,𝑗 before and after processing the product, which
ccupies both the machine and the robot. Moreover, machining the
ame product by machine type 𝑖 requires a process time 𝑇 𝑃

𝑝,𝑖, during
hich only the machine is employed. If a machine or a robot is not

𝐻 𝑃
uitable for a product, then this is captured by 𝑇𝑝,𝑗 = ∞ and 𝑇𝑝,𝑖 = ∞,
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Fig. 2. Sample FMS configuration and layout with three cells. The label of the leftmost green box indicates that an instance of Machine type 3 is placed with 90◦ rotation into
Slot 3 of Cell 1. Items labeled R represent robots. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
respectively. Although multiple machines within a cell compete for
the same robot, the current model assumes that blockage times are
negligible.

The available floor space is also limited, and the floor space re-
quirement of each machine and robot is modeled as an axis-aligned
rectangle. Namely, a robot of type 𝑗 is described as a rectangle of
size 𝑤𝑅(𝑗) × ℎ𝑅(𝑗), whereas a machine of type 𝑛 by a rectangle of
size 𝑤𝑀(𝑛) × ℎ𝑀(𝑛). Cell boundaries are determined by the shop floor
architecture, resulting in a 𝑊𝑐 ×𝐻𝑐 rectangular space for each cell 𝑐.

The cost of operating a robot of type 𝑗 over the monthly horizon is
denoted by 𝐾𝑅

𝑗 , whereas for a machine of type 𝑖 by 𝐾𝑀
𝑖 , which includes

the depreciation, operation and maintenance costs. Then, the objective
is minimizing the total cost. An example of an FMS configuration and
layout with three cells is presented in Fig. 2. Each cell contains a robot
for material handling (rectangles labeled R) and one or two machines
(labels M). The labels also indicated whether an item is rotated (90◦)
or not (0◦).

Observe that the specific FMS design problem fits into the generic
configuration-and-layout model as follows. Manufacturing cells corre-
spond to containers. The robots and machines are the items that must
be selected and placed in the containers. In particular, one robot and
at most 𝑆 − 1 machines must be selected for each cell, where 𝑆 is
given in the input. Accordingly, there are 𝑆 slots in each cell, and the
model assumes that the robot is assigned to slot 1, whereas machines to
slots 2,… , 𝑆. Abstract assignment to slots does not imply any constraint
on geometrical placement. It is also possible to leave a cell empty,
if the remaining cells are sufficient to satisfy all demand. Then, all
complex constraints that define how the system must be configured to
produce the different products in the desired volume can be encoded in
constraint (1b) of the generic configuration model. The details of the
encoding are presented in the next section, whereas the notation for
the FMS configuration sub-problem is summarized in Table 1.

4.2. MILP model for the FMS configuration sub-problem

The configuration sub-problem for the specific FMS design applica-
tion can be formulated by the following MILP:

Minimize
∑

𝑐,𝑗
𝐾𝑅

𝑗 𝑢𝑐,1,𝑗 +
∑

𝑐,𝑠,𝑖∶ 𝑠≥2
𝐾𝑀

𝑖 𝑢𝑐,𝑠,𝑖 (2a)

subject to
∑

𝑐,𝑠,𝑖,𝑗 ∶ 𝑠≥2
𝑣𝑝,𝑐,𝑠,𝑖,𝑗 = 1 ∀ 𝑝 (2b)

∑

𝑠,𝑖∶ 𝑠≥2
𝑣𝑝,𝑐,𝑠,𝑖,𝑗 ≤ 𝑢𝑐,1,𝑗 ∀ 𝑝, 𝑐, 𝑗 (2c)

∑

𝑗
𝑣𝑝,𝑐,𝑠,𝑖,𝑗 ≤ 𝑢𝑐,𝑠,𝑖 ∀ 𝑝, 𝑐, 𝑠, 𝑖∶ 𝑠 ≥ 2 (2d)

∑

𝑗
𝑢𝑐,1,𝑗 ≤ 1 ∀ 𝑐 (2e)

∑

𝑢𝑐,𝑠,𝑖 ≤
∑

𝑢𝑐,1,𝑗 ∀ 𝑐, 𝑠∶ 𝑠 ≥ 2 (2f)

𝑖 𝑗
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Table 1
Notation for the FMS configuration sub-problem.

Indices

𝑝 Product (index)
𝑐 Cell (index)
𝑠 Slot within cell (index)
𝑖 Machine type (index)
𝑗 Robot type (index)

Input parameters

𝐷𝑝 Demand for product 𝑝 [pcs]
𝛩 Length of the time horizon [min]
𝑇 𝑃
𝑝,𝑖 Process time for product 𝑝 with machine type 𝑖 [min]

𝑇𝐻
𝑝,𝑗 Handling time for product 𝑝 with robot type 𝑗 [min]

𝑤𝑅(𝑗), ℎ𝑅(𝑗) Size of robot type 𝑗 in dimensions 𝑥 and 𝑦 [m]
𝑤𝑀(𝑖), ℎ𝑀(𝑖) Size of machine type 𝑖 in dimensions 𝑥 and 𝑦 [m]
𝑊𝑐 , 𝐻𝑐 Size of cell 𝑐 in dimensions 𝑥 and 𝑦 [m]
𝐾𝑀

𝑖 Cost associated to machine type 𝑖 [yen]
𝐾𝑅

𝑗 Cost associated to robot type 𝑗 [yen]

Decision variables

𝑢𝑐,1,𝑗 Cell 𝑐 is built to operate with robot type 𝑗 (binary)
𝑢𝑐,𝑠,𝑖 In cell 𝑐, machine type 𝑖 is assigned to slot 𝑠 with 𝑠 ≥ 2 (binary)
𝑣𝑝,𝑐,𝑠,𝑖,𝑗 Fraction of demand for product 𝑝 assigned to cell 𝑐, slot 𝑠,

to be produced with machine type 𝑖 and robot type 𝑗 (real in [0, 1])

∑

𝑝,𝑖,𝑗
(𝑇 𝑃

𝑝,𝑖 + 𝑇𝐻
𝑝,𝑗 )𝐷𝑝𝑣𝑝,𝑐,𝑠,𝑖,𝑗 ≤ 𝛩

∑

𝑖
𝑢𝑐,𝑠,𝑖 ∀ 𝑐, 𝑠∶ 𝑠 ≥ 2 (2g)

∑

𝑝,𝑠,𝑖,𝑗
𝑇𝐻
𝑝,𝑗𝐷𝑝𝑣𝑝,𝑐,𝑠,𝑖,𝑗 ≤ 𝛩

∑

𝑗
𝑢𝑐,1,𝑗 ∀ 𝑐 (2h)

𝑢𝑐,1,𝑗 , 𝑢𝑐,𝑠,𝑖 ∈ {0, 1} ∀ 𝑐, 𝑠, 𝑖, 𝑗 ∶ 𝑠 ≥ 2 (2i)

𝑣𝑝,𝑐,𝑠,𝑖,𝑗 ≥ 0 ∀ 𝑝, 𝑐, 𝑠, 𝑖, 𝑗 ∶ 𝑠 ≥ 2. (2j)

The objective is minimizing the total cost (2a), where slot 𝑠 = 1 is
reserved for the robot and slots 𝑠 ≥ 2 are for the machines. Constraint
(2b) ensures that all demand is fully satisfied. Inequalities (2c) and (2d)
state that a product can be assigned to a given machine and robot type
only if those resources are available in the cell. Line (2e) states that a
cell cannot be built with multiple robots. Constraint (2f) encodes that at
most one machine can be built into each slot within a cell, and only if
the cell itself contains a robot. Lines (2g) and (2h) capture the capacity
constraints on the machines and the robots, respectively. Finally, the
binary and the non-negative variables are enumerated in constraints
(2i) and (2j).

