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Abstract
We present a novel algorithm for separating facet-inducing inequalities for the convex-hull of
the union of polytopes representing a disjunctive constraint of special structure. It is required
that the union of polytopes admit a certain network flow representation. The algorithm is
based on a new, graph theoretic characterization of the facets of the convex-hull. Moreover,
we characterize the family of polytopes that are representable by the networks under consid-
eration. We demonstrate the effectiveness of our approach by computational results on a set
of benchmark problems.

Keywords Disjunctive programming · Embedding formulations · Branch-and-cut

1 Introduction

Modeling with disjunctive constraints is a standard technique in the theory and practice of
mathematical programming. The concept was introduced by Balas (1979), and has become
a flourishing research area with many applications (Balas, 2018).

A central question is the following: given a finite set of polyhedra P1, . . . , Pm ⊆ R
n≥0,

how can we express the constraint

x ∈
m⋃

i=1

Pi (1)

in a linear program? Balas had the idea to lift this problem into a higher dimensional space.
Suppose Pi = {x ∈ R

n | Ai x ≤ bi } for i ∈ �m�. Let � = �m�, and �� = {i ∈ � | Pi �= ∅}.
Let S(Q�) be the set of those vectors x ∈ R

n such that there exist vectors (yi , λi )i∈��

satisfying
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x −
∑

i∈��

yi = 0,

Ai yi − biλi ≤ 0, ∀i ∈ ��,
∑

i∈��

λi = 1,

λi ≥ 0, ∀i ∈ ��. (2)

Theorem 1 (Balas (1985)) cl conv(
⋃m

i=1 Pi ) = S(��).

It may not be straightforward to determine the subset �� of �. Balas has given necessary and
sufficient conditions for replacing �� by � in (2). For our purposes, the following condition
suffices.

Theorem 2 (Balas (1985)) If for every i ∈ �, some subset of the set of inequalities Ai x ≤ bi

defines a bounded nonempty polyhedron, then cl conv(
⋃m

i=1 Pi ) = S(�).

From now on, we assume that each Pi is a polytope.
An important property of the linear system (2) is that for every basic (or extreme) solution,

there exists an index i ∈ � such that x = yi and λi = 1, while yi
′ = 0 and λi ′ = 0 for all

i ′ ∈ �\{i}, see Balas (1998).
A drawback of the extended formulation (2) is that the x variables are copied m times,

which may considerably increase the size of the LP formulation. To alleviate this burden,
Vielma introduced the concept of embedding formulations (Vielma, 2018). Let Pemb

i =
Pi × εi be the embedding of polytope Pi into R

n+m , where εi ∈ R
m has a 1 in position i ,

and 0 otherwise. Then

Pemb = conv

(
m⋃

i=1

Pemb
i

)
, (3)

is the Cayley Embedding of the union of the Pi (Huber et al., 2000; Vielma, 2018).
In Kis and Horváth (2022) the concept of network-flow representable polytope has been

defined, and explored to characterize the facets of (3). We recapitulate the fundamental
definitions and key properties in Sect. 2.

Recall the notion of ideal, and non-extended formulation from Vielma (2018; 2019),
Huchette and Vielma (2019a; 2019b). Let Ax + By + Cz ≤ b, z ∈ Z

k be a formulation
of (3) and Q denote the polyhedron determined by it’s LP relaxation. We call the formulation
ideal if z is integral in the extreme points of Q, and non-extended, if it contains no y variables
(otherwise extended). Our formulation of (3) is ideal, since it gives the convex hull of feasible
points, and non-extended, since beside the original problem variables, there are only m new
binary variables to select the Pi . Note that Balas’ formulation (2) is ideal, and extended.

In the present paper we complement the results of Kis and Horváth (2022) by efficient
separation algorithms that canbeused inbranch-and-cut solvers. Todemonstrate the effective-
ness of the new cuts, and to test the separation procedures, we summarize our computational
experiments on a set of benchmark problems.

