
12638 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 9, SEPTEMBER 2024

Optimal Motion Design for Autonomous Vehicles
With Learning Aided Robust Control

Attila Lelkó and Balázs Németh , Member, IEEE

Abstract—This paper presents a control design framework for
the integration of robust controller and reinforcement learning-
based (RL) control agent. The proposed integration method is
applied to motion control of autonomous road vehicles, providing
safe motion. The RL-based control agent is used to determine the
steering angle and reference velocity of the vehicle to achieve high-
performance motion. The chosen reward function is used to achieve
different driving behaviors, e.g. high-velocity motion with minimal
lap time, path following, or the limitation of control energy. The
RL-based control through Proximal Policy Optimization method
during episodes is performed. Safe motion is achieved by using a
supervisory control framework which is based on the robust H∞
control method, and able to keep limits on lateral path tracking
error. The effectiveness of the proposed control through simulation
examples with comparisons to predictive control methods is illus-
trated. Moreover, the applicability of the method through a real-life
test scenario on a small-scaled test vehicle is demonstrated.

Index Terms—Robust H∞ control with learning, autonomous
vehicles, motion optimization.

I. INTRODUCTION AND MOTIVATION

VARIOUS performance specifications are posed against
autonomous vehicles, which must be guaranteed by the

control systems. Usually, there are primary performance spec-
ifications, which must be kept due to safety reasons, such as
guaranteeing vehicle motion stability, reliability, or keeping
different traffic regulations. Moreover, several further non-safety
performance specifications can be defined, which have lower
priority, e.g., providing passenger comfort, achieving economic
motion, minimization of traveling times, etc.

In recent years various solutions to guarantee performance
requirements of autonomous vehicles with control design have
been proposed. One group of the solutions is to enhance the
achieved performance level using the data-driven extension of
the classical control tools, e.g., Model Predictive Control (MPC,
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see [1], [2], [3]), model-free control (MFC, see [4]), robust
and Linear-Parameter Varying (LPV, see [5], [6], [7]) methods.
Using these methods enhanced performance levels on comfort
and energy consumption can be achieved, and similarly, the
safety performance level of the autonomous vehicles might
also be handled [8]. Robust control tools have high relevance
in the context of autonomous vehicles, as various noises, dis-
turbances, and unmodeled dynamics may arise during vehicle
motion. The impacts of these unwanted effects can be handled
using robust design methods, e.g., in [9] a robust controller has
been designed in a Driver-in-the-Loop scenario. In paper [10]
robust driver assistance system for handover scenarios has been
demonstrated, or [11] has proposed an MPC solution for achiev-
ing rollover prevention. The classical vehicle control solutions
may have the disadvantage that generally they are based on
simplified control-oriented models that result from dynamic
relationships. Although robust vehicle control synthesis tech-
niques can handle some types of uncertainties they might fall be-
hind the data-driven methods in case of high-level performance
requirements.

Using a large number of measurement data on the system and
applying data-based adaptive methods leads to another group
of solutions. Addressing performance problems involves the
implementation of learning-based techniques, particularly those
utilizing neural networks and deep learning, within a control
framework. The advantage of these methods is that the neural
network can be trained with a large amount of data obtained from
the actual operation of the vehicle, thus achieving the optimal
solution of the vehicle control problem [12]. The effectiveness
of neural networks in control applications has been investigated
in different studies, e.g., [13], [14]. A survey on deep learning
applications in vehicle control has been presented by [15].
Nevertheless, a disadvantage of using neural-network-based
methods in safety critic applications is the lack of theoretical
guarantees on safety performances. Neural networks are usually
highly complex systems designed by a numerical optimization
using a finite set of data of the problem, and the result of
the training is rated statistically. All possible scenarios cannot
be included in the training set and the generalization of the
network is hard to validate. This challenge motivated research
to provide analysis techniques on the performance evaluation of
neural-network-based control systems, e.g., papers [16], [17],
[18] focus on the verification of the designed networks. Despite
the achieved results, the developed solutions are valid for special
cases concerning the control problem or the structure of the
neural network, i.e., limiting their applications in general.
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The disadvantages of the previous two groups of solutions
have led to the development of integrated methods, in which
classical model-based control techniques and learning-based
approaches are incorporated simultaneously. The integration
aims to combine these two solutions to achieve the high per-
formance of learning-based methods, and also the robustness
and reliability of classical techniques [5]. The integration on
various levels of autonomous vehicle control can be achieved.
Advanced vehicle modeling frameworks have been developed,
which involve data processing on the step of model formulation,
e.g., through closed-loop matching [19]. Focusing on the step
of control design, it has been provided design frameworks, in
which classical and learning-based control solutions jointly have
been involved, e.g., robust [20] and LPV control with neural
networks [21], or [22] has proposed a safe model-based rein-
forcement learning method to achieve control for LPV systems.
Furthermore, data can be incorporated in the control design for
coordinating multiple unmanned vehicles [23]. The benefits of
data-aided control on this level are reduced energy consumption
or transportation network load [24], [25].

The brief literature overview shows that lots of efficient results
in the integration of classical and learning-based methods have
been achieved. Nevertheless, a limitation of the results is that
most of them have fixed structures on the control design or the
learning process. Since modularity is a crucial aspect of control
design for autonomous vehicles (see e.g., [26], [27]), the control
design method is proposed to employ independent design of
both learning-based and robust control. This concept achieves
the integration of the two controllers through a supervisor [5].
This paper aims to present an integrated vehicle control strategy
based on the previous concept, with which longitudinal and
lateral controls are designed. For achieving high-performance
motion of the vehicle, reinforcement learning (RL) is used.
For guaranteeing safe motion, robust control based on the H∞
method and a supervisor based on quadratic programming are
used. The result of the design process is a control system, which
calculates both longitudinal and lateral control inputs of the
vehicle.

The control design process is presented to optimize the motion
of the autonomous vehicle, focusing on minimizing lap time.
This problem has been chosen because there are several methods
available for its solution, which provide a basis for comparison.
For example, [28] investigates the effect of all-wheel drive on
achievable lap time via convex optimization. Different optimal
control methods for achieving minimum lap time are compared
in [29], and a fast Bayesian optimization is shown in [30]. These
methods are for offline calculation on a given track to be used
for path tracking. Learning Model Predictive Control (LMPC)
solution for small-scaled test vehicles is proposed in [3]. The
aim of LMPC is to learn the terminal cost and terminal set
during the motion of the vehicle for achieving enhanced motion
capabilities. Paper [31] proposes a Model Predictive Contouring
Controller (MPCC) solution with Gaussian Process to control
miniature race cars and achieve significant lap time reduction
compared to a baseline controller. In this solution, the lap time
minimization is built into the MPCC optimization problem, and
computes the optimal interventions online, and it is able to

Fig. 1. Scheme of the control architecture.

adapt to different racetracks. Although MPC-based solutions can
improve lap time efficiency, their disadvantage is the increased
computation time in the cases of nonlinear vehicle models and
large prediction horizons. Consequently, in this paper a novel
solution to the problem of lap time minimization is provided.
The contributions of the paper to the state-of-the-art solutions
and the existing own preliminary solution [32] are twofold. First,
the training of learning-based and the design of model-based
controllers are independent processes, but their results are built
into the control structure simultaneously. Second, the effective-
ness of the integrated control through comparative simulations
and demonstrations on a small-scaled indoor test vehicle is
presented.