4.3. MILP model for the FMS layout sub-problem

The FMS layout sub-problem is a particular instantiation of the
generic layout planning sub-problem. Items must be placed entirely
within the container and they must not overlap each other, while
there are no further side constraints defined on the layout. This layout
planning problem can be solved by any exact algorithm. In this paper,
a MILP solution approach is chosen, since the number of items is small,
and the computational cost of finding a feasible solution using MILP is
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Table 2
Notation for the FMS layout sub-problem.
Indices and dimensions

𝑖 Item (index)
𝑐 Cell (index)

Input parameters

𝐼𝑐 Items assigned to cell 𝑐 (set)
𝑤𝑖 Width of item 𝑖 (real) [m]
ℎ𝑖 Height of item 𝑖 (real) [m]
𝑊𝑐 Width of cell 𝑐 (real) [m]
𝐻𝑐 Height of cell 𝑐 (real) [m]

Decision variables

𝑥𝑖 Coordinate 𝑥 of the midpoint of item 𝑖 (real) [m]
𝑦𝑖 Coordinate 𝑦 of the midpoint of item 𝑖 (real) [m]
𝛼𝑖𝑗 Denotes if item 𝑖 is above item 𝑗 (binary)
𝜌𝑖𝑗 Denotes if item 𝑖 is on the right of item 𝑗 (binary)
𝑅𝑖 Denotes if item 𝑖 is rotated (binary)

insignificant compared to solving the upper-level problem. The notation
for the layout sub-problem is shown in Table 2.

The following MILP formulation characterizes the feasible layouts in
cell 𝑐 with respect to the requirements and assumptions listed above.

𝑥𝑖 ≥
(

1 − 𝑅𝑖
)

𝑤𝑖 + 𝑅𝑖ℎ𝑖
2

∀𝑖 ∈ 𝑐 (3a)

𝑥𝑖 ≤ 𝑊𝑐 −

(

1 − 𝑅𝑖
)

𝑤𝑖 + 𝑅𝑖ℎ𝑖
2

∀𝑖 ∈ 𝑐 (3b)

𝑦𝑖 ≥
(

1 − 𝑅𝑖
)

ℎ𝑖 + 𝑅𝑖𝑤𝑖

2
∀𝑖 ∈ 𝑐 (3c)

𝑦𝑖 ≤ 𝐻𝑐 −

(

1 − 𝑅𝑖
)

ℎ𝑖 + 𝑅𝑖𝑤𝑖

2
∀𝑖 ∈ 𝑐 (3d)

𝛼𝑖,𝑗 ≤ 1 − 𝛼𝑗,𝑖 ∀𝑖 ≠ 𝑗 ∈ 𝑐 (3e)

𝜌𝑖,𝑗 ≤ 1 − 𝜌𝑗,𝑖 ∀𝑖 ≠ 𝑗 ∈ 𝑐 (3f)

𝑖,𝑗 + 𝜌𝑖,𝑗 ≥ 1 − 𝛼𝑗,𝑖 − 𝜌𝑗,𝑖 ∀𝑖 ≠ 𝑗 ∈ 𝑐 (3g)
(

𝛼𝑖,𝑗 = 1
)

⟹ 𝑦𝑖 −
(1 − 𝑅𝑖)ℎ𝑖 + 𝑅𝑖𝑤𝑖

2

≥ 𝑦𝑗 +
(1 − 𝑅𝑗 )ℎ𝑗 + 𝑅𝑗𝑤𝑗

2
∀𝑖 ≠ 𝑗 ∈ 𝑐 (3h)

(

𝜌𝑖,𝑗 = 1
)

⟹ 𝑥𝑖 −
(1 − 𝑅𝑖)𝑤𝑖 + 𝑅𝑖ℎ𝑖

2

≥ 𝑥𝑗 +
(1 − 𝑅𝑗 )𝑤𝑗 + 𝑅𝑗ℎ𝑗

2
∀𝑖 ≠ 𝑗 ∈ 𝑐 (3i)

𝛼𝑖,𝑗 , 𝜌𝑖,𝑗 ∈ {0, 1} ∀𝑖 ≠ 𝑗 ∈ 𝑐 (3j)

𝑅𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑐 (3k)

The MILP verifies the existence of a feasible layout, and accordingly,
the objective function is not defined (or equivalently, identically zero
in an implementation). Inequalities (3a)–(3d) are the constraints on the
absolute positions of the items assigned to cell 𝑐: e.g., inequality (3a)
ensures that the 𝑥 coordinate of the midpoint of item 𝑖 is at least as
large as the half of the width of item 𝑖 (or if item 𝑖 is rotated and 𝑅𝑖 = 1,
hen at least as large as the half of the height of item 𝑖). Constraint (3e)
respectively, (3f)) encodes that item 𝑖 cannot be both above and under
both on the left and on the right of) item 𝑗. Inequality (3g) encodes that
or relative position of item 𝑖 and item 𝑗 at least one of the following
hould be true: 𝑖 is above 𝑗, 𝑖 is below 𝑗, 𝑖 is on the right of 𝑗, 𝑖 is on the
eft of 𝑗. Indicator constraint (3h) encodes that if item 𝑖 is above item
, then the 𝑦 coordinate of the midpoint of item 𝑖 should be greater
han or equal to the 𝑦 coordinate of the midpoint of item 𝑗 plus half of
heir widths or heights, depending on whether they are rotated or not,
espectively. Line (3i) states the same for the 𝑥 coordinates of items
ocated on the left or right of each other. Constraints (3j) and (3k)
nsure that the relative positional variables and the rotational variables

re binary.
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. Solution method

A major challenge in solving the integrated configuration-and-
ayout problem lies in expressing that a feasible layout must exist
ithout introducing an excessive amount of variables and constraints.
o overcome this challenge, logic-based Benders decomposition is ap-
lied to separate the overall problem into an upper-level configuration
ub-problem (also called Benders master problem), and a lower-level
ayout sub-problem. The layout sub-problem iteratively generates cuts
o the master problem that eliminate assignments that do not admit a
easible layout, as shown in Fig. 3.

The Benders approach is implemented using a branch-and-cut al-
orithm as follows. During the search for the optimal solution of
he upper-level configuration sub-problem, the LP relaxation of this
roblem is solved in each node of the search tree. If the LP solution is
nteger, i.e., it is a feasible solution to the configuration sub-problem,
hen the corresponding layout sub-problem is solved as well. If there
xists a feasible layout for the given configuration, then this solution
s stored. Otherwise, the configuration is rejected, and Benders cuts
re added to the upper-level configuration sub-problem to prevent the
epeated occurrence of a similar kind of infeasibility. The approach
uarantees finding an exact optimal solution given that sufficient com-
utation time is available. If, for a challenging problem instance, the
lgorithm hits the time limit after finding a feasible solution, then the
lgorithm returns that possibly sub-optimal solution and the associated
ptimality gap, i.e., a bound on the distance from the exact optimal
olution. The procedure executed in each node of the branch-and-
ut search tree for solving the upper-level configuration problem is
epicted in Fig. 4. The details of the algorithm, including the Benders
uts and the techniques to strengthen the formulation of the upper-level
onfiguration sub-problem are presented in this section.

.1. Benders cuts

For each container that does not admit a feasible layout, the proce-
ure generates a new constraint (or possibly, multiple new constraints)
o be added to the configuration master problem that exclude assigning
he same, infeasible subset of items to the same container in future
terations.

.1.1. No-good cuts
The classical no-good Benders cut excludes the assignment of a

pecific, infeasible subset of items to a container. Let 𝑐 denote a
ontainer that admits no feasible layout, 𝑐 =

{

𝑖1, 𝑖2,… , 𝑖𝑘
}

denote the
items assigned to container 𝑐. Let 𝑛𝑗 stand for the type of item 𝑖𝑗 , and

𝑗 denote the slot where item 𝑖𝑗 is assigned. Then, by exploiting the
onotonicity of the layout problem and the fact that at most one item

s assigned to each slot, the configuration sub-problem can be extended
y the following no-good cut:
𝑘

𝑗=1
𝑢𝑐,𝑠𝑗 ,𝑛𝑗 ≤ 𝑘 − 1 (4)

.1.2. Lifted cuts
While the classical no-good cut excludes the assignment of a single,

nfeasible assignment, it can be strengthened by exploiting dominance
elations to further assignments whose infeasibility can be inferred. For
hat purpose, a partial ordering over the set of items, as well as over
he set of containers is defined as follows. Let 𝑖 ⪰ 𝑖′ denote that in any
easible container layout, item 𝑖 is exchangeable to item 𝑖′. Analogously
or containers, let 𝑐 ⪯ 𝑐′ denote that if there exists a feasible layout for
ny given subset of items 𝐼𝑐 in (the smaller) container 𝑐, then the same
ubset of items 𝐼𝑐 can also be arranged feasibly in (the larger) container
′.