The structure of the paper is as follows. Section2 describes the necessary background and
some basic results to be used throughout the paper.We define the special cases Pemb≤ and Pemb=
of Pemb here as well. We characterize those disjunctive constraints that admit the proposed
network flow representation in Sect. 3. The affine hull of Pemb is determined in Sect. 4. In
Sect. 5 we recall the characterization of facets of Pemb≤ from Kis and Horváth (2022), and
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give a new characterization of the non-trivial facets of Pemb= , which is more general than the
result in Kis and Horváth (2022). Separation procedures are provided along with proofs of
their correctness in Sect. 6. In Sect. 7 we describe a general test problem for the separation
algorithm and summarize our computational results. We also provide a comparison to other
approaches, including Balas’ extended formulation.

2 Background and preliminary results

A network representation for Pemb consists of a network G = (V , E) along with a capacity
function cx,λ on the arcs, where G is of special structure. The set of nodes V comprises
a source node s ∈ V and a unique sink node t ∈ V . Let Vt = {v1, . . . , vn} denote the
neighboring nodes of t , and we will call them the terminal nodes. We assume that G \ {t} can
be decomposed into m subgraphs G1, . . . ,Gm . Each Gi is a directed tree rooted at s with
all leaves in Vt . In addition, we assume that for each node v j ∈ Vt there exists at least one
subgraph Gi containing v j . Moreover, for i �= i ′, V (Gi ) ∩ V (Gi ′) comprises node s, and
possibly some nodes from Vt , but they have no other nodes in common. This implies that
each v ∈ V (Gi ) \ {s} has a unique in-arc in Gi , denoted by ei (v), and a unique parent node
pi (v), where ei (v) = (pi (v), v).

The capacity function cx,λ has the following properties: if e ∈ E(Gi ), then cx,λ(e) = βeλi ,
where βe > 0 is a constant. The sum of the capacities of the arcs emanating s in subgraph
Gi is denoted by αiλi . The capacity of the arc (v j , t) is cx,λ(v j , t) = x j . The sum of the
capacities of those arcs entering t is

∑n
j=1 x j .

For simplicity, for a fixed graph G we will denote the network by N (x, λ), where x and λ

are the parameters of the capacity function. We say that N (x, λ) represents Pemb, if for each
i , when setting λi = 1, and the other coordinates of λ to 0, and for any x ≥ 0, (x, λ) ∈ Pemb

if and only if the network N parametrized by x and λ as above, admits a feasible s − t flow
of value

∑n
j=1 x j , and (x, λ) satisfies the valid equations for Pemb.

Throughout the paper, we will consider two special cases of the polyhedron Pemb. Either
the only valid equation for Pemb is

m∑

i=1

λi = 1, (4)

or all (x, λ) ∈ Pemb also satisfy

m∑

i=1

αiλi =
n∑

j=1

x j . (5)

We distinguish these two cases by Pemb≤ and Pemb= , respectively. Moreover, Pemb
� will denote

either of these two polytopes. Let R≤ := {(x, λ) ∈ R
n+m
≥0 | (4)}, R= := {(x, λ) ∈ R≤ | (5)},

and R� will denote either of them.
We continue with a couple of definitions and notations used throughout the paper. The

set U will denote a subset of the terminal nodes Vt , and U will always denote Vt \ U . For
an arc e = (u, v) we call u the tail of the arc and v the head of the arc. In graph G, for
any X ⊂ V (G), we denote the set of those arcs (u, v) such that v ∈ X and u ∈ V \ X
by ρ(X) and the set of those arcs (u, v) such that u ∈ X , and v ∈ V \ X by δ(X). Note
that for v ∈ V (Gi )\({s} ∪ Vt ), δ(v) and ρ(v) consist of arcs in E(Gi ) only. For any node
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w ∈ V (G), let σ(w) denote the subset of nodes in V (G) \ {t} consisting of w and all those
nodes reachable from w by a directed path.

An s−t cut in this network is a partitioning
[
S, S

]
of V such that s ∈ S and t ∈ S := V \S.

We call S the source side of the cut and S the sink side of the cut. Let E
(
S, S

)
be the set of

cut-arcs, with tail in S and head is S, and let Ei
(
S, S

) = E(Gi ) ∩ E
(
S, S

)
. For any subset

of nodes S ⊂ V (G), let E(S) be the set of those arcs from E(G) with both end-points in S,
and let Ei (S) = E(Gi ) ∩ E(S). For w ∈ S ∩ V (Gi ), let ciw(S) = ∑

e∈Ei
(
S∩V (σ (w)),S

) βe.

