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Abstract: The paper presents an observer design method for estimating the slips and the
cornering stiffness of autonomous road vehicles. As a first step, the dynamical one-wheeled
bicycle model is reformulated to express directly the slips of the vehicle. In the second step, a
polytopic model-based observer is designed which can deal with the variation of the scheduling
parameters (longitudinal velocity, cornering stiffness). In order to eliminate the parameter
uncertainty an ultra-local model is applied by which the cornering stiffness is estimated. The
effectiveness and the operation of the proposed observer method are demonstrated through a
complex scenario in the high-fidelity simulation software, CarMaker.

Copyright © 2024 The Authors. This is an open access article under the CC BY-NC-ND license

(https://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords: ultra-local model, observer, lateral dynamics, cornering stiffness

1. INTRODUCTION AND MOTIVATION

One of the primary requirements for the widespread of
autonomous or highly automated vehicles is the safe op-
eration in all possible traffic situations. This covers sev-
eral sub-problems, such as collision-free trajectory com-
putation, decision-making, or control design. Mainly, the
control design relies on the accurate model of the system,
which involves several challenges due to the nonlinearities
and parameter uncertainties of the considered system.
In lateral vehicle control, one of the main difficulties is
the estimation of the tire characteristics since it requires
the accurate estimation of the side-slip angles and also
the lateral forces. Moreover, during the operation of the
system, the tire force characteristics can change or several
effects highly influence the maximum lateral forces such
as the tire pressure, the adhesion coefficient of the road or
the temperature of the environment. However, an accurate
tire model is essential for accurate trajectory tracking
especially at high lateral acceleration maneuvers.

Although the tire modeling process can be carried out
using force and accurate lateral velocity sensors, these
solutions are not suitable for commercial use due to the
high additional costs. Therefore, in recent years, several
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approaches have been developed to solve the problems
regarding the estimation process of tire characteristics.
In Wei et al. (2023) a physics-data-based approach is
presented for the modeling process of the lateral dynamics,
involving the unknown parameters of the vehicle, such
as the cornering stiffness. The main advantage of the
presented method is that it can capture the nonlinearities
of the lateral dynamics, while no calibration or training
process is needed. A method for lateral dynamics modeling
can be found in Zhou et al. (2021), which combines the
data-driven and physical model-based solutions. In the
paper, the cornering stiffnesses are calculated using the
neural network during the implementation, which makes
the modeling process more accurate. Moreover, the tire
characteristics can be approximated Boyali et al. (2021)
using the Approximate Bayesian Computation method.
The presented algorithm is tested on a double-lane change
maneuver, during which the yaw-rate measurements are
compared to the numerical solutions. Moreover, an itera-
tive structure is proposed in Hsiao and Yang (2016) for
both the tire stiffness and the road friction estimation
using a modified tire model.

As mentioned, the lateral dynamics of the vehicle are
influenced by nonlinear effects and parameter uncertain-
ties, which must be taken into account to achieve a high-
performance level during the estimation. These problems
can be effectively handled by several methods such as the
polytopic system-based approaches Perez-Estrada et al.
(2018), or the robust Hoo-based solutions Jung et al.
(2006). Although these methods are suitable to capture the
nonlinearities or uncertainties, the maximum performance
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level highly relies on the accuracy of the identified model of
the system. Moreover, during the operation of the system,
several parameters may change. A new approach has come
up to effectively handle the nonlinearities and uncertain-
ties, which was originally formulated for control problems
and called the Ultra-Local Model-based control Fliess and
Join (2013). The main idea behind this approach is to
compute the Ultra-Local Model in every time step, which
includes the unknown effects of the system. Using this,
the performance level of the control algorithm can be
increased. However, this approach has been augmented for
estimation problems Al Younes et al. (2015).

In this paper, a parallel tire stiffness and side-slip angle
estimation algorithm is proposed. The main contributions
of the paper are:

(1) An LPV-based observer design for estimating the
side-slips of front and rear axles using a transformed
model of the classical dynamical bicycle model. The
polytopic model considers the cornering stiffness and
the longitudinal velocity as scheduling parameters.

(2) Estimation of the change in the cornering stiffness
through an Ultra-Local Model-based algorithm. This
serves two goals:

A. Using the corrected cornering stiffness the poly-
topic observer can provide a more accurate estimation
from the estimated slips and the cornering stiffness
B. The tire characteristics can be built up and even
online updated during the operation of the vehicle.