Obviously, the precise definition of the partial orders depend on
he specific layout planning model. In the FMS design application, the
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Fig. 3. Underlying idea of logic-based Benders decomposition.
Fig. 4. The method executed in each node of the branch-and-cut search tree during
the solution of upper-level configuration sub-problem for implementing the Benders
approach.

layout sub-problem for each individual container corresponds to rect-
angle packing with 90◦ rotation, and therefore 𝑖 ⪰ 𝑖′ if max

(

𝑤𝑖, ℎ𝑖
)

≥
max

(

𝑤𝑖′ , ℎ𝑖′
)

and min
(

𝑤𝑖, ℎ𝑖
)

≥ min
(

𝑤𝑖′ , ℎ𝑖′
)

. For containers, the par-
tial ordering is defined similarly.

The internal dominance rule captures that if a subset of items does
not fit into container 𝑐, then neither do larger items. We can use the
partial ordering of items to derive the lifted cut
𝑘
∑

𝑗=1

∑

𝓁∶ 𝑛𝓁⪰𝑛𝑗

𝑢𝑐,𝑠𝑗 ,𝑛𝓁 ≤ 𝑘 − 1. (5)

Likewise for containers, if container 𝑐 does not admit a feasible
layout for a subset of items, then neither does container 𝑐′ with 𝑐′ ⪯ 𝑐.
Hence, we can apply the external dominance rule to derive the stronger,
lifted cut:
𝑘
∑

𝑗=1
𝑢𝑐′ ,𝑠𝑗 ,𝑛𝑗 ≤ 𝑘 − 1 ∀𝑐′ ∈ 𝐶 ∶ 𝑐′ ⪯ 𝑐. (6)

Combining these two ideas we get a set of new cuts:
𝑘
∑

𝑗=1

∑

𝓁∶ 𝑛𝓁⪰𝑛𝑗

𝑢𝑐′ ,𝑠𝑗 ,𝑛𝓁 ≤ 𝑘 − 1 ∀𝑐′ ∈ 𝐶 ∶ 𝑐′ ⪯ 𝑐. (7)

Observe that for 𝑐′ = 𝑐, inequality (7) dominates the classical no-good
cut (4), while for 𝑐′ ≠ 𝑐, it is a valid inequality for all integer solutions
of Problem (1) that admit a feasible layout.

5.2. Symmetry breaking

Let 𝑆1, 𝑆2,… , 𝑆𝓁 be a partitioning of the slots such that any two

slots within a partition class can be interchanged without effecting
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the feasibility and the objective value of the solution. Formally, a
partitioning of the slots 𝑆1, 𝑆2,… , 𝑆𝓁 is valid if, for any 𝑐 = 1,… , 𝐶, 𝑖 =
1,… , 𝑁, 𝑗 = 1,… ,𝓁 and 𝑠, 𝑠′ ∈ 𝑆𝑗 , the two assignments 𝑢 and 𝑢′ either
both induce a feasible solution with identical objective values or they
are both infeasible, where 𝑢′𝑐,𝑠,𝑖 = 𝑢𝑐,𝑠′ ,𝑖 and 𝑢′𝑐,𝑠′ ,𝑖 = 𝑢𝑐,𝑠,𝑖, and for all
else indices 𝑢′ = 𝑢. If such a partitioning exists, we call the problem
symmetric in the slots, and symmetry breaking rules can be applied.

Assuming that the configuration-and-layout problem is symmetric in
the slots, the formulation can be strengthened via symmetry breaking
constraints. Symmetries can be broken by filling up the slots within
each partition in an increasing order, i.e., for all 𝑐 ∈ [𝐶], if there exists
no 𝑖 ∈ [𝑁] that 𝑢𝑐,𝑠,𝑖 = 1, then for all 𝑖′ ∈ [𝑁] we have 𝑢𝑐,𝑠′ ,𝑖′ = 0 for
all 𝑠′ > 𝑠 where 𝑠, 𝑠′ ∈ 𝑆𝑗 for some 𝑗. This property can be ensured by
adding the following constraints to Problem (1):
𝑁
∑

𝑖=1
𝑢𝑐,𝑠,𝑖 ≥

𝑁
∑

𝑖=1
𝑢𝑐,𝑠+1,𝑖 ∀𝑐 = 1,… , 𝐶, ∀𝑗 = 1,… ,𝓁, ∀𝑠 ∈ 𝑆𝑗 . (8)

The formulation can be strengthen further by prescribing that beside
filling up the slots in increasing order, the items are also in a non-
decreasing order of their indices within a container, i.e., if 𝑢𝑐,𝑠,𝑖 = 1,
then for all 𝑗 = 1,… ,𝓁, 𝑠′ > 𝑠, 𝑖′ < 𝑖 where 𝑠, 𝑠′ ∈ 𝑆𝑗 we need 𝑢𝑐,𝑠′ ,𝑖′ = 0.
This can be enforced by the following constraint:

𝑖
∑

𝑘=1
𝑢𝑐,𝑠,𝑘 ≥ 𝑢𝑐,𝑠+1,𝑖 ∀𝑐 = 1,… , 𝐶, ∀𝑖 = 1,… , 𝑁,

∀𝑗 = 1,… ,𝓁, ∀𝑠 ∈ 𝑆𝑗 .
(9)

Observe that the set of inequalities (9) dominate the set of inequali-
ties (8). Furthermore, if Problem (1) is symmetric in the slots, extending
its formulation with inequalities (9) yields a problem that has the same
objective value but has a significantly smaller set of feasible solutions.

In case of the FMS application above, two partitions 𝑆1, 𝑆2 of the
slots are created, with 𝑆1 = {1} corresponding to the single robot slot,
and 𝑆2 = 2,… , 𝑆 to the machine slots. Symmetry breaking is applied
to these two partitions.

5.3. Redundant constraints from geometry

The formulation of the upper-level problem can be strengthened
further with constraints that arise from the geometric nature of the
lower-level problem.

5.3.1. Mutually exclusive items
Items 𝑖 and 𝑗 are called mutually exclusive with respect to container

𝑐 if and only if they cannot be placed into container 𝑐 at the same time.
Taking into consideration possible 90◦ rotations, this property can be
checked with 8 comparisons per pair of items and containers. If items
𝑖 and 𝑗 are mutually exclusive w.r.t. container 𝑐, then inequalities

𝑢𝑐,𝑠′ ,𝑖 + 𝑢𝑐,𝑠′′ ,𝑗 ≤ 1 ∀𝑠′ ≠ 𝑠′′ ∈ [𝑆] (10)

are all valid for the upper-level problem. Let 𝑐 denote the set of mutu-
ally exclusive pairs for container 𝑐. Using that notion, inequalities (10)
yield ∑

𝑐∈[𝐶] ∣ 𝑐 ∣ ×
(𝑆
2

)

additional constraints. Although it is possible to
extend the concept of exclusivity to more than two items, the number
of additional constraints can grow large quickly.
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5.3.2. Redundant constraints inspired by 2D bin packing lower bounds
Another possible way to leverage the geometric aspects of the lower-

level problem is to use lower bounds of two-dimensional bin packing
problems to get valid inequalities for the upper-level problem. Boschetti
and Mingozzi propose lower bounds for the oriented case of two-
dimensional bin packing problem in [44] and a simple transformation
of the inputs to turn them into lower bounds for the rotational case
in [33]. They also introduce a new lower bound for the rotational case
in the same paper. These can be used to deduce new valid inequalities
for the upper-level problem. As described in [33], let 𝑤̃𝑐

𝑖 = min
{

𝑤𝑖, ℎ𝑖
}

if item 𝑖 can be placed into container 𝑐 both with and without rotation.
Otherwise, 𝑤̃𝑐

𝑖 = 𝑤𝑖 or 𝑤̃𝑐
𝑖 = ℎ𝑖 according to the fixed orientation, and

define ℎ̃𝑐𝑖 analogously. Let 𝑎𝑖 denote the total area of item 𝑖, i.e. 𝑎𝑖 =
𝑤𝑖 × ℎ𝑖.