The paper is organized as follows. The concept of the learning-
aided robust control is introduced in Section II. The design
process of the RL-based control design, together with the for-
mulation of the applied vehicle model is found in Section III.
The design of the robust H∞ control and the computation of
the safe velocity profile are presented in Section IV. The design
of the supervisor for connecting RL-based control and robust
control is proposed in Section V. That section also contains the
optimization process of the control loop for achieving enhanced
performance level. In Section VI the proposed control method
is evaluated, i.e., the enhancing process of the control loop
and comparisons for existing MPC-based solutions are found.
Section VII details the process of control implementation on a
small-scaled test vehicle, together with the demonstration of a
test scenario. Finally, the paper is summarized and the future
challenges are proposed in Section VIII. Moreover, at the end
of the paper, Table III contains the list of notations.

II. OVERVIEW ON THE CONCEPT OF LEARNING-AIDED ROBUST

CONTROL DESIGN

The goal of this overview is to briefly introduce the concept
of our proposed robust control design method. The scheme of
the control architecture can be found in Fig. 1. The architecture
contains three main elements, such as the robust control, the
supervisor, and the reinforcement learning (RL) based agent.
The role of the robust control and the supervisor is to guaran-
tee safety performance requirements, i.e., these two elements
together guarantee a functionality, which is similar to the safety
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filter. The role of the RL-based agent is to improve the safety
and non-safety performance levels of the control system, which
improvement is achieved through a training process. During the
operation of the system, all of these elements operate simultane-
ously, and the control input (u) is computed through the output
of the supervisor (ΔL) and the output of the robust control (uR),
such as

u = uR +ΔL, (1)

where ΔL ∈ [ΔL,min; ΔL,max] is a peak-bounded addition to
uR.

The idea behind the concept is as follows. The output of
the RL-based controller (uL) is considered to be a candidate
control input of the system. A dynamical representation of
the system in the design of the robust control is incorporated,
which results in the reference control input uR. The reason of
robustness is that u is not necessarily equal to uR, and thus,
[ΔL,min; ΔL,max] domain of ΔL addition in the design of the
robust control is considered as an uncertainty. Using uL, uR and
measurements on the system (yS), the supervisor has to select
ΔL. This selection leads to a constrained optimization task. The
objective of the optimization is to minimize ‖u(ΔL)− uL‖2

2,
i.e., u must be as close as possible to uL for achieving high
performance level in the operation. Nevertheless, this selection
is constrained by the bounds of ΔL, which means that u is in
the predefined neighborhood of uR. Moreover, the selection can
also be constrained by further criteria, e.g., the predicted tracking
error, resulting by u.

The design of the proposed control architecture has the follow-
ing steps. First, the robust control with predefined bounds onΔL

is designed. Second, the optimization process in the supervisor is
formulated. The optimization during the operation of the control
system is solved in each step. Third, the environment for the RL
process is constructed, which environment contains the designed
robust control, the supervisor, and the system itself. Fourth, the
RL process using the constructed environment is performed. The
resulting neural network after the learning process can be used,
and thus, the requested computation time is reduced during the
operation of the control system.

The proposed control concept has some connections to the
MPC-based safe learning approaches, which connections pro-
vide motivation for comparison to different existing solutions.
The most important connection is the formulated constrained
optimization task in the supervisor. Despite the MPC method,
this optimization does not contain terminal set and terminal
cost terms. Their roles are built in the robust control, which
provides the reference control input. Thus, the safe set of states
is determined by the controllability set of the robust control,
which set is further constrained by the supervisor.

From the other side, the learning task is also out of the
supervisor, because this task is involved in the RL-based control.
Consequently, it may require reduced real-time computation
effort compared to methods relying mostly on MPC with com-
plex nonlinear models, which is supported by the performed
tests on the control framework. Moreover, the separation of
different tasks into different elements, such as learning and
guaranteeing safety, can provide a modular architecture. It may

provide the possibility of replacing the RL-based controller or
the robust controller (e.g., through an updating process) without
a comprehensive redesign process on the entire control loop.
Modularity also provides the possibility of separating physically
each element, e.g., the RL-based agent can be implemented on
the cloud, while the supervisor and the robust control on the
physical device can be found [33]. Another benefit of the method
is that the design of the robust control and the formulation of
the supervisor are independent of the internal structure of the
RL-based agent. Consequently, other types of agents can also
be used, e.g., supervised learning [21]. Therefore, the proposed
control structure can be compatible with the application of
machine-learning-based techniques, which compatibility may
increase the number of application areas of the proposed method,
e.g., yL can contain video frames.

III. DESIGN OF RL-BASED AGENT FOR AUTONOMOUS

VEHICLE CONTROL

In this section, the design method of the learning-based con-
troller is detailed for handling longitudinal and lateral dynamics.
First, the vehicle model is formulated for control purposes and
second, the training process is presented. Third, the impact of
reward function selection on the achievable performance level
of the learning-based control is analyzed.

A. Formulating Vehicle Model for Integrated Control Purposes

The design of motion control for autonomous vehicles re-
quests the formulation of their dynamic models. The model has
three purposes in the integration, and thus, it depicts the validity
of the control operation, i.e., inside of the validity of the selected
vehicle model. First, the motion model is used for the training of
RL-based agents, i.e., it serves as a part of the learning environ-
ment. Second, the motion model can have a crucial role in the de-
sign of the robust control, due to its model-based property. Third,
it can be built in the supervisor to form vehicle-safety-oriented
conditions in the constrained optimization problem. All of these
tasks require a limited complexity vehicle model, i.e., to avoid
insufficiently long training process, numerical difficulties in the
robust control design, or slow real-time running performance in
the solution of the supervisory optimization process. Therefore,
in this paper, a simplified dynamical two-wheel dynamical mo-
tion model is formed [34]. In the cases of robust control and
supervisor design, the formulated vehicle model contains linear
tire-force characteristics, such as:

mv̇x = Fdrive − bvx +mvyψ̇, (2a)

mv̇y = −C(αF + αR)−mvxψ̇, (2b)

Θzψ̈ = −C(αF + αR)
l

2
, (2c)

where Fdrive is the driving force, b is a coefficient of friction in
the longitudinal velocity, C is the cornering stiffness, αF and
αR are tire side-slips at the front and rear tires respectively, and
L is the length of the wheelbase. Tire side-slip angles and vy
lateral velocity can be expressed as the functions of yaw rate
ψ̇, steering angle δ, and vx. Relations in (2) can be used in the
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robust control design and within the supervisory optimization,
resulting in local velocities in the frame of vehicle reference and
the yaw angle ψ, which can be integrated to estimate the path
tracking error. The longitudinal and lateral velocity components
of the vehicle in a global coordinate system are calculated as

Vx = vx cosψ − vy sinψ, (3a)

Vy = vx sinψ + vy cosψ, (3b)

which can be used for computing the position of the vehicle
through the integration of Vx, Vy .