The rest of the paper consists of the following sections: The
lateral model and its transformed version are presented
in Section 2. The applied methods such as LPV-based
observer design and the Ultra-Local Model (or Model-Free
Control) technique are detailed in Section 3. The design
steps of the combined method for the slip and cornering
stiffness estimation problem are given in Section 4. Finally,
a complex test scenario is presented in Section 5 using
the high-fidelity vehicle dynamics simulation software,
CarMaker.

2. MODELING OF LATERAL DYNAMICS

In this section, the modeling of the lateral dynamics of
the vehicle is presented. The basis of the lateral model
is the two-wheeled bicycle model, see Hahn et al. (2004).

The original model has two state-variables: yaw-rate (1))
and the lateral velocity (v,) or side-slip (ﬁ =tan~! (v—”))

Ve
This model implicitly contains the slips of the front and
the rear axes (ay,q,) thus it makes the observer design
process difficult.

In Balazs Nemeth (2016) a new formulation of the two-
wheeled bicycle model is presented. The main advantage
of it is that the state variables of the model are the slips of
the front and rear axes, which makes it more suitable for an
observer algorithm. In the rest of this section, the original
and modified models are detailed and then the polytopic
state-space presentation is formed, which will be the basis
of the observer design.

2.1 Original bicycle model

The main idea behind the bicycle model is to replace the
wheels on the front and rear axles with one wheel placed on
the axis of symmetry of the vehicle. This approach neglects
the roll and pitch dynamics and focuses only on the lateral
dynamics of the vehicle.
The model consists of two equations: The first one de-
scribes the yaw motion while the second one is the lateral
acceleration of the vehicle:
IZ’(/) sz(af)lf —]:T(Ozr)lr, (1&)

mug (Y + B) = Fylag) + Frlay). (1b)
where I, denotes the yaw-inertia, F;(«;) @ € [f,r] is the
lateral forces on the front (f) and rear (r) axis as a function
of the slips (ay, o), Iy, are geometric parameters, the
mass of the vehicle is given by m and v, is the longitudinal
velocity.
The tire slips can be computed from the steering angle (¢),
side-slip (), yaw-rate (¢) and longitudinal velocity (v,)
using linearized equations:

vl

ap=0—-p- » (2a)
o =—f+ ﬁlr. (2b)

2.2 Model with slips as states

The states of the lateral model can be changed to tire slips
by applying the following steps:

1. Reordering the equations (2) as:

o —af+90

w = Uz lf 1, 3 (3&)
aflr —+ Otrlf — 1,0

=— . 3b

5 o (3h)

Note that v, is considered to be constant and it is handled
later on as a scheduling parameter.
2. Computing the derivative of (3):

Qp — Gp 40

’L/] = Vg lf T ZT 3 (4&)
o gl aply — 10
= - 4
B I+, (4b)

3. Subtracting Equations (1) from (4), the derivative of
the slips (ay,a,) can be expressed as:

N T .
6 — iy = L (Fylaply = Folan)l) =8, (5a)
aply 4 élp = vy (e — ag) +v,0 + 16— (5b)

L (Fyag) + Folar)).

As the last equation shows, the derivative of the steering
angle is necessary for this model. The derivative of the

steering can be approximated as § = max(%)é = pd,

more details can be seen in Balazs Nemeth (2016).

2.8 State-space representation of the modified model

The presented lateral model is transformed into a poly-
topic state-space representation. One of the main sources
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of the nonlinearities of the lateral dynamics comes from
the slip-tire force characteristics. This function can be lin-
earized as F; = C;q;. C; represents the cornering stiffness
of the tire. The cornering stiffness can change in a wide
range during the operation of the vehicle thus it is handled
as a scheduling parameter, which leads to the following
state space representation:

&y = Ay(p)xy + By(p)tin, (6a)
Yo = Cp ()T, (6b)
i et AR P DO
—_— —
Ay (p) B, (p)
ma, =mo,(3+9) = 050 G0 |]. o0

where the output of the system is the lateral force (y, =

ma, = mu, (6 +1))), and scheduling vector consists of the
following variables: p = [C't(t), Cy(t), v (t)].
Other parameters of the state-matrices are:

an(p) = —O;Z(ZZJ% - zjjxf;,. - nij);( 2) T
)= T N gy (™
=L Ty
o) = Tt T ey
bi(p) = l:wfz)r e "
ba(p) = l;]wfz)r‘ "

3. APPLIED METHODS FOR OBSERVER DESIGN

In this section, the applied methods for observer design are
presented. Linear Parameter Varying (LPV) framework-
based observer design is used to estimate the slips of
vehicle (o, o), while the non-measurable scheduling pa-
rameters (Cornering stiffness Cy,C,) are continuously
computed by an Ultra-Local Model and the longitudinal
velocity can be measured.