When the s − t cut is clear from the context, we simply put ciw . For w ∈ Vt , ciw(S) = 0.
An s − t cut

[
S, S

]
in G induces the following inequality:

∑

e∈E(
S,S

)
cx,λ(e) ≥

n∑

j=1

x j . (6)

Consider a network N (x, λ). We define Q≤(N ) as the set of vectors (x, λ) that satisfy (4)
and all the inequalities (6):

Q≤(N ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x, λ) ∈ R
n+m
≥0

∣∣∣∣∣∣∣∣∣∣∣

m∑

i=1

λi = 1,

∑

e∈E(
S,S

)
cx,λ(e) ≥

n∑

j=1

x j , ∀ s − t cut
[
S, S

]
in G

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (7)

We define Q=(N ) by requiring also (5):

Q=(N ) =
⎧
⎨

⎩(x, λ) ∈ Q≤(N )

∣∣∣∣∣∣

m∑

i=1

αiλi =
n∑

j=1

x j

⎫
⎬

⎭ . (8)

If the network is understood from the context, then we use the notation Q≤ and Q=. For the
sake of brevity, let Q� denote either Q≤ or Q=. An important property of these polyhedra is
that in their vertices λ = εi for some i ∈ �m�, see Kis and Horváth (2022).

Theorem 3 (Corollary 1 ofKis andHorváth (2022))Network N represents the polytope Pemb
�

if and only if Pemb
� = Q�(N ).

Wecontinuewith reduction rules for the capacity function cx,λ.We call a capacity function
reduced if for all i ∈ �m�, and v ∈ V (Gi )\({s} ∪ Vt ) the following holds:

βe ≤ βei (v) ∀e ∈ δ(v),

βei (v) <
∑

e∈δ(v)

βe.
(9)

Proposition 1 A network N = (G, cx,λ) with non-reduced capacity function can always
be transformed to a network N ′ = (G ′, c′

x,λ) with a reduced capacity function such that

Pemb
� (N ) = Pemb

� (N ′).

The proofs of Propositions 1–6 can be found in Appendix A. For an s − t cut [S, S], let
ki denote the sum of coefficients of the cut arcs that belong to E(Gi ), i.e.

ki =
∑

e∈Ei
(
S,S

)
βe (10)
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For a subset U ⊂ Vt an s − t cut with respect to U is an s − t cut
[
S, S

]
such that U ⊆ S,

and Vt\U = U ⊆ S. There may be several s − t cuts w.r.t.U , and we will be interested only
in those of smallest capacity.

Definition 1 (Dominating cut) A dominating s − t cut w.r.t. U is an s − t cut such that ki is
minimal for each i ∈ �m�, where the minimum is taken over all s − t cuts w.r.t. U .

It can be shown that there always exists a dominating s − t cut for any U ⊂ Vt , see Kis and
Horváth (2022). The dominating s − t cuts w.r.t.U are not unique in general. We will denote
the set of dominating s − t cuts w.r.t. U by Cmin (U ). All s − t cuts in Cmin (U ) have the
same capacity by definition. We can also define a partial order on Cmin (U ) based on the set
inclusion relation.

Definition 2 (Minimal/maximal dominating cut) An s − t cut
[
S, S

]
is minimal dominating

w.r.t. U if

S ⊆ S′ ∀
[
S′, S′

]
∈ Cmin (U )

and it is maximal dominating if

S′ ⊆ S ∀
[
S′, S′

]
∈ Cmin (U ) .

The minimal and the maximal dominating s − t cuts w.r.t. U are unique as proved in Propo-

sition 4 of Kis and Horváth (2022). Throughout this paper,
[
S−, S−

]
and

[
S+, S+

]
will

denote the unique minimal and maximal dominating s − t cut w.r.t. U , respectively.
Next, we give a constructive characterization of these cuts. To this end, we define a special

capacity function cU on the arcs of G as follows:

cUuv =

⎧
⎪⎨

⎪⎩

βuv if v �= t

0 if u ∈ U

M if u ∈ U

, (11)

where M is a very large number, for example M = ∑m
i=1 αi +1. With the new arc capacities

cUuv , in any minimum capacity s − t cut, the arcs (v j , t) are always cut-arcs for all v j ∈ U
and the arcs (v j ′ , t) are never cut-arcs for any v j ′ ∈ U . Thus for any minimum capacity s− t
cut

[
S, S

]
we have U ⊂ S, and U ⊂ S. Let f denote a maximum s − t flow in the network

with arc capacities cU . We call arc e tight if βe = fe. It is well-known that in any minimum
capacity s − t cut, the cut-arcs are tight. Observe that tight arcs occur only on paths from s
to U by the definition of cU . Our goal is to find sets S−, S+ such that s ∈ S− ∩ S+, S− is
minimal, S+ is maximal and all arcs leaving S− or S+ are tight.