Continuous lower bound. The so-called continuous lower bound for 2D
bin packing is denoted by 𝐿0, and it states that the number of bins of
size 𝑊𝑐 ×𝐻𝑐 required to place all items 𝑖 ∈ [𝑁] of area 𝑎𝑖 is at least

𝐿𝑐
0 =

⌈
∑

𝑖∈[𝑁] 𝑎𝑖
𝑊𝑐𝐻𝑐

⌉

(11)

By applying this reasoning to the items assigned to each individual
container 𝑐 in the configuration-and-layout problem, where the value
of 𝐿𝑐

0 must be at most 1, we get that the following constraints must hold
for the upper-level problem (1):
∑

𝑖∈[𝑁]
∑

𝑠∈[𝑆] 𝑢𝑐,𝑠,𝑖𝑎𝑖
𝑊𝑐𝐻𝑐

≤ 1 ∀𝑐 ∈ [𝐶] . (12)

It basically ensures that the total area of the items assigned to container
𝑐 does not exceed the area of the container.

The 𝐿1 lower bound. Let us define a partitioning of the items for each
container 𝑐 ∈ [𝐶] as follows, where 𝑞 is an arbitrary number with
≤ 𝑞 ≤ 𝑊𝑐

2 :

𝐾𝑐
1 (𝑞) =

{

𝑖 ∈ [𝑁] ∶ 𝑤̃𝑖 > 𝑊𝑐 − 𝑞
}

𝐾𝑐
2 (𝑞) =

{

𝑖 ∈ [𝑁] ∶ 𝑊𝑐
2 < 𝑤̃𝑖 ≤ 𝑊𝑐 − 𝑞

}

𝐾𝑐
3 (𝑞) =

{

𝑖 ∈ [𝑁] ∶ 𝑞 ≤ 𝑤̃𝑖 ≤
𝑊𝑐
2

}

𝐾𝑐
4 (𝑞) =

{

𝑖 ∈ [𝑁] ∶ 𝑤̃𝑖 < 𝑞
}

(13)

ower bound 𝐿1 on the number of identical bins of size 𝑊𝑐×𝐻𝑐 required
o store all items is as follows:

𝑐
1 = max

1≤𝑞≤𝑊𝑐
2

⎡

⎢

⎢

⎢

∑

𝑖∈𝐾𝑐
1 (𝑞)∪𝐾

𝑐
2 (𝑞)

ℎ̃𝑐𝑖
𝐻𝑐

⎤

⎥

⎥

⎥

. (14)

Notice that the strongest bound is obtained at some 𝑞 ∈
{

𝑤̃𝑐
𝑖 ∶ 𝑖 ∈ [𝑁]

}

,
nd therefore, it is sufficient to consider those values of 𝑞. Similarly
o the case of (11) and (12), bound 𝐿𝑐

1 can be easily turned into a
onstraint:

∑

∈[𝑆]

∑

𝑖∈𝐾𝑐
1 (𝑞)∪𝐾

𝑐
2 (𝑞)

ℎ̃𝑐𝑖 𝑢𝑐,𝑠,𝑖
𝐻𝑐

≤ 1 ∀𝑞 ∈
{

𝑤̃𝑐
𝑖 ∶ 𝑖 ∈ [𝑁]

}

∀𝑐 ∈ [𝐶] . (15)

Observe that interchanging 𝑊𝑐 with 𝐻𝑐 and simultaneously 𝑤𝑐
𝑖 with ℎ𝑐𝑖

gives similar, valid bounds, and similar constraints can be derived from
them.

The 𝐿2 lower bound. With the notation introduced in the previous
paragraph, 𝐿𝑐

2 lower bound can be defined as

𝐿𝑐
2 = max

1≤𝑞≤𝑊𝑐
2

⎡

⎢

⎢

⎢

∑

𝑖∈𝐾𝑐
1 (𝑞)

ℎ̃𝑐𝑖 +
∑

𝑖∈𝐾𝑐
2 (𝑞)∪𝐾

𝑐
3 (𝑞)

𝑎𝑖
𝐻𝑐

⎤

⎥

⎥

⎥

. (16)

gain, it is turned into a constraint for the upper-level problem simi-
arly to the 𝐿𝑐

1 bounds:

∑

∑

𝑖∈𝐾𝑐
1 (𝑞)

ℎ̃𝑐
𝑖 𝑢𝑐,𝑠,𝑖 +

∑

𝑖∈𝐾𝑐
2 (𝑞)∪𝐾

𝑐
3 (𝑞)

𝑎𝑖𝑢𝑐,𝑠,𝑖
≤ 1 ∀𝑞 ∈

{

𝑤̃𝑐
𝑖 ∶ 𝑖 ∈ [𝑁]

}

∀𝑐 ∈ [𝐶] . (17)

∈[𝑆] 𝐻𝑐
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Once again, another set of constraints can be derived by interchanging
𝑊𝑐 with 𝐻𝑐 and 𝑤̃𝑐

𝑖 with ℎ̃𝑐𝑖 .

The 𝐿new
𝑀 lower bound. Boschetti and Mingozzi [33] introduce the lower

bound 𝐿new
𝑀 that takes into account the possibility of rotations of the

items explicitly. Define functions 𝜂 and 𝜇 as follows. Let

𝜂(𝑠, 𝑧,𝑍) =

⎧

⎪

⎨

⎪

⎩

⌊

𝑍
𝑠

⌋

−
⌊

𝑍−𝑧
𝑠

⌋

, if 𝑧 > 𝑍
2

⌊

𝑧
𝑠

⌋

, if 𝑧 ≤ 𝑍
2 ,

(18)

and let

𝜇𝑐 (𝑗, 𝑝, 𝑞) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

min
{

𝜂(𝑞,𝑤𝑗 ,𝑊𝑐 ) × 𝜂(𝑝, ℎ𝑗 ,𝐻𝑐 ), 𝜂(𝑞, ℎ𝑗 ,𝑊𝑐 )
× 𝜂(𝑝,𝑤𝑗 ,𝐻𝑐 )

}

𝑗 ∈ 𝑁∗
𝑐

𝜂(𝑞,𝑤𝑗 ,𝑊𝑐 ) × 𝜂(𝑝, ℎ𝑗 ,𝐻𝑐 ) 𝑗 ∈ 𝑁0
𝑐

𝜂(𝑞, ℎ𝑗 ,𝑊𝑐 ) × 𝜂(𝑝,𝑤𝑗 ,𝐻𝑐 ) 𝑗 ∈ 𝑁90
𝑐 ,

(19)

where 𝑁∗
𝑐 (respectively, 𝑁0

𝑐 and 𝑁90
𝑐 ) denotes the sets of items that can

resp., cannot and must) be rotated in container 𝑐. Lower bound 𝐿new
𝑀

s defined as

new
𝑀 = max

1≤𝑝≤𝐻𝑐
2

1≤𝑞≤𝑊𝑐
2

⎡

⎢

⎢

⎢

⎢

∑

𝑗∈𝐽 𝜇(𝑗, 𝑝, 𝑞)
⌊

𝐻𝑐
𝑝

⌋ ⌊

𝑊𝑐
𝑞

⌋

⎤

⎥

⎥

⎥

⎥

. (20)

Accordingly, the following constraint can be derived for the upper-level
problem:
∑

𝑠∈[𝑆]

∑

𝑖∈[𝑁] 𝜇(𝑖, 𝑝, 𝑞)𝑢𝑐,𝑠,𝑖
⌊

𝐻𝑐
𝑝

⌋ ⌊

𝑊𝑐
𝑞

⌋ ≤ 1 ∀𝑐 ∈ [𝐶] , (21)

for all 𝑝 ∈
{

ℎ𝑖 ∶ℎ𝑖 ≤
𝐻𝑐
2

}

and 𝑞 ∈
{

𝑤𝑖 ∶𝑤𝑖 ≤
𝑊𝑐
2

}

.

6. Computational experiments

6.1. Design of experiments

In order to evaluate the computational efficiency of the proposed
techniques, four variants of the proposed Benders approach were im-
plemented and tested on the FMS design problem. Each variant is
an extension of the previous ones, and the proposed computational
techniques are added to the Benders framework in an increasing order
of development effort:

Benders: The first and simplest variant solves the Benders master
problem extended with constraints derived from the trivial 𝐿0
lower bound as in (12), identifies the cells that admit no feasible
layout, and then extends the upper-level problem with no-good
cuts of form (4).
Benders+SB: The second variant improves the baseline approach
by extending the upper-level problem with symmetry breaking as
described in Section 5.2.
Benders+SB+LC: The third variant strengthens the Benders ap-
proach by extending the upper-level problem with lifted cuts of
the form (7) upon infeasibility in the layout sub-problem.
Benders+SB+LC+RC: The fourth, complete variant improves the
formulation of the upper-level problem further by extending it
with all redundant constraints as described in Section 5.3 (includ-
ing mutually exclusive item pairs).