For learning purposes, it is possible to slightly improve the
complexity of the model, i.e., steering dynamics and nonlinear
tire-force characteristics are formulated. Its reason is that the
training process is carried out offline, and thus, the nonlinear
model is not required to run during the control process. The
dynamics of the steering mechanism a simple low-pass filter is
introduced on the steering angle:

δ̇ =
1
Tδ

(δref − δ), (4)

where δref is the reference steering angle signal, and Tδ is
the steering model parameter for scaling its time response
characteristics. Moreover, the model for the learning process is
improved with the Pacejka tire-force model [35]. The tire force
is calculated as

Flat = Fz ·Dt sin(Ctatan(Btαi − Et(Btαi − atan(Btαi)))),
(5)

whereFz is the vertical force acting on a specific tire,Bt,Ct,Dt

andEt are constant tire model parameters andαi is the tire lateral
slip angle on the front or rear axle. Lateral tire force formulation
(5) is built in the simulation environment that is used for training
and control design purposes.

B. Training Process of the RL-Based Agent

The goal of the training process is to design a neural network
agent for control purposes, with two outputs corresponding to
the reference velocity and the steering angle of the vehicle. The
training process is performed in an RL-based framework using
the Proximal Policy Optimization (PPO) algorithm.

The target of the training process is to maximize a predefined
reward function, during the interaction of the agent with its
dynamic environment through actions. The action of the agent
is determined by sampling from a probability distribution, i.e.,
policy πθ(·|s). The policy is represented by an actor neural
network with parameter vector θ and the observed state of the
environment s. Every time step t the reward is computed as a
function of the environment state and of the action, chosen by
the agent R(st, at), where st is the environment state and at
is the chosen action at time step t. Given a state-action trajec-
tory τt = (st, at, st+1, at+1 . . . ), the finite-horizon discounted
return is the discounted sum of the rewards, collected by the
agent starting from state st at time step t and following the
policy:

R(τt) =

M−1∑
k=0

γkdR(st+k, at+k), (6)

where γd is a discount factor. It is used to exponentially decrease
the importance of future rewards compared to the present reward
along a horizon with M steps.

Another term in the training is the value of a state, which is
the expected return starting from state st and acting according
to the policy:

V (st) = E [R(τt)] , (7)

where the expected value is required, if the environment or the
policy contains stochastic elements. In the PPO algorithm, the
value function is represented by an independent critic neural
network, which is trained separately using past experience on the
achieved returns. The expected value of the states is calculated
based on the information gathered in previous episodes of the
training. After a predetermined number of episodes or time steps,
the achieved τt trajectories are collected. Using this information
the return values are calculated by discounting the rewards
corresponding to each trajectory, see (6). If different values are
achieved starting from the same state (e.g., due to the stochastic
nature of the environment or the agent), the mean of these values
is calculated.

The agent learns through interactions with the environment.
During these interactions different actions are taken, different
environment states are observed and rewards are collected. The
goodness of an action is determined relative to past experiences
using the advantage of that action. The advantage of action at
describes how much better is to take that specific action in state st
compared to acting corresponding to the policy. The advantage
function A(s, a) determines the advantage of action a in the
state s.

In practice, it can be difficult to determine the exact value
of the advantage function, but different methods are available
for estimation purposes, e.g., Generalized Advantage Estimation
in [36]. After simulating the environment for T time steps, the
estimation is as follows:

Â(st, at) =

T−t−1∑
k=0

(
γkdR(st+k, at+k)

)
+ γT−t

d V (sT )− V (st).

(8)
The first two terms of this expression are the discounted return
starting from state st based on the collected experiences, and
the third term is the estimated value of state st. In this way, the
advantage is estimated by the realized and the expected return of
state st. The value of V (st) is computed by the critic network,
which is trained using past experiences. If during the simulation
a state-action sequence is found where Â(st, at) > 0, then this
sequence is considered to be better expected. Consequently, the
probability of such sequences appearing during further interac-
tions should be increased, because they lead to larger rewards.

During the training iterations, the parameter vector of the
actor network is constantly changing as a result of the parameter
updates. This leads to different policy functions for every update.
The ratio of the probability of action at using the actual and the
old policy is denoted by:

rt(θ) =
πθ(at|st)
πθold(at|st)

. (9)
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The goal is to increase the probability of actions with posi-
tive advantage and to decrease the probability of actions with
negative advantage. This goal is expressed using the following
surrogate objective function:

L(θ) = Êt

[
rt(θ)Â(st, at)

]
, (10)

where the expected value is related to the different state-action
trajectories starting from state st. The problem with the surrogate
objective function is that without constraints it would lead to
excessively large policy updates. This is addressed by Trust Re-
gion Policy Optimization (TRPO) by limiting Kullback-Leibler
divergence [37] or the PPO method by using a clipped surrogate
objective function [38]. The algorithm described in this paper
uses the PPO method in the optimization. The reason behind this
selection is its fast training capability compared to TRPO [38].
The clipped surrogate objective function in the case of the PPO
algorithm is formed as:

LPPO(θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)

]
,

(11)
where ε is a hyperparameter of the algorithm. The above ob-
jective uses the simplified clip() function to avoid large policy
updates, this way it is significantly faster to compute a policy
update.

Improvement of the performance level by the RL-based agents
can be achieved through reward functions. At every step of
the environment, the reward is calculated, based on the reward
function of the agent. The simple parametric reward function in
the vehicle control task is formed as

R(s, a) = −Ax2
Lat,err −Bδ2

ref +Δp, (12)

where xLat,err is the lateral path tracking error, Δp is the
progress along the centerline since the last time step using an
appropriate metric. During training, if the vehicle leaves the
track a large punishment through reward functions is applied,
but the current episode is not terminated. Thus, the agent can
experience situations, which are considered potentially danger-
ous in a real-life scenario and may learn to solve these situations
by navigating back to the track as fast as possible.