3.1 Ultra-Local Model and Model-Free Control

The Model-Free Control strategy is a relatively new con-
trol technique, which was proposed by Fliess and Join
(2013, 2009); d’Andrea Novel et al. (2010). As advertised,
this method does not require a model of the control system
but it uses a so-called Ultra-Local Model to compensate
the nonlinearities/unknown dynamics of the system.

The basis of this algorithm is a 'phenomenological’ model,
which is given as:

yW) = F + au, (8)

where F' denotes the Ultra-Local Model, « is a free tuning
parameter of this technique, y is the measured output of

the system, v represents the derivative order, u is the
control input. The Ultra-Local Model can be computed
as:

F=y® —au 9)
The aim of the controller is to guarantee the zero steady-
state error in terms of v*" derivative of the error signal,
as:

e®) =y _ yff;} =F+au— yﬁle'} (10)
where y,..s is the reference signal. Moreover, e =0 is
guaranteed by the open loop control:

—F +y)
w= L Yret (11)
@

However, it cannot guarantee the zero steady-state error in
terms of the error signal (e = y,.; — y) thus an additional
controller (C(s)) is applied:

—F + %)+ C(s)e 2)
«Q

the structure of C'(s) is not prescribed or restricted it can
be freely chosen, such as PID Fliess and Join (2009) or
LQR Younes et al. (2016).

Note that this technique will be used to detect the change
in the cornering stiffness. Since it is used only for observa-
tion not for intervention the additional controller is set to
zero (C(s) = 0). The application of the Ultra-Local Model
for this specific problem can be found in Section IV.

Uylm =

3.2 LPV-based observer design

As presented in Section 2, the model of the lateral dynam-
ics contains three time-variant parameters or scheduling
variables, namely: longitudinal velocity (v,) and corner-
ing stiffness (C, C,). Therefore an LPV framework-based
technique is used to design an observer, which can handle
these time-dependent variables. In the rest of this subsec-
tion, a brief introduction is given to LPV system-based
observer design.

Considering a state-space representation of a system with
time-variant state matrices, see Téth (2010):

&= A(p)xr + B(p)u (13a)

y = (p)a + D(p)w (13b)
where the time variant state matrices are: A(p), B(p),
c’'(p), D(p), z is the states-vector of the system, u denotes
the control input, y is the output while w is the external
disturbance. The observer aims to estimate the nonmea-
surable states of the system, which leads to a minimization
problem:
(14)
where & is the estimated state-vector, which can be com-
puted as Kang and Kim (2020):

&= Alp)i + B(p)u+ L(p)(y — <" (p)&),  (15)
where L(p) is the observer gain vector, which must depend
on the scheduling variables (p).

e=xz—a, |e|] > min!

The following LPV model can built up by using (13) and
(15):
e = (A(p) + L(p)c" (p))e + L(p) D(p)w,
T(p)zea _
ze = C(p)e,
(16)
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where z. is a vector, which contains the predefined per-
formances. The designed observer must guarantee the pre-
defined performances while attenuating the effect of the
external disturbances . This can be achieved by minimizing
the £5 norm form the disturbances to the performances :

inf sup sup ||Ze||2, (17)
L(p:ym) p€e ||wl|, # 0, [lwll
w € Lo

where y,, contains the measured signals and ¢ covers
the range of the scheduling variable. This optimization
problem can be solved by using LMI or Lyapunov function-
based solutions, see Zemouche et al. (2016), Briat et al.
(2011).

4. OBSERVER DESIGN

In the previous sections, the models and the methods that
are used in the observer design have been presented. In this
section the main steps of the design process are detailed,
specifically for the slip estimation problem.

(1) Determination of the nominal model, which is used
for the polytopic observer design, see Section 2. The
presented model is in a continuous form, however, it
must be discretized before designing the observer, see
T6th (2010). The sampling time is set to Ty = 0.01s.

(2) Design the LPV observer, as presented in Section 3.