Moreover, as an alternative solution approach, a monolithic MILP
formulation of the FMS design problem was composed by merging
the configuration and the layout sub-problems into a single, huge
MILP model. This required adding new constraints and auxiliary binary
variables to establish the connection between the two sub-problems.
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Fig. 5. Evolution of the solutions over time in case of the basic (left) and the most advanced (right) Benders approaches. Observe the different time scales on the horizontal axis.
The monolithic models were solved using the default branch-and-bound
algorithm of a commercial MILP solver. Observe that a part of the
proposed computational techniques developed originally for the Ben-
ders approach, namely, symmetry breaking and redundant constraints,
can be applied trivially to the monolithic MILP model as well. On the
contrary, lifted cuts are not applicable. Accordingly, the following two
variants of monolithic MILP were included in the experiments:

Monolithic: The first monolithic MILP model includes the merged
configuration and layout sub-problems, as well as the constraints
derived from the trivial 𝐿0 lower bound (12).
Monolithic+SB+RC: The second, advanced monolithic MILP for-
mulation includes all techniques applicable to this approach,
i.e., symmetry breaking (Section 5.2) and all redundant constraints
(Section 5.3).

The algorithms were implemented in Python, using FICO Xpress1 v9.2.5
as a MILP solver. The experiments were performed on a server with i9-
7960X CPU @ 2.80 GHz and Linux operating system using one thread,
with a limit on the total computation time of 7200 s for each problem
instance, for every variant of the solution method.

6.2. Problem instances

In order to perform the computational experiments on a sufficiently
large set of problem instances of different dimensions, which are in-
dustrially relevant at the same time, random instances were generated
based on data from the real industrial case study presented in Section 7,
involving the machining of a family of cylindrical parts. The original
data set contained detailed characteristics of 30 products (dimensions),
as well as 6 machine types and 6 robot types (capabilities, speed,
dimensions, and costs). Based on the original data, random instances of
different sizes were generated. In particular, the number of products,
𝑃 , was chosen from {5, 30}; the number of cells, 𝐶, from {3, 4, 6};
and finally, the number of slots per cell, 𝑆, from {3, 4, 5}, including
one robot slot and 𝑆 − 1 machine slots. For all problem sizes, 10
instances were generated, resulting in 180 instances altogether. Process
and handling times were set by applying a random perturbation to
the real industrial values. In order to ensure that a feasible solution
exists, first, a system configuration, also including the assignment of
products to machines was randomly created, and then demands were
set to ensure that the given random configuration produces the desired
mix of products by the end of the monthly time horizon. Finally, cell
dimensions were determined in such a way that the selected items
can be located in a multi-row arrangement. It is highlighted that the
random configuration assumed during generation is a feasible, but not
necessary optimal solution of the system configuration problem, since
a different configuration of lower cost might also be able to produce
the desired mix of products.

1 https://www.fico.com/en/products/fico-xpress-optimization
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6.3. Illustration on a sample instance

First, the Benders approach is illustrated on the small sample in-
stance whose optimal solution was presented earlier in Fig. 2. The
instance contains 3 products, at most 4 cells (only 3 cells must be built
in the optimal solution), 4 types of machines and robots, as well as 4
machine slots and one robot slot in each cell (at most 2 machine slots
and exactly one robot slot are actually used per cell). Two variants
of the solution method, the baseline Benders and the most advanced
Benders+SB+LC+RC were evaluated on the instance, with a time limit
of 7200 s. Fig. 5 displays the progress of the branch-and-cut search
procedure over time for the two variants. The upper, green curve
represents the objective value of the best solution found, whereas the
lower, dashed curve shows the lower bound. The meeting point of the
two curves indicates that the optimality of the solution is proven, and
search can terminate. According to the Benders approach, the search for
the optimal upper-level solution discovers from time to time candidate
improving configurations, which are then submitted to the lower-level
layout planner for evaluation. Candidate configurations rejected due
to layout infeasibility are indicated by red triangles, whereas those
accepted with a feasible layout are shown by green squares. The
comparison of the two diagrams reveals the efficiency of the developed
inference techniques: the baseline Benders variant required 228.63 s
and 41,263 candidate configurations to arrive at a proven optimal
solution, while Benders+SB+LC+RC achieved the same in only 1.26 s
with 54 candidate configurations.

A detailed investigation of the performance of the two algorithms
is presented in Table 3. The results show that, although both variants
solved this small sample instance to proven optimality, the baseline
Benders variant needed two orders of magnitude more computation
time to achieve this than the most advanced variant (228.63 s ver-
sus 1.26 s). Most of the search effort was spent on the upper-level
configuration problem, while the lower-level problem took 18.77 s,
including cache search and administration of rejected and accepted
solutions (17.63 s) and solving the layout planning MIP (1.14 s).
Accordingly, the developed inference techniques could decrease the
size of the branch-and-cut search tree by three orders of magnitude, in
terms of the number of search nodes, simplex iterations, cuts, and the
number of candidate solutions, too. It is noticeable that the inference
techniques decreased primarily the number of rejected configurations,
since they address identifying and eliminating possible configurations
that do not admit a feasible layout. In contrast, the number of accepted
configurations is not affected directly: it may increase or decrease
slightly due to the interference of the added inference techniques with
the search strategy of the commercial solver.

6.4. Computational results

The results over the set of 180 randomly generated problem in-
stances are displayed in Table 4 for the four Benders variants and
in Table 5 for the two monolithic MILP variants. Each row of the

https://www.fico.com/en/products/fico-xpress-optimization
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Table 3
Summary of results on the sample instance.

Time (s) B&C tree search Candidate solutions

Total Lower Nodes Simplex it. Cuts Rejected Accepted

Benders 228.63 18.78 232,563 3,114,691 41,277 41,261 2
Benders+SB+LC+RC 1.26 0.37 225 9,759 108 49 5
Table 4
Computational results with the four variants of the Benders approach.

Benders Benders+SB Benders+SB+LC Benders+SB+LC+RC

𝑃 𝐶 𝑆 Time (s) Gap Opt Time (s) Gap Opt Time (s) Gap Opt Time (s) Gap Opt

5 3 3 13 0.00% 10 6 0.00% 10 5 0.00% 10 1 0.00% 10
4 250 0.00% 10 18 0.00% 10 16 0.00% 10 5 0.00% 10
5 4,945 2.22% 4 161 0.00% 10 149 0.00% 10 57 0.00% 10

4 3 298 0.00% 10 41 0.00% 10 43 0.00% 10 3 0.00% 10
4 5,375 2.05% 3 383 0.00% 10 398 0.00% 10 88 0.00% 10
5 7,200 6.71% 0 3,862 0.49% 8 3,639 0.41% 9 1,346 0.36% 9

6 3 5,979 3.00% 3 2,731 0.61% 8 2,709 0.33% 8 51 0.00% 10
4 7,200 6.78% 0 6,311 2.21% 4 6,397 2.05% 4 2,710 0.51% 8
5 7,200 9.58% 0 7,200 5.76% 0 7,200 6.04% 0 6,149 3.07% 2

30 3 3 18 0.00% 10 11 0.00% 10 11 0.00% 10 3 0.00% 10
4 818 0.00% 10 132 0.00% 10 128 0.00% 10 21 0.00% 10
5 5,422 1.99% 4 517 0.00% 10 518 0.00% 10 190 0.00% 10

4 3 631 0.00% 10 329 0.00% 10 367 0.00% 10 6 0.00% 10
4 7,200 5.68% 0 3,191 0.46% 8 3,173 0.52% 8 457 0.00% 10
5 7,200 9.79% 0 7,205 4.46% 0 7,200 4.57% 0 5,812 1.25% 5

6 3 6,682 7.17% 1 5,755 2.56% 4 6,072 2.42% 4 446 0.00% 10
4 7,200 13.64% 0 7,200 9.92% 0 7,200 10.00% 0 7,200 7.34% 0
5 7,200 17.19% 0 7,200 11.94% 0 7,200 11.92% 0 7,200 9.36% 0

Total 4,491 4.77% 75 2,903 2.13% 122 2,912 2.13% 123 1,764 1.22% 144
Table 5
Computational results with the two variants of the monolithic MILP approach.