The training process is performed through simulation
episodes, in which the vehicle must move on given tracks.
During the training process, the motion of the vehicle model
along various tracks is simulated, together with the consideration
of the actual learning-based agent. The closed tracks are gen-
erated from track primitive elements, such as straight sections
and bends with different curvatures. In every training scenario,
Gaussian noise is added to the agent observations to address
the uncertainty of the real-life positioning system. This noise is
scaled with the distance from the vehicle, resulting in larger un-
certainties of track points farther ahead. The expectation against
the training process is that the long-term reward is increased.

The inputs of the networks consist of measurements on the
track in the neighborhood of the vehicle, which is the position
ofN number of equidistant points of the track centerline ahead.
This results in an input vector of

xNN = [x1 y1 x2 y2 . . . xK yK ]T. (13)

where the coordinates are in the local coordinate system of the
vehicle, x denotes the local longitudinal direction (forward), y
is the local lateral direction (left), and the indices correspond to
the order of the points. Although the selection of K for a long
horizon can result in highly efficient control intervention due to
the lots of information on the track, it can overcomplicate the
neural network and consequently, training time is significantly
increased, and extracting high definition information on the track
on long distances can be challenging in real-life applications.
Therefore, K is recommended to be selected depending on the
bend curvatures on the track, i.e., the requested minimum look-
ahead distance, which determines the actual selection of δ and
vx, considering the measurement method used to estimate the
points of the centerline.

In the training environment, several noises and disturbances
are included to increase the achieved generality and robustness
of the trained agent. Additional action noise is included which is
a required part of the training process. The estimation of the cen-
terline has uncertainty in a real application, i.e., it is modeled by
a noise added to the neural network input, which is proportional
to the distance from the vehicle. Communication and hardware
delays are modeled into the environment via a constant time
delay of the control input. Additionally, the parameters of the
vehicle model change slightly during the training process.

C. The Effect of Parameter Selection in Reward Functions

The driving behavior of the agents is significantly influenced
by the weights of the reward function. The most typical example
is if one chooses weightA large, then the result will be an agent
that follows the center of the track accurately. But, if this weight
is small compared to Δp, then faster progress can be more
important and the agent tends to cut corners aggressively and
try to find the ideal path to reduce lap time. IncreasingB weight
can help avoid a larger steering angle than necessary, resulting
in fewer oscillations, more stable motion, and a decrease in the
required control energy.

To demonstrate the effect of reward parameters some training
examples have been carried out. Fig. 2(a) shows the convergence
of the cumulative reward function in selected training processes
of the RL-based lateral control. The illustration shows that
maximization of the reward can be reached, independently from
the selection of parameter A. The convergence of the reward
is achieved at 106 time steps, which has the computation time
request 24−30 min in this example.

An example of the effect of reward function parameter A can
be seen in Fig. 2(b). The graphs show three agents trained with
different reward functions, in every case B = 0, only the path
tracking capabilities and the faster lap time were considered
in the optimization process. The difference between the agents
can be seen especially in the corners, where the agents with
a smaller A weight tend to cut the corners more aggressively.
The maximal lateral errors were 0.75 m (A = 0.01), 0.54 m
(A = 10), and 0.26 m (A = 30). The time to complete the
lap was 12.5 s (A = 0.01), 12.85 s (A = 10), and 13.55 s
(A = 30). These results are in accordance with the selection
of the reward functions. Fig. 2(c) shows the reference steering
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Fig. 2. Convergence of the accumulated reward in selected training processes
(a). The effect of A reward function parameter on (b) the resulting trajectory, (c)
the reference steering angle, and (d) the reference velocity, in case of B = 0.

angle of the vehicle during the simulation. It can be seen that
high-amplitude and high-frequency oscillations are present in
the signals, especially in the case when A is high. These are
mostly unwanted control interventions that result in oscillatory
or even unstable motion in a real-life scenario with very low
comfort for possible passengers. Fig. 2(d) indicates that a more
conservative reference velocity is required to increase tracking
performance.

The unwanted oscillations in the steering control intervention
can be effectively eliminated by a related punishment term in
the reward function. The effect of such a term is illustrated in
Fig. 3. In the examples, the effect of increasing weight B is
shown in the case of two differentA values. The most significant
difference can be seen in Fig. 3(b), where the agents have
been trained using the additional punishment term for avoiding
sudden changes in the steering control signal. When cornering
or path correction is not required, then the steering angle is
chosen to be close to zero. In this case, the maximal lateral
errors are 0.29 m (A = 25, B = 0), 0.66 m (A = 0, B = 0.8),
and 0.21 m (A = 25, B = 0.8), and the lap times are 13.55 s
(A = 25, B = 0), 13.4 m (A = 0, B = 0.8), and 14.6 s (A =
25, B = 0.8). Its reason is that with the punishment term B the
lap time is relatively less important. Thus, the less aggressive
corner-cutting vehicle motion decreases the expected reward of

Fig. 3. The effect of B reward function parameter on (a) the resulting tra-
jectory, (b) the reference steering angle, (c) the reference velocity, in case of
A = 0.001.

the agent. Larger B values may lead to a slightly decreased
reference velocity profile to complete maneuvers with smaller
steering angles, see lines blue and green. Nevertheless, without
the introduction of the term B, the resulting behavior may not
be beneficial in real-life scenarios, because the impact of delays
and uncertainties may cause performance degradation.

In Fig. 3 can be seen that by increasing even one of the
two punishment terms the lap times start to increase, since
progressing along the track will have relatively less effect on the
long-term reward of the agent. There is another limiting factor on
choosing large weight values because as the punishment terms
start to increase the overall reward will decrease and there will
be a point (negative long-term reward values) where not moving
at all will be more beneficial regarding the cumulative reward,
since it results in 0 reward compared to any negative value. It
leads to a limit on the minimal lateral error with which path
tracking can be performed and a limit on the minimal steering
angle values. These training processes may result in unwanted
control policies. Consequently, the selection of parameters A
and B is a tuning problem in practical applications. During the
tuning process, the motion of the real vehicle must be analyzed.
Properly chosen A and B values can lead to a reward function
that results in a high-performing agent considering path tracking,
lap time, and control energy. The presented simulation-based
examinations provide references on the influences of terms A
and B to the vehicle motion.

IV. DESIGN OF THE ROBUST ELEMENT OF THE AUTONOMOUS

VEHICLE CONTROL SYSTEM

The design of the robust control is based on the method
presented in this section. In the control design, it is necessary
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Fig. 4. Schematic view on the loop for robust control design.

to consider that u may differ from uR, due to the additional
value of ΔL. Therefore, ΔL can be handled as an additive input
disturbance to uR, and thus, robustness against ΔL must be
guaranteed. The block diagram of the system in Fig. 1 can
be restructured to form a simple control loop with additive
input disturbance, see Fig. 4. Thus, from the viewpoint of the
robust controller, the internal structures of the supervisor and
the learning-based control agent are not considered. These are
represented by the disturbance term ΔL.