Proposition 2 Let
[
S−, S−

]
be the minimal dominating s − t cut w.r.t. U . Let f be an s − t

flow of maximum value in the network (G, cU ). The set of cut-arcs E−:=E
(
S−, S−

)
has

the following properties:

1. All arcs from U to t belong to E−,
2. No arc from U to t is in E−,
3. The arcs in E− are tight and cover all paths from s to U,
4. E− is minimal in the sense that no proper subset of it covers all paths from s to t,
5. For all uv ∈ E− with v �= t , there is no tight arc on the unique s − u path in G.
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In a similar manner, we can derive the key properties of the maximal dominating s − t cuts
w.r.t. U .

Proposition 3 Let
[
S+, S+

]
be a maximal dominating s − t cut w.r.t. U . Let f be a maxi-

mum flow in the network (G, cU ). The set of cut-arcs E+:=E
(
S+, S+

)
has the following

properties:

1. All arcs from U to t are in E+,
2. No arc from U to t belong to E+,
3. The arcs in E+ are tight and cover all paths from s to U,
4. E+ is maximal in the sense that no proper subset of it covers all paths from s to t,
5. For all uv ∈ E+ with v �= t , there exists a path from v to U with no tight arc.

The minimal and the maximal dominating s − t cuts, respectively, satisfy the following
properties:

Proposition 4 For U ⊂ U ′ ⊆ Vt and minimal dominating s − t cuts
[
S−, S−

]
,
[
Z−, Z−

]

w.r.t. U and U ′, respectively, we have S− ⊂ Z−.

Proposition 5 For U ⊂ U ′ ⊆ Vt and maximal dominating s − t cuts
[
S+, S+

]
,
[
Z+, Z+

]

w.r.t. U and U ′, respectively, we have S+ ⊂ Z+.

Finally, consider S+ and S−, where
[
S+, S+

]
and

[
S−, S−

]
are maximal and minimal

dominating s − t cuts w.r.t. U ⊆ Vt .

Proposition 6 The connected components of the subgraph spanned by S+\S− are rooted
trees. If v ∈ S+\S− is the root node of such a tree, then ei (v) emanates from S−, and
βei (v) = civ(S

+).

Corollary 1 Let
[
S+, S+

]
,
[
S−, S−

]
be the maximal and minimal dominating s − t cuts

w.r.t. U , respectively. For all i ∈ �m�, we have
∑

e∈Ei

(
S+\S−,S+

)
βe =

∑

e∈Ei(S−,S+\S−)

βe. (12)

Now we consider the inequalities induced by dominating s − t cuts. For any U ⊂ Vt , the
dominating s − t cuts in Cmin(U ) uniquely induce the inequality

m∑

i=1

kiλi +
∑

j : v j∈U
x j ≥

n∑

j=1

x j . (13)

We can simplify this by subtracting
∑

j : v j∈U x j from both sides:

m∑

i=1

kiλi ≥
∑

j : v j∈U
x j . (14)

For any subset U ⊂ Vt , let FU be the set of vectors (x, λ) ∈ Pemb
� that satisfy the equation

m∑

i=1

kiλi =
∑

j : v j∈U
x j . (15)
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Note that (15) is obtained from (13) or (14) by turning the inequality into an equation. We
call U ⊂ Vt facet inducing for Pemb

� if FU is a facet of Pemb
� .

In the Pemb= polytope, the points of FU also satisfy

m∑

i=1

(αi − ki ) λi =
∑

j : v j∈U
x j , (16)

which can be derived by subtracting (15) from (5).
Let (x, λ) ∈ Pemb

� be a vector that satisfies an inequality induced by a dominating s − t
cut

[
S, S

]
(for some U ⊂ Vt ) at equality. Let φ be a maximum s − t flow in N (x, λ). Then

φe = cx,λ(e) for all e ∈ E
(
S, S

)
and φe = 0 for all e ∈ E

(
S, S

)
. For polytope Pemb= we

also have φv j t = x j for all j ∈ �n�.