Monolithic Monolithic+SB+RC

𝑃 𝐶 𝑆 Time (s) Gap Opt Time (s) Gap Opt

5 3 3 3 0.00% 10 1 0.00% 10
4 153 0.00% 10 11 0.00% 10
5 4,097 1.37% 6 223 0.00% 10

4 3 24 0.00% 10 6 0.00% 10
4 3,614 1.29% 7 330 0.00% 10
5 7,200 6.35% 0 4,322 0.82% 8

6 3 1,192 0.50% 9 198 0.00% 10
4 7,200 8.37% 0 5,662 2.08% 4
5 7,200 12.99% 0 7,200 6.23% 0

30 3 3 5 0.00% 10 2 0.00% 10
4 156 0.00% 10 30 0.00% 10
5 3,995 0.47% 9 300 0.00% 10

4 3 28 0.00% 10 6 0.00% 10
4 6,550 1.98% 4 601 0.00% 10
5 7,200 10.20% 0 6,090 1.33% 4

6 3 2,327 0.30% 9 509 0.00% 10
4 7,200 14.11% 0 7,200 6.94% 0
5 7,200 18.49% 0 7,200 9.82% 0

Total 3,630 4.24% 104 2,216 1.51% 136
a
i
f
i

tables corresponds to a given problem size, and each group of columns
contains the results for one variant of the solver. In the Problem size
columns, 𝑃 , 𝐶, and 𝑆 denote the number of products, cells, and slots
er cell, respectively. Columns Time display the average computation

time in seconds, whereas columns Gap show the average optimality
gap. Averages are computed over all instances, including those solved
to optimality and those where the time limit was hit. Finally, columns
Opt contain the number of problem instances solved to proven optimal-
ity out of 10 for the given problem size. The results are also visualized
 a
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in Fig. 6, where separate diagrams stand for the three performance
measures of computation time, optimality gap, and number of instances
solved to optimality, as well as for instance sizes 𝑃 = 5 and 𝑃 = 30.

While the smallest instances could be solved to optimality by using
ny of the variants (10 out of 10 instances solved), the largest instances
llustrate the limits of the proposed approach (no optimal solutions
ound even by the most advanced variant). Yet, even for these challeng-
ng instances, the solvers found reasonable solutions that are feasible
ccording to both the upper-level and the lower-level constraints. The
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Fig. 6. Summary of computational results. The horizontal axis is divided by problem sizes, with the same notation as Tables 4 and 5.
difficulty of an instance depends clearly on the number of cells and the
number of slots per cell, but at the same time, less on the number of
products.

Remarkably, for at most four cells (𝐶 ≤ 4) and four slots per cell
(𝑆 ≤ 4), the most advanced variant could solve all instances to proven
optimality, and this took only 73 s of computation time on average.

The results show that each presented computational technique could
improve the performance of the Benders approach. Notably, adding
symmetry breaking increased the total number of optimal solutions
from 75 to 122, decreased the average gap from 4.77% to 2.13%, and
decreased the average computation time from 4,491 s to 2,903 s. Re-
dundant constraints increased the number of optimal solutions further
from 123 to 144, decreased the gap from 2.13% to 1.22%, and de-
creased time from 2,912 s to 1,764 s. In this setting, the impact of lifted
cuts was marginal: they increased the number of optimal solutions from
122 to 123. Still, it must be mentioned that in a somewhat different
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(and overall, less efficient) earlier implementation of the Benders ap-
proach that restarted the upper-level search each time a cut was added,
lifted cuts also had a huge impact. The explanation is that in the earlier
implementation, stronger cuts affected the repeated traversals of the
entire search tree, whereas with the current implementation, the impact
occurs only on a smaller portion of the search tree branches.

The alternative, monolithic MILP approach performed surprisingly
well: the simplest Benders variant was even outperformed by the
baseline Monolithic variant (75 versus 104 optimal solutions). Adding
the developed inference techniques, namely, symmetry breaking and
redundant constraints also boosted the performance of the mono-
lithic approach (from 104 to 136 optimal solutions). Nevertheless,
when comparing the most advanced monolithic and Benders variants,
Monolithic+SB+RC and Benders+SB+LC+RC, it turns out the latter
dominates according to all performance measures: 136 versus 144
optimal solutions, 1.51% versus 1.22% average gap, and 2,216 s versus
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1,764 s average computation time. This comparison also demonstrates
that strong inference techniques can have a great impact on search
performance almost independently of the solution approach.

6.5. Discussion on alternative solution approaches

While the authors are not aware of earlier contributions in the
literature that study the same integrated configuration-and-layout prob-
lem, various alternative approaches might be applicable for solving it.
Accordingly, two such approaches, namely genetic algorithms (GA) and
mixed-integer nonlinear programming (MINLP) were also evaluated on
the above FMS design problem instances.

The GA solution approach was implemented in the widely used
genetic algorithm toolkit PyGAD2. The natural genetic encoding was
used, with each gene corresponding to a variable of the monolithic
MILP, and the default genetic operators were applied. Various combi-
nations of the starting parameters were examined, including population
size, number of mating parents, elitism, as well as parameters for the
adaptive mutation rate. Two versions of the GA were experimented:
a single-objective GA where the penalty for constraint violation and
the original objective function were combined into a single criterion,
and a multi-objective GA that handles these two criteria separately.
Despite the thorough experimentation, the GAs did not manage to find
a feasible solution even on the smallest instances within the prescribed
time limit of 7200 s.

Likewise, the FMS design problem was formulated as a MINLP in
a straightforward manner. The upper-level MILP was extended with
variables describing the layout of the selected items, i.e., binary vari-
ables for the pairwise relative position and the rotation of the items,
and continuous variables for their absolute positions. Non-linearities
arise when layout feasibility is expressed via constraints involving the
product of two or more binary variables. The resulting formulation is
smaller in the number of variables and constraints than the monolithic
MILP. This MINLP formulation was submitted to the state-of-the-art
commercial MINLP solver called Hexaly,3 which is claimed to be the
best off-the-shelf solver for routing, scheduling, and packing problems,
and uses exact algorithms as well as heuristics in a hybrid framework.
Despite this, the solver did not find optimal solutions, and in many
cases even a feasible solution, for the problem instances within the
7200 s time limit.

For the above reasons, the detailed computational results achieved
using these alternative approaches are omitted from this paper. While it
is possible that, with the addition of custom algorithms (e.g., problem-
specific genetic encoding and operators for the GA), these approaches
could be developed into efficient solvers, this would require extensive
research on its own right, and hence, these are out of the scope of the
present paper.

7. Industrial case study

The proposed methods were developed in an industry-academia col-
laborative project focusing on decision support for production system
design. The methods were evaluated on data from a real customer
project from the past involving the design of an FMS for machining
a family of cylindrical products. The actual model implemented in
the industrial application fits into the generic configuration-and-layout
model introduced in Section 3, yet, in order to capture all relevant
practical requirements, it is significantly richer than the specific FMS
design application described in Section 4. Due to the numerous but
mathematically straightforward extensions, for the sake of brevity and
confidentiality, the precise mathematical model for those extensions is
omitted in this paper. A brief textual description is given below.