In the robust control design process, the worst-case scenario
is considered, i.e., ΔL in the robust design process through
its bound is involved. In the design is assumed that LΔ �
|ΔL,max| = |ΔL,min|, i.e., the measure of additive input dis-
turbance is symmetric. Since LΔ has an impact on the robust
control design, it influences the values of ΔL,max,ΔL,min in
the optimization process of the supervisor. ChoosingLΔ to have
a large interval allows increased differences in the two control
signals, resulting in ΔL = uL − uR often can be selected. Nev-
ertheless, it results in a more conservative robust controller to
provide robust stability even in case of larger disturbances. But,
if LΔ is tight, u is close to uR, and thus, performance level
increase from the RL-based control agent can be lost.

A. Design of Robust Lateral Controller

To design a robust control, several methods are available,
with which theoretical guarantees against bounded disturbances
can be guaranteed. In the rest of this section a robust H∞
control design method on the lateral dynamics, considering ΔL

is proposed. The design is based on the vehicle motion model
(2), which can be transformed into the following state-space
representation:

ẋ = Ax+ B2u = Ax+ B2ΔL + B2uK , (14)

whereA,B2 are matrices of the system,x = [vy ψ̇]T represents
state vector and u = δ steering angle.

The primary, i.e., the safety performance of the system is to
guarantee the limitation of the lateral error of the vehicle from
the centerline of the road:

z1 = yref − y; |z1| → min, (15)

where yref is the reference lateral position for the vehicle.
Moreover, the limitation of the steering angle is requested to
avoid the unwanted effect of actuator saturation, which leads to
further performance:

z2 = u = uK +ΔL; |z2| → min. (16)

The performance vector zK = [z1 z2]
T using the state-space

(14) can be expressed as

zK = C2x+D22w +D22uK , (17)

wherew = [yref ΔL]
T . Similarly, the formulation of measure-

ment yK = yref − y is expressed as

yK = C1x+D11w +D12uK . (18)

The control-oriented state-space representation of the system
from the dynamics, performances, and measurements on the
system is composed, such as

ẋ = A+ B2ΔL + B2uK , (19a)

yK = C1x+D11w +D12uK , (19b)

zK = C2x+D22w +D22uK . (19c)

In the design process of the H∞ controller weighting function
for scaling disturbances and for finding the balance between
different performances must be applied, see [39] for details of
selecting weighting functions and the formulation of the H∞
design problem. Using the weighting functions and the dynamic
controller-observer, represented by AK ,BK , CK ,DK matrices,
the closed loop system can be formulated as

ẋcl = Aclxcl + Bclw, (20a)

z = Ccl1x+Dcl1w, (20b)

wherew involves alsoΔL of (19a). The objective ofH∞ control
is to minimize the inf-norm of the transfer function Tz∞w. More
precisely, the problem can be stated as follows [40], [41]. The
linear matrix inequality (LMI) problem of H∞ performance is
formulated as the closed-loop RMS gain from w to z∞ does not
exceed γ > 0 if and only if there exists a symmetric and definite
positive matrix X∞ such that⎡

⎢⎣
AclX∞ +X∞AT

cl X∞Bcl CT
cl

BT
clX∞ −γI DT

cl

Ccl Dcl −γI

⎤
⎥⎦ < 0. (21)

During the robust control design, the value of γ must be opti-
mized, and as a constraint, the formed LMI (21) must be feasible.
The result of the optimization is the robust controller-observer,
whose robust stability against w can be guaranteed.

B. Computation of Safe Velocity Profile

The computation of the safe velocity profile, i.e., the actual
reference velocity is determined by the local curvature of the
track. Since the reference path yref (e.g., centerline) of the track
is considered as a known curve c(s) parameterized by the travel
distance s, its curvature can be calculated as

κ(s) =
|ċ(s)× c̈(s)|

|ċ(s)|3 . (22)

The reference velocity is calculated in a way that limits the
required lateral acceleration of the car for traction reasons:

v2
refκ ≤ ay,max, (23)
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where ay,max denotes the maximum achievable lateral acceler-
ation, based on the maximal tire force available. Its value can be
determined by tire characteristics or estimation, see e.g., [42].
The resulting reference velocity must be chosen as

vref ≤
√
ay,max

κ
. (24)

In straight sections, the curvature of the track is 0, which
results in infinite reference velocity. Thus, vref must be limited,
especially in case of low curvature values, such as vref ≤ vmax,
where vmax is the maximum velocity limit on the given road
section.

The centerline of the track is considered here as a two-
dimensional spline, however for practical reasons in simulations
or tests it is represented as a list of equidistant (x, y) coordinates,
and the curvature is estimated using numerical differentiation
instead.

V. DESIGN OF THE SUPERVISOR FOR GUARANTEEING SAFE

VEHICLE MOTION

The supervisor results inΔL signal, which is used for the com-
putation of control input u, see (1). The goal of the supervisor is
to achieve a control signal, which results in a high-performance
level for the vehicle through the minimization of the following
objective:

‖u(ΔL)− uL‖2
2 = ‖uR +ΔL − uL‖2

2 → min, (25)

where ΔL ∈ [ΔL,min; ΔL,max] is considered and ΔL =
[ΔL,Lat ΔL,Long]

T contains the additional disturbance value
respect to lateral and longitudinal controls.

The control design problem with the vehicle-safety-oriented
performance requirement on keeping lateral error under a pre-
defined value is augmented. Thus, in the case of the vehicle path
tracking control, the lateral distance from the centerline can be
limited using a model-based prediction layer in the supervisor.
The trajectory of the vehicle can be predicted on a time horizon
using (2)–(3), see [5], which results in the vector of predicted
Ppred,T vehicle positions. The lateral error of the vehicle can be
calculated as

elat,T = dist (Ppred,T , c(s)) , (26)

which can be estimated using the known points of the track
c(kΔs), where k = 0, 1, 2 . . ., andΔs is the distance with which
the centerline was discretized. Thus, the constrained optimiza-
tion task in the supervisor is formed through (25), (26) as

argmin
ΔL

‖uR +ΔL − uL‖2
2 (27a)

subject to

ΔL ∈ [ΔL,min; ΔL,max] (27b)

elat,T ≤ emax. (27c)

Infeasibility of (27), e.g., the constraints cannot be guaranteed,
is evaluated as an emergency situation for the vehicles. In these
cases, the selection of ΔL = 0 is performed and the maximum
braking command to the vehicle is sent.