3 Network flow representable polytopes

In this section we characterize the family of those polytopes, that admit a network flow
representation. Recall, that a family of sets S is called laminar, if

X ∩ Y �= ∅ ⇒ X ⊆ Y or Y ⊆ X (17)

holds for all X , Y ∈ S, see e.g., section 13.4 of Schrijver (2004).

Theorem 4 For i ∈ �m�, letLi be a laminar family on �n� and for each L ∈ Li , bL a positive
number, and define a polytope

Pi =
⎧
⎨

⎩x ∈ R
n≥0

∣∣∣∣∣∣

∑

j∈L
x j ≤ bL , ∀L ∈ Li

⎫
⎬

⎭ , (18)

for each of these families. Then Pemb≤ = conv
(∪m

i=1P
emb
i

)
is network flow representable,

where Pemb
i = Pi × εi .

Conversely, given a network flow representable polytope Pemb≤ = conv
(∪m

i=1P
emb
i

)
, we

can find laminar families Li , i ∈ �m� and bL > 0 for each L ∈ Li , such that the Pi satisfy
(18).

Proof To prove the statement, we first show that for a polytope Pemb≤ or Pemb= , we can
construct a network N representing it. Then we show that from a network N , we can retrieve
the systems of inequalities of (18).

Recall that a laminar family Li admits a rooted tree representation, see e.g., Edmonds
and Giles (1977). Let the graph Gi be the rooted tree representation of Li . Note that every
inequality

∑
j∈L x j ≤ bL is represented by a node ofGi , and every leaf v j ofGi corresponds

to a variable x j . Let G be the graph we get by joining the graphs Gi for all i on their leaves.
Then we add source node s and sink node t , and add arcs from every leaf to t and from s
to every node with no in-arcs. Define capacity function cx,λ as cx,λ(u, v) = bLλi if node v

corresponds to
∑

j∈L x j ≤ bL and L ∈ Li . If v = v j is a leaf, and there is no explicit upper
bound on it defined by (18), then the cx,λ(u, v j ) = bLλi where L is the minimal set in Li

that contains j . For leaf node v j , we set cx,λ(v j t) = x j . See Fig. 1 for an illustration. Let
N = (G, cx,λ) be the network flow representation.
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Fig. 1 Example for polytope Pi , the corresponding laminar system Li and the rooted tree representation Gi
along with capacity function cx,λ

We argue that for any (x, λ) ∈ Pemb
� with λi = 1, we have λi ′ = 0 for all i ′ �= i , and there

exists an s − t-flow f in N with flow value
∑n

j=1 x j , that is,

fe =
{
x j if e = (v j , t)∑

j∈L x j if e = (u, v), and v represents the inequality
∑

j∈L x j ≤ bL
(19)

for all arc e ofGi and fe = 0 if e is not inGi . Now since (x, λ) satisfies the inequalities (18), it
is guaranteed that flow values do not exceed capacity on any arcs, i.e., f is feasible s− t-flow.

For the other direction, we use again the fact that there is a one-to-one correspondance
between laminar families and rooted trees. Let N = (G, cx,λ) be the network flow rep-
resentation of polytope Pemb

� . Let Gi be the subgraph of G, where the capacity of the
arcs depend on λi . For any node v of Gi , let Lv denote the indices of terminal nodes
that can be reached from v on a directed path. Notice that (Lv)v∈V (Gi )

is a laminar fam-
ily. Let bv denote the coefficient of λi on the in-arc of node v ∈ V (Gi ). We have to

show that Pi =
{
x ∈ R

n≥0

∣∣∣
∑

j∈Lv
x j ≤ bv, ∀v ∈ V (Gi )

}
. Consider Pemb

i = Pi × εi ,

and fix λi = 1 and λi ′ = 0 for all i ′ �= i and some x ∈ R
n+ such that there is a

feasible s − t flow in N (x, λ) of value
∑n

j=1 x j . Then (x, λ) ∈ Pemb
i , which implies{

x ∈ R
n≥0

∣∣∣
∑

j∈Lv
x j ≤ bv, ∀v ∈