2 https://pygad.readthedocs.io/en/latest/
3 https://www.hexaly.com/
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The main difference is the application of a significantly more elabo-
rate model of the resources required in the machining cells. In addition
to the robots (5 types) and CNC machine tools (5 types) also consid-
ered above, items also included part stockers (3 types), gripper hand
stockers (3 types), and fixture stockers (3 types), temporal storages (3
types), as well as dedicated gripper hands for each product (5 types
for 5 products, captured only in the configuration sub-problem, while
omitted in the layout sub-problem). The model was also extended with
various constraints on the compatibility of those items, e.g., gripper
hand stockers are required only in cells where multiple types of prod-
ucts are manufactured; material handling times in constraint (2h) are
increased with an estimation of changeover times in such cells. The
model assumes imperfect utilization rates of the robots and machines to
account for blocking situations and maintenance. The layout planning
sub-problem was also extended with two additional constraints: all
relevant items must be located within the reach of the robot according
to the maximum metric (also called the 𝐿∞ norm), and the robot must
be located on the front side of the machine to access the machine
workspace through the door. Since all other items are low, the robot
can approach them from above. Accordingly, the partial ordering of
robot items in the lifted cuts had to take into account robot reach,
the partial ordering of machines had to differentiate the front from
the side, while an unchanged ordering could be applied to all other
items. Symmetry breaking was implemented with interchangeable slots
corresponding to slots dedicated to the same type of items. The solver
used in the industrial case study was based on an earlier version of
the methods presented in the paper, with an implementation of the
continuous lower bound (12), but without the stronger bounds from
Section 5.3, corresponding to variant Base+SB+LC above. Moreover,
the Benders approach was implemented by restarting the upper-level
solver each time a cut was generated, instead of the more advanced
branch-and-cut algorithm described in this paper.

In the case study, the total production volume for the 5 different
products was 90 000 pieces per year. There was room for 10 new
rectangular cells of different dimensions on the shop floor, though,
building 6 new cells was sufficient to satisfy customer demand. The
optimal configuration for this case study was found in ca. 23 min in
154 Benders iterations. The configurations and layouts computed for
the 6 cells are displayed in Fig. 7. From this plan, a 3D simulation
model of the manufacturing system was constructed and evaluated by
the engineers of the company, see Fig. 8. Their assessment confirmed
the correctness of the computed results and the overall validity of the
approach.

An important aspect of the evaluation was the efficiency of the
decision support provided to the human designer. For this purpose,
a prospective user of the developed system, a junior designer with
3 months of experience, was asked to solve some actual FMS design
problems by using the developed prototype. The problems arrived from
customers, and they were similar to (but typically smaller in size than)
the case study presented above. By manual planning according to the
current practice, the estimated working time for solving these problems
was 28 h on average. With the support of the prototype, this was
reduced to 2.2 h on average, which included data preparation and
actual computations, as well as visualizing the results in simulation
software. Obviously, these values are highly dependent on the task at
hand and the particular engineer.

8. Conclusions and future research

8.1. Conclusions of the current study

This paper introduced a novel exact method for integrated
configuration-and-layout problems. While the specific application and
the industrial case study focused on the configuration of flexible manu-
facturing systems, the generic method can find applications in various

fields that require jointly optimizing the selection and geometrical

https://pygad.readthedocs.io/en/latest/
https://www.hexaly.com/
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Fig. 7. Configurations and 2D layouts for the 6 new cells in the industrial case study.
Fig. 8. 3D simulation model of the designed FMS cells. CNC machines in black, part stockers in gray, fixture stockers in purple, temporal storages in green, hand stockers in
brown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
arrangement of items. The integrated problem is a computationally
challenging combinatorial optimization problem, and finding opti-
mal solutions requires well-designed, efficient solution algorithms.
For this purpose, various inference techniques, including symmetry
breaking, lifted cuts, as well as redundant constraints inspired by
known lower bounds were added to the baseline logic-based Benders
solution method. Computational experiments demonstrated that the
resulting algorithm finds proven optimal solutions for problem sizes
relevant in manufacturing applications. In the real industrial case
study, the approach computed high-quality configurations and layouts,
also validated by human experts, while it substantially decreased the
engineering work hours required for manufacturing system design.

8.2. Extensions of the model

There are numerous straightforward extensions of the presented
mathematical model. These include more precise, rectilinear geome-
tries for containers (manufacturing cells) and items (robots and ma-
chines). All the presented inference techniques remain valid with this
extension, though, some implementation details must be adjusted, in-
cluding the definition of the partial orderings in the lifted cuts and the
computation of the lower bounds. Moreover, an optimization criterion
can be added to the layout sub-problem as a secondary criterion in the
overall configuration-and-layout problem.

Another relevant direction is capturing richer practical require-
ments on the layout via the introduction of so-called layout templates
that prescribe constraints on the absolute and relative positions of the
items placed in the given slots. However, the adaptation of symmetry
breaking (both for absolute and relative position constraints) and lifted
cuts (in case of absolute position constraints) is not straightforward.
396 
8.3. Extensions of the solution approach

In addition to various extensions of the model, the further enhance-
ment of the algorithms is also an intriguing direction. The identification
of minimal conflict sets for further lifted cuts was found to be an efficient
technique for similar problems [34,35], yet, with simpler upper-level
problems and significantly higher number of items per container. In
our experiments with a low number of items, this technique did not
show any improvement over the variants presented in the paper.

A direction for future research, particularly relevant for practical
applications, is the development of algorithms for solving large-size
problems. This can involve both meta-heuristic approaches for the
upper-level configuration sub-problem within the Benders framework,
also making use of the proposed techniques to decrease the search
effort; as well as repair heuristic that, upon infeasibility in the lower-
level layout sub-problem, modify the configuration to ensure layout-
feasibility. Although both techniques may result in losing the exactness
of the overall solution approach, this is a reasonable price for achieving
feasible solutions in a computationally efficient way.

CRediT authorship contribution statement

Péter Dobrovoczki: Writing – review & editing, Writing – original
draft, Visualization, Software, Investigation, Formal analysis, Concep-
tualization. András Kovács: Writing – review & editing, Writing –
original draft, Supervision, Methodology, Investigation, Formal anal-
ysis, Conceptualization. Hiroyuki Sakata: Validation, Resources, Data
curation, Conceptualization. Daisuke Tsutsumi: Validation, Resources,
Data curation, Conceptualization.



P. Dobrovoczki et al. Journal of Manufacturing Systems 77 (2024) 384–397 
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

The authors are grateful to Zsombor Szádoczki and to the anony-
mous reviewers for their comments on an earlier version of this
manuscript. Hungarian authors were supported by the
2021-17376/NP/BILAT_HU_DE_1 and the TKP2021-NKTA-01 grants.

References

[1] Dolgui A, Proth J-M. Supply chain engineering: Useful methods and techniques.
Springer; 2010.

[2] Hooker JN, Ottosson G. Logic-based Benders decomposition. Math Program A
2003;96(1):33–60.

[3] Weckenborg C, Schumacher P, Thies C, Spengler TS. Flexibility in manufacturing
system design: A review of recent approaches from operations research. European
J Oper Res 2024 315(2):413–41.

[4] Matta A, Tolio T, Karaesmen F, Dallery Y. An integrated approach for the
configuration of automated manufacturing systems. Robot Comput-Integr Manuf
2001;17(1):19–26.

[5] Monitto M, Pappalardo P, Tolio T. A new fuzzy AHP method for the evaluation
of automated manufacturing systems. CIRP Ann 2002;51(1):395–8.

[6] Sivalingam C, Subramaniam SK. Cobot selection using hybrid AHP-TOPSIS based
multi-criteria decision making technique for fuel filter assembly process. Heliyon
2024;10(4):e26374.

[7] Battaïa O, Dolgui A, Guschinsky N. Optimal cost design of flow lines
with reconfigurable machines for batch production. Int J Prod Res
2020;58(10):2937–52.

[8] Abbas M, ElMaraghy H. Synthesis and optimization of manufacturing systems
configuration using co-platforming. CIRP J Manuf Sci Technol 2018;20:51–65.

[9] Li S, Wang H, Hu SJ, Lin Y-T, Abell JA. Automatic generation of assembly system
configuration with equipment selection for automotive battery manufacturing. J
Manuf Syst 2011;30(4):188–95.

[10] Becker C, Scholl A. A survey on problems and methods in generalized assembly
line balancing. European J Oper Res 2006;168(3):694–715.

[11] Boysen N, Fliedner M, Scholl A. A classification of assembly line balancing
problems. European J Oper Res 2007;183(2):674–93.

[12] Boysen N, Schulze P, Scholl A. Assembly line balancing: What happened in the
last fifteen years? European J Oper Res 2022;301(3):797–814.

[13] Battaïa O, Dolgui A. A taxonomy of line balancing problems and their solution
approaches. Int J Prod Econ 2013;142(2):259–77.

[14] Scholl A, Becker C. State-of-the-art exact and heuristic solution procedures for
simple assembly line balancing. European J Oper Res 2006;168(3):666–93.