Although (27) can lead to an accurate solution to the problem,
its solution in real-time can lead to difficulties. Therefore, under
practical implementations, the continuous solution of (27) can
be replaced with the following equal computation process.

1) In most of the operation of the vehicle, it can be considered
that the vehicle moves under normal vehicle dynamic
conditions, i.e., it is assumed that uL can result in the
keeping of lateral error under emax. Consequently, in
the first computation step of the supervisory process, the
assumption is checked, such as the ensuring of condition
elat,T ≤ emax with uL.

2) If the assumption in the checking process is validated to
be true, an equivalent solution of the optimization process
(27) is

ΔL,i =⎧⎪⎨
⎪⎩
uL,i − uR,i if (uL,i − uR,i) ∈ [ΔL,min; ΔL,max]

ΔL,max if (uL,i − uR,i) > ΔL,max

ΔL,min if (uL,i − uR,i) < ΔL,min,

(28)

where the indices denote the ith control input. Remark
that the selection of the bounds does not necessarily
lead to the violation of the lateral error constraint. The
achieved lateral error can be influenced by the selection
ofΔL,min,ΔL,max. For example, in the case of low-value
selection for the bounds can lead to the limitation of the
lateral error.

3) But, if the assumption in the checking process is vali-
dated to be false, the optimization process (27) must be
performed.

In the case of a practical application, the process above can
significantly reduce the computation effort, i.e., the assumption
in most of the vehicle operation is verified to be true.

A. Optimization Process for Improving Closed-Loop
Performance Level

The formed optimization processes of the robust control de-
sign (19), (21) and of the supervisor (27) show that both of them
depend on the selection of ΔL,max. In the case of large bound
selection, the performance level of the designed robust control
can be low, while at low bound selection the impact of uL on
u can be small. Therefore, an optimization process is provided
for the selection of ΔL,max, with which the performance level
of the control system can be improved, i.e., lap time can be
minimized.

The optimization process is based on the evaluation of simu-
lation scenarios. To improve the generality of the achieved solu-
tion, each simulation scenario differs from each other. It uses the
same simulation environment as for the RL training process, see
Section III-B, i.e., the motion of the vehicle model along various
tracks is simulated and noise to the lateral position measurement
is added. The evaluation is based on the computation of a cost
function J , which contains the most important metrics on the
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achieved control, such as

J = Q1

N∑
k=1

|uR,Lat(k) + ΔL,Lat(k)− uL,Lat(k)|

+Q2

N∑
k=1

|uR,Long(k) + ΔL,Long(k)− uL,Long(k)|

+Q3(N). (29)

In (29) each term contains a metric, which represents the per-
formance of the control system with the given selection of
ΔL,max. The terms are computed for each simulation scenario,
which has a length with N samples. The value of N is limited
to a selected maximum value Nmax. The first term of (29)
represents the impact of uL,Lat on the steering intervention, and
the second term reflects the impact of uL,Long on the velocity
selection. The priorities of these terms are expressed by scalar
weights Q1, Q2. Moreover, additional scalar weight Q3 in the
cost is also involved, which reflects the terminal position of the
vehicle on the track. Thus, if the vehicle performs the track,
i.e.,N < Nmax, thenQ3 = 0 is selected. But, if the track is not
performed, i.e.,N = Nmax, thenQ3 = Q3,max,Q3,max > 0 is
selected for penalizing the actual ΔL,max selection.

During the optimization process the goal is to minimize J ,
and similarly, to guarantee the robustness of the control, which
leads to the minimization process

min
ΔL,max

J, subject to 0 < γ < 1. (30)

Since the candidate values in ΔL,max can have physical limits,
e.g., the achievable steering angle, an efficient solution of the
minimization is a line search on a grid of ΔL,max. During the
optimization process, a rough grid is defined in the initial step
and then, the grid is refined, where the cost has a minimum and
the constraint is guaranteed. In (30) the value of γ depends on
the H∞ controller, and the computation of that is influenced by
ΔL,max. Its reason is that ΔL is part ofw, see (17) and thus, the
value ofΔL,max is involved in theH∞ control design process as
an upper bound. Consequently, in each step of the minimization
(30) the H∞ controller must be recomputed with the given
ΔL,max of that step. It leads to the γ term of the constraint
in (30). Nevertheless, in practice, this process can be simplified
if the relationship between ΔL,max and γ can be precomputed.
Consequently, the constraint 0 < γ < 1 can be transformed to
the selection range reduction of ΔL,max if the relationship
exists, see the illustration in the next section. The result of the
optimization process is ΔL,max, with which the robust control
can be designed (21) and the supervisory algorithm (27) can be
formed.

VI. ILLUSTRATION OF THE DESIGNED INTEGRATED

CONTROL SYSTEM

The goal of this section is to evaluate the performance of
the integrated control system through simulation examples. In
the examples, the goal of the integrated control system is to
minimize the lap time of the vehicle on a given track. The
parameters of the vehicle model from the F1TENTH type of
indoor test vehicle are derived [43]. The training of the RL-based

control agent based on the motion of the vehicle on various tracks
has been performed. The neural networks are structured in a way,
that it had 3 hidden fully connected layers containing 16, 32, and
64 neurons each and ReLU activation functions. The output layer
uses hyperbolic tangent activation to limit the control outputs
considering the steering capabilities of the vehicle. For the input
measurements of the networks, N = 5 is selected with 0.5 m
equidistant segments, i.e., 2.5 m horizon ahead of the vehicle
is considered. Based on (12), the reward function is defined as
R(s, a) = −0.5x2

Lat,err − 0.5δ2
ref +Δp.

The evaluation of the performance level is carried out based
on two examinations. First, the optimization process for improv-
ing the performance level is illustrated, i.e., the robust control
is designed and the value of ΔL,max is selected. Second, a
comparative simulation presents the performance level of the
control system, regarding the lap time minimization. All of the
presented simulations have been performed on a desktop with
an 11th-generation Intel processor.

A. Illustration of Closed-Loop Performance Level
Improvement

The optimization process in an example is illustrated, such
as the tuning of the robust control and the selection of ΔL,max.
The goal of the example is to select ΔL,max for minimizing
cost function (29). Nevertheless, in the current optimization
only the bounds on ΔL,Lat are selected, while the bounds on
ΔL,Long are fixed. Thus, this illustration aims to explore the
impact of ΔL,max,Lat on the performance of the controlled
system. The range of ΔL,Lat is considered to be symmetric,
i.e., ΔL,min,Lat = −ΔL,max,Lat.