(3) Selection of the output and the derivative order for
the Ultra-Local Model. In this paper, yu,» = % and
v = 1 are selected since 1 is easily measurable and
independent from the LPV observer.

(4) Selection of derivative algorithm, ALIEN filter is a
frequently used technique for computing a derivative
of a noisy, measured signal, therefore it is suitable for
this application. ALIEN filter algorithm is detailed in
Polack et al. (2019).

(5) Tuning of parameter «. In the case of lateral control a
technique has been presented in Hegedus et al. (2022),
which is applicable to the observer design as well.

(6) Determination of the reference signal and its deriva-
tive and the computation of the cornering stiffness,
see Subsection 4.1.

(7) Interconnection of the whole algorithm.

The structure of the whole algorithm is illustrated in
Figure 1.

Fig. 1. Schematic structure of the observer

4.1 Computation of the reference signal and cornering
stiffness

In this subsection, the computation of the reference signal
and the cornering stiffness are presented. As mentioned the

output for the Ultra-Local Model is the yaw-rate vy, = 1/)

and the derivative order is set ¥ = 1. The Ultra-Local
Model can be approximated as:
F=¢—ad (18)

Note that u = ¢, see: (6¢). ¥(t) can be computed using the
states and the dynamic model of the vehicle (1):

i ap()Cr(t)ly G (t)Cr (L)L,
Y(t) = I h I, -

Using the Ultra-Local Model, the additional control input
can be calculated as:

(19)

—F+ ¢7'ef

o 9
where the derivative of the reference signal can be de-
termined using the ALIEN filter and the measured yaw-
rate (¢). Since the main role of the Ultra-Local Model-
based part is to eliminate the effect of nonlinearities or
unmodelled dynamics of the system,in this application, the
Ultra-Local Model is used to compensate the tire stiffness.
Let’s consider the dynamics of LPV observer without the
Ultra-Local Model:

Zy = Ay(p)Es + Bu(p)u+ L(p)(yo — ¢} (p)d0)
where &, = [&r, Gy]
The effect of the Ultra-Local Model, appears as an addi-
tional control input (tyy,) through vector B,. Moreover,
this additional control input generates a change in the
derivatives of the states (A, ), which can be written as:

;21, + Am;v = Ay(p)2 + By(p)u+ L(p)(ys — C?;(P)i')+

(20)

Uylm =

(21)

+B(p)tuim
(22)
Finally, subtracting (21) from (22):
Ay = B(p)tim. (23)

The effect of B(p)uym will be transformed into a change
in the cornering stiffness (AC;) using the following way:
Assuming that all other parameters (m,ls,l,,I,) are
known or the effects of their change on the lateral dy-
namics are negligible to the effect of the change in the
cornering stiffness. The effect of the Ultra-Local Model is
expressed as a change in the cornering stiffness.

In the first step, the state matrix (4,, see: (6¢)) can be
divided into two main parts:

_Cflf N Cf CTlflT _ Cy Vg Vg
A I v, MU I.v MU + lf+lr Ly lf
Y Crloly _ Cp Gl Cr S syl
I, v, mvue  L,vg MU \ S BfT
A1 Ay
(24)

For the sake of simplicity (¢) and (p) are neglected. A, 1
contains that parts of matrix A,, which are linked to the
cornering stiffness while elements of A, o are not related
to them.

In the second step, Cy, C, can be extracted from A, ; as:

5 Iyl
—_ f . 1 foir _ 1 C O
— I.v, muvg  L,vg MUy f
A’U,l - lrlf _ 1 _ lg . 1 |: 0 CT‘:| (25)
I, v, muy I, v, MU e —r
Ap,1,1 Cm
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It has been mentioned that the changes in the other
parameters of the vehicle can be neglected alongside the
change in tire stiffness. Therefore, the goal is to change
the stiffness values to suppress the deviation between the
measured and estimated values. This means, that the
change of the tire stiffness (ACy, AC,) are computed using

(23), (25):

Am;v = Av,l,l (CAmi')

ACy 0
0 AC.
stiffness can be computed by inverting matrix A, 11 as:

(26)

where Ca,, = } The change in the cornering

I A U T AU T Ve 4
[ lfi;}m Tvz Izzl;%C mvlm 1 {lfﬂgz ]Uulm _
To, ~ mv, —Lu,  mu, byt
_ [Acfdf}
| ACG,
(27)
Finally, the updated cornering stiffness are:
Cr(t) = Cp(t — 1) + ACy (D), (28)
Co(t) = Cpr(t — 1) + ACL(1). (29)

5. SIMULATION RESULTS

In this section, a comprehensive simulation example is
presented to show the operation and the effectiveness
of the proposed estimation algorithm. The algorithm is
implemented in MATLAB/Simulink environment and the
dynamics of the vehicle is simulated by the high-fidelity
simulation software, CarMaker. In the test scenario, a
Tesla Model S is used, the main parameters of the car
and the algorithm can be found in Table 1.

m 2100 (kg)
lg,lr | 1.5, 1.5 (m)

I, 3900 (kgm?)