[15] Akpinar S, Elmi A, Bektaş T. Combinatorial Benders cuts for assembly line
balancing problems with setups. European J Oper Res 2017;259(2):527–37.

[16] Sikora CGS. Benders’ decomposition for the balancing of assembly lines with
stochastic demand. European J Oper Res 2021;292(1):108–24.

[17] Şahin M, Kellegöz T. Benders’ decomposition based exact solution method for
multi-manned assembly line balancing problem with walking workers. Ann Oper
Res 2023;321(1):507–40.

[18] Michels AS, Lopes TC, Sikora CGS, Magatão L. A Benders’ decomposition
algorithm with combinatorial cuts for the multi-manned assembly line balancing
problem. European J Oper Res 2019;278(3):796–808.
397 
[19] Tsutsumi D, Kovács A, Szalóki Á. Novel heuristic approach to integrating task
sequencing and production system configuration. Procedia CIRP 2022;107:28–33.

[20] Battaïa O, Dolgui A. Hybridizations in line balancing problems: A comprehensive
review on new trends and formulations. Int J Prod Econ 2022;250:108673.

[21] Albus M, Huber MF. Resource reconfiguration and optimization in brown-
field constrained robotic assembly line balancing problems. J Manuf Syst
2023;67:132–42.

[22] Selim HM, Askin RG, Vakharia AJ. Cell formation in group technology: Review,
evaluation and directions for future research. Comput Ind Eng 1998;34(1):3–20.

[23] Mahdavi I, Teymourian E, Baher NT, Kayvanfar V. An integrated model for
solving cell formation and cell layout problem simultaneously considering new
situations. J Manuf Syst 2013;32(4):655–63.

[24] Chiang C-P, Lee S-D. Joint determination of machine cells and linear intercell
layout. Comput Oper Res 2004;31(10):1603–19.

[25] Chang C-C, Wu T-H, Wu C-W. An efficient approach to determine cell formation,
cell layout and intracellular machine sequence in cellular manufacturing systems.
Comput Ind Eng 2013;66(2):438–50.

[26] Mohammadi M, Forghani K. A novel approach for considering layout problem
in cellular manufacturing systems with alternative processing routings and
subcontracting approach. Appl Math Model 2014;38(14):3624–40.

[27] Ji D, Zhang Z, Liang W, Wang C, He Z. Mathematical formulation and a
novel two-stage algorithm for double-row layout problem with fixed loading and
unloading points. J Manuf Syst 2023;69:242–54.

[28] Pablo Pérez-Gosende JM, Díaz-Madroñero M. Facility layout planning. An
extended literature review. Int J Prod Res 2021;59(12):3777–816.

[29] Doan NCN, Lin W. Optimal robot placement with consideration of redundancy
problem for wrist-partitioned 6R articulated robots. Robot Comput-Integr Manuf
2017;48:233–42.

[30] Ghungrad S, Mohammed A, Haghighi A. Energy-efficient and quality-aware part
placement in robotic additive manufacturing. J Manuf Syst 2023;68:644–50.

[31] Iori M, de Lima VL, Martello S, Miyazawa FK, Monaci M. Exact solution
techniques for two-dimensional cutting and packing. European J Oper Res
2021;289(2):399–415.

[32] Lodi A, Martello S, Monaci M. Two-dimensional packing problems: A survey.
European J Oper Res 2002;141(2):241–52.

[33] Boschetti MA, Mingozzi A. The two-dimensional finite bin packing problem. Part
II: New lower and upper bounds. Q J Belg Fr Ital Oper Res Soc 2003;1(2):135–47.

[34] Côté J-F, Dell’Amico M, Iori M. Combinatorial Benders’ cuts for the strip packing
problem. Oper Res 2014;62(3):643–61.

[35] Delorme M, Iori M, Martello S. Logic based Benders’ decomposition for
orthogonal stock cutting problems. Comput Oper Res 2017;78:290–8.

[36] Iori M, Martello S. Routing problems with loading constraints. Trans Oper Res
2010;18(1):4–27.

[37] Iori M, González JJS, Vigo D. An exact approach for the vehicle routing problem
with two-dimensional loading constraints. Transp Sci 2007;41(2):253–64.

[38] Melega GM, de Araujo SA, Jans R. Classification and literature review
of integrated lot-sizing and cutting stock problems. European J Oper Res
2018;271(1):1–19.

[39] Gramani M, França P, Arenales M. A Lagrangian relaxation approach to a coupled
lot-sizing and cutting stock problem. Int J Prod Econ 2009;119(2):219–27.

[40] Gramani MCN, França PM, Arenales MN. A linear optimization approach to the
combined production planning model. J Franklin Inst 2011;348(7):1523–36.

[41] Vanzela M, Melega GM, Rangel S, de Araujo SA. The integrated lot sizing and
cutting stock problem with saw cycle constraints applied to furniture production.
Comput Oper Res 2017;79:148–60.

[42] Gramani MCN, França PM. The combined cutting stock and lot-sizing problem
in industrial processes. European J Oper Res 2006;174(1):509–21.

[43] Gilmore PC, Gomory RE. Multistage cutting stock problems of two and more
dimensions. Oper Res 1965;13(1):94–120.

[44] Boschetti MA, Mingozzi A. The two-dimensional finite bin packing problem.
Part I: New lower bounds for the oriented case. Q J Belg Fr Ital Oper Res Soc
2003;1(1):27–42.

http://refhub.elsevier.com/S0278-6125(24)00222-X/sb1
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb1
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb1
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb2
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb2
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb2
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb3
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb3
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb3
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb3
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb3
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb4
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb4
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb4
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb4
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb4
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb5
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb5
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb5
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb6
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb6
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb6
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb6
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb6
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb7
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb7
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb7
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb7
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb7
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb8
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb8
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb8
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb9
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb9
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb9
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb9
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb9
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb10
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb10
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb10
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb11
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb11
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb11
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb12
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb12
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb12
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb13
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb13
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb13
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb14
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb14
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb14
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb15
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb15
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb15
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb16
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb16
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb16
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb17
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb17
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb17
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb17
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb17
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb18
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb18
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb18
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb18
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb18
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb19
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb19
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb19
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb20
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb20
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb20
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb21
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb21
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb21
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb21
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb21
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb22
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb22
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb22
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb23
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb23
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb23
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb23
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb23
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb24
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb24
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb24
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb25
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb25
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb25
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb25
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb25
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb26
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb26
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb26
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb26
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb26
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb27
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb27
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb27
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb27
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb27
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb28
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb28
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb28
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb29
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb29
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb29
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb29
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb29
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb30
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb30
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb30
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb31
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb31
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb31
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb31
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb31
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb32
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb32
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb32
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb33
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb33
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb33
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb34
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb34
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb34
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb35
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb35
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb35
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb36
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb36
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb36
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb37
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb37
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb37
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb38
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb38
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb38
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb38
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb38
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb39
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb39
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb39
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb40
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb40
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb40
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb41
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb41
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb41
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb41
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb41
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb42
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb42
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb42
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb43
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb43
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb43
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb44
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb44
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb44
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb44
http://refhub.elsevier.com/S0278-6125(24)00222-X/sb44

	Integrated system configuration and layout planning for flexible manufacturing systems
	Introduction
	Literature Review
	Configuration and Layout Planning in Manufacturing
	Layout Planning as a Packing Problem in Operations Research
	Positioning of the Paper

	The Generic Configuration-and-layout Problem
	Configuration Sub-problem
	Layout Sub-problem

	Application to Flexible Manufacturing Systems
	The FMS Configuration-and-layout Problem
	MILP Model for the FMS Configuration Sub-problem
	MILP Model for the FMS Layout Sub-problem

	Solution Method
	Benders Cuts
	No-good Cuts
	Lifted Cuts

	Symmetry Breaking
	Redundant Constraints from Geometry
	Mutually Exclusive Items
	Redundant Constraints Inspired by 2D Bin Packing Lower Bounds


	Computational Experiments
	Design of Experiments
	Problem Instances
	Illustration on a Sample Instance
	Computational Results
	Discussion on Alternative Solution Approaches 

	Industrial Case Study
	Conclusions and Future Research
	Conclusions of the Current Study
	Extensions of the Model
	Extensions of the Solution Approach

	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