In the example the track of each simulation scenario is
different, as in the case of the simulation environment for
computing (29). The weighting parameters of (29) are selected
asQ1 = 10;Q2 = 1;Q3,max = 1000. The optimization process
for finding minimum cost is performed on a grid between
ΔL,max,Lat = 0.01 rad. . . 0.5 rad. Around the minimum of the
cost a dense grid is selected, and a tighter grid is defined. The re-
sults of the optimization process can be found in Fig. 5. It can be
seen that the cost value decreases with increasing ΔL,Lat,max,
see Fig. 5(a). Its reason is that higher ΔL,Lat,max provides more
possibility for approaching u to uL. Nevertheless, increasing
ΔL,Lat,max leads to a more reduced level of robustness, i.e., the
increasing of γ, see also Fig. 5(a). Since γ < 1 condition must
be guaranteed, ΔL,Lat,max is increased until this condition is
not avoided. The tracking performance of the robust control is
illustrated with its maximum lateral error, see Fig. 5(b). This
analysis shows that the lateral error using the robust control can
be limited to a maximum value. The consequence of the analysis
is the selection ofΔL,Lat,max = 0.164 rad, where γ = 0.99 and
max(eLAT ) = 0.92 m values are achieved. Thus, in the con-
straint of the supervisor (27), the upper bound emax = 0.92 m
is built in, i.e., the performance level of the robust control
on the lateral error is considered as the requested minimum
performance level against the control system.

The impact of ΔL,Lat,max on the performance of the control
along a curvy section of the exemplary track is also illustrated
in Fig. 6. In this case the track is fixed for each scenario to help
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Fig. 5. Analysis of the robust control design. (a) The impact of ΔL,max on
γ, cost (b), and on tracking performance.

the comparison of them. In the case of each scenario, noises
are added to the measurements. The results of simulations with
some different ΔL,Lat,max during the reduction of the cost are
illustrated. The vehicle path with each ΔL,Lat,max selection
in a curvy section of the circuit is illustrated in Fig. 6(a).
Increasing ΔL,Lat,max leads to the smoothing of the path, i.e.,
for minimizing lap time. It can also be seen in the improvement
of δ signal, see a time section of the simulation in Fig. 6(b).
The selection of ΔL,Lat,max = 0.01 leads to fluctuating lat-
eral motion and steering angle, but at higher ΔL,Lat,max the
fluctuation is eliminated. Moreover, the reduction of lap time
can be perceived based on the time values of the peaks in the
steering signal, e.g., one of the minima of δ is around 30 s using
ΔL,Lat,max = 0.01 rad, but the same minimum peak is around
28 s usingΔL,Lat,max = 0.164 rad. Fig. 6(c) shows the achieved
lateral error signal, whose characteristics are also smooth at
increased ΔL,Lat,max value and the achievable max(eLAT ) is
reduced. The velocity profile at each ΔL,Lat,max selection is
found in Fig. 6(d), which shows that the velocity of the vehicle
during the selection process is maximized.

The presented illustrations show that the performance level
of the control system can be significantly improved through the
optimization process. It provides an explainable method for the
selection of ΔL,max from the viewpoint of the robust control
design. In the rest of the paper, the designed robust control in
the loop loop is built.

B. Illustration of the Closed-Loop Performance Compared to
Application of LMPC

The effectiveness of the proposed method through a com-
parison is illustrated. For this reason, the LMPC [3] with the

Fig. 6. Impact of ΔL,max on (a) vehicle trajectory, (b) steering intervention,
(c) lateral error, and (d) longitudinal velocity.

available codes (github.com/urosolia/RacingLMPC) has been
used. The main objective of the compared methods is to provide
vehicle trajectory with minimum lap time. The reward function
parameters were chosen to beA = 0.1 andB = 0.5, to prefer lap
time over path tracking but also reduce the unwanted oscillations
in the control input. The control inputs of the system are steering
angle and longitudinal acceleration. The noises and disturbances
in the test environment are greatly reduced compared to what

github.com/urosolia/RacingLMPC


12648 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 9, SEPTEMBER 2024

Fig. 7. Convergence plot of the lap time achieved by the LMPC. (a) Compar-
ison of (b) the resulting trajectories, (c) the steering angles and (d) longitudinal
velocities in case of the different controllers.

is used in the training of the neural network due to the lack of
robustness of the LMPC solution.

The convergence of the lap times of the LMPC can be seen in
Fig. 7(a). In the last 20 iterations, the achieved lap time is 6.8 s.
The prediction horizon of the LMPC is set to 1.4 s, which results
in the length 4.9 m at maximum vehicle velocity (3.5 m/s). The
LMPC requires various information on the track to calculate
the optimal input signal, e.g., track curvature with higher spatial
resolution. During the comparison, all of the other parameters
of the vehicle and the environment have been set to be the same
in both cases.

Fig. 7(b) illustrates the resulted trajectories on the track, i.e.,
with LMPC, with (pure) RL, and with the proposed method
(Supervised RL). In Fig. 7(c), (d) the operation of the controllers
is illustrated by showing the steering interventions and the
longitudinal velocity profiles of the vehicles. In the case of pure
RL intervention, a more aggressive velocity profile is achieved.
In the case of the proposed method, this aggressive intervention
is limited by the supervisor, i.e., steering and velocity profiles
are closer to the LMPC.

Some numerical results can be found in Table I, such as lap
time and average computation time. The average computation
time is resulted by the mean of all computation time steps, which

TABLE I
NUMERICAL RESULTS OF THE SIMULATIONS WITH LMPC COMPARISON

TABLE II
NUMERICAL RESULTS OF THE SIMULATIONS WITH MPCC COMPARISON

have been performed during each simulation with the trained
RL-based controller or the converged LMPC. Additionally, the
computation times were in the case of the pure RL in [0.89, 2.27]
ms, in the case of the Supervised RL in [4.7, 29.0] ms and in
the case of the LMPC in [19.7, 24.4] ms intervals. All simula-
tions have been performed in Python environment. The results
show that the using of a pure RL-based controller without the
supervisor can lead to reduced lap time and low computation
time. Nevertheless, due to safety reasons, the RL-based control
with the proposed robust control framework must be used. Thus,
the proposed design method can lead to acceptable results,
compared to the LMPC method.

C. Illustration of the Closed-Loop Performance Compared to
Application of MPCC

In this section the proposed method is compared with an
MPCC for Autonomous Racing from [31], which solution aims
to minimize lap time. In the case of the MPCC solution, the
prediction horizon has been set to 0.8 s and a similar look-ahead
distance has been used in the case of the RL-based control agent.
The maximal steering angle has been limited to 0.35 rd and the
maximum velocity limit is selected to 3.5 m/s in the case of
the RL-based control agent. The reward function parameters
were chosen to be A = 0.1 and B = 0.1, to prefer lap time
over path tracking and to reduce the oscillations in the steering
angle. The reason for B being different is the difference in
scale of the vehicle compared to the LMPC example. During the
comparison, the same vehicle model is used in the optimization
and simulation, which model and the circuit are adapted from
the related code (https://github.com/alexliniger/MPCC).