) 041

Ts 0.01s

Table 1. Parameters of the test vehicle

The vehicle is driven along a section of F1 track Hun-
garoring, which contains sharp bends, where the vehicle
can reach the nonlinear zone of the tire characteristics,
see Figure 2. The velocity profile is illustrated in Figure
3. The maximum of the longitudinal velocity is set to
70km/h, which is reduced at a sharp bend. The test sce-
nario is performed two times. In the first run, the proposed
combined observer is used, while in the second one, the
LPV observed is applied with fixed cornering stiffness
(Cy = 120000N/rad, C, = 1200000N/rad).

Figure 4 shows the lateral acceleration of the vehicle during
the test scenario. As it can be seen the maximal value of it
is around 8m/s?, which indicates that the vehicle is close
to its physical limits. The steering angle is shown in Figure
5(a). The maximum of it is around 0.2rad, which is a high
value to generate high slip angles. In Figure 5(b) the yaw-
rate of the vehicle can be seen. As it can be seen it covers
a wide range 9 € [—0.63,0.38]rad/s

The estimated and the measured side-slips are depicted in
Figure 6. In case of the front slip, the proposed algorithm

1000
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[
800 600 400  -200 0 200 400
Goordinate X (m)

Fig. 2. Selected section of track
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Fig. 3. Longitudinal velocity

 (m

0 20 40 60 80 100 120
ne (s)

Yaw-rate (rad/s)

0 20 40 60 80 100 120 o 20 ) 60 80 100 120
Time (s) Time (5)

(a) Steering angle (b) Yaw-rate

Fig. 5. Steering angle and yaw-rate

provides slightly better results because the steering angle
is measured, which is an influential component of the front
slip. As it can be seen the estimation is accurate during the
whole scenario, maximal error is 0.01rad at the peak. The
average error is around 0.001rad. The pure LPV-based
observer provide worse result in both cases, the maximum
error is around 0.015rad.

— Canaker .
—— LPva UM ~ Cataker
00 (\ Iy 00

i 002
N g k

Time (s) Time (s)

(a) Front slip (b) Rear slip
Fig. 6. Slips at front and rear axes

Figures 7 illustrate the estimated and the measured cor-
nering stiffness of the vehicle. The largest change in the
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cornering stiffness is more than > 33%, which means that
the vehicle reaches the nonlinear segment of the tire-slip
characteristics. Although the estimation is accurate during
the whole test scenario, between 80—105s a small deviation
can be observed. The reason behind this phenomenon is
that the slips are relatively low in this time range and, in
parallel, the lateral forces are also low. Without enough
excitation, the estimation algorithm cannot provide ac-
curate results, which is a natural limit of all estimation
algorithms.

3 3
18210 18210

3 3
B R
o o

0 20 40

— Carlaker
—— Estimated

80 100 120 0 20 40 80 100 120

60 60
Time (s) Time (s)

(a) Cornering stiffness of front (b) Cornering stiffness of rear

Fig. 7. Cornering stiffness

Finally, the tire characteristics are built up using the slips
and the cornering stiffness, see in Figure 8. As it can
be seen the tire characteristics are recovered with high
accuracy without any expensive equipment or additional
signals.

5000
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1000

L ()
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1000

2000
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-4000
006 004 002

0 002 004 006
a (rad)

Fig. 8. Lateral forces and slips
6. CONCLUSION

In the paper, a novel slip and cornering stiffness estimation
algorithm has been proposed. The slip estimation was
based on the LPV paradigm, while the estimation of the
cornering stiffness was based on an Ultra-Local Model.
The combination of the two methods has increased the
performance level and the accuracy of the estimation
algorithm using available, measurable signals such as:

lateral acceleration (a,) and yaw-rate (). The proposed
combined method has been implemented and tested in
the simulation software, CarMaker and compared to a

conventional LPV solution.
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