The resulting trajectories, the steering angle signal, and the
longitudinal velocities are shown in Fig. 8. It can be seen that
each controller can navigate through the track, without leaving
it. The MPCC and the RL controller result in slightly differ-
ent trajectories, especially in the corners with high curvature.
Nevertheless, the main objective, i.e., the value of lap time has
almost the same performance level, see Table II. The reason
for achieving different optima has two reasons. First, the highly
nonlinear nature of the vehicle model can lead to a non-convex
optimization problem, and thus, different local minima with
different trajectories can be achieved. Second, in the case of
the two simulations, different longitudinal controls for velocity

https://github.com/alexliniger/MPCC
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Fig. 8. Comparison of (a) the resulting trajectories, (b) the steering angles,
and (c) longitudinal velocities in case of the different controllers.

tracking are used. Since the longitudinal velocity is limited in
the own solution, a slightly larger lap time is resulted.

The largest difference between the two methods is the re-
quested computation time, see Table II, which results correspond
to runtime in Matlab environment. The average of the required
computation time of one simulation step has been significantly
higher in the case of the MPCC. Additionally, the computation
times were in the case of the pure RL in [0.96, 2.47] ms, in
the case of the Supervised RL in [4.2, 25.9] ms and in the case
of the MPCC in [57.5, 171] ms intervals. Its reason is that it
solves a complex nonlinear optimization task during the motion
of the vehicle, which involves the nonlinear vehicle model.
The computation times corresponding to the pure RL controller
are significantly lower compared to the other two controllers.
Nevertheless, this method can not be used because it is not able
to provide a guaranteed minimum performance level in itself.

VII. DEMONSTRATION OF THE CLOSED-LOOP PERFORMANCE

WITH IMPLEMENTATION

Finally, the operation of the control system is evaluated
through real-life experiments using F1TENTH 1:10 small-
scaled test vehicle with a two-dimensional LiDAR for environ-
ment sensing [44]. The track has been set up using cones with
0.5 m height and environmental objects of the laboratory (e.g.,
walls). The area of the path covers 10 m × 12 m and it is a flat

Fig. 9. Estimated trajectories and LiDAR measurements on the track (a).
Control inputs in the test scenario: (b) steering angles, (c) reference velocities.
Control components of the supervised control intervention at steering angle (d)
and reference velocity (e).

polished concrete surface. The shape of the resulting track is
independent of the tracks used in the training process.

The test vehicle is localized on the track with a real-time
LiDAR-based algorithm. It provides a measured signal on the
predicted centerline to the RL-based controller because it re-
quires (x, y) coordinates of the centerline ahead of the vehicle,
see (13). The generation process of the centerline contains
the following steps. First, the raw LiDAR measurements are
converted into a distance image, where every pixel has a value
of the distance of the closest measurement point to it. Second, the
measured point cloud is filtered to exclude points, which are not
resulted by the cones. Third, the numerical gradient magnitude
of the image is calculated using the Sobel gradient operator [45].
The centerline is considered to be there, where the gradients have
local maxima. Fourth, the centerline is converted into a 1-pixel
wide curve using skeletonization [46]. Finally, the resulting pixel
coordinates are transformed back to metric coordinates and a
spline is fitted into the points to get a continuous line.

A comparison of vehicle trajectories with the supervised
and the pure RL-based controls can be seen in Fig. 9(a). In
the demonstration scenario the reward function parameters are
selected asA = 0.1 andB = 0.5 to prefer lap time minimization
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and to eliminate the oscillations in the steering angle as much
as possible without performance degradation. It can be seen that
without the supervisor the pure RL-based controller is only able
to navigate one full lap and fails on the second by leaving the
track. It can be avoided through lateral error prediction of the
supervisor, with which the vehicle can complete both laps safely.
The control actions in the two cases are shown in Fig. 9(b)–(c).
It can be seen that the supervised system selected a reduced
velocity profile on the track, resulting in safer maneuvering.
In the case of the pure RL-based control, the last turn just
before the end of the track was critical, the chosen velocity
was high, and the lateral acceleration increased the roll angle
significantly resulting in inaccurate LiDAR measurements and
an uncertain positioning. The control action signals show sig-
nificant oscillation around 10 s, which is the consequence of
the inappropriate velocity selection. The oscillation in steering
intervention resulted in oscillations in the vehicle motion, which
led to track departure in the next bend. In the case of the
supervised system, the lateral acceleration is limited, i.e., safe
motion and trackkeeping were guaranteed. From the viewpoint
of lap times, the first lap on the track can be compared. In the case
of the pure RL-based control, the achieved minimum lap time is
11.05 s, and in the case of the supervised control, it has 14.24 s
value. Although the lap time with the supervisor is increased,
the safe vehicle motion during the entire maneuvering can be
guaranteed.

Fig. 9(d)–(e) show the operation of the supervised control
by comparing the candidate inputs of the RL-based agent and
the robust controller. Moreover, the resulting supervised control
input is also illustrated. The illustrations show that in the case of
lateral control, the actions of the RL-based agent were accepted
most of the time by the supervisor, but, in the longitudinal inter-
vention the selection of the safe velocity profile was dominant.

VIII. CONCLUSION

The paper has proposed a robust control design method, which
is aided by a learning process. The proposed control strategy
has been evaluated via a demonstration on motion optimization.
The effectiveness of the method has been presented through
comparisons and implementation on a test vehicle. The com-
parative analysis has shown that the achieved performance level
on lap time minimization is close to the LMPC and MPCC-
based solutions, but the requested average computation time
has been significantly reduced. The results comparisons have
illustrated the advantage of modular control structure, i.e., the
reduction of computation time is resulted by the separation of the
complex control design problem. Moreover, the consequence of
the demonstration on a test vehicle is that the proposed control
system can be effectively implemented and the achieved results
are in line with the simulation-based results. The test scenario
has shown that even if the control interventions of the RL agent
result in unsafe motion, the supervisory structure can avoid
dangerous situations, i.e., leaving the track.

One of the most important future challenges of the proposed
method is to enhance the control framework to be able to handle
dynamic obstacles on the road, e.g., the motion of pedestrians or

TABLE III
LIST OF SYMBOLS AND NOTATIONS

other vehicles. It can require the reformulation of the supervisor
to consider the stochastic nature of human motion. Moreover,
a further challenge is to develop a systematic method to select
the bounds in the supervisor, with which method the achieved
performance level can be improved. It can require the modifica-
tion of the control design and the training process, i.e., to find a
joint design process for them. Since these control elements have
different mathematical structures, their integration on the level
of design can pose further theoretical challenges.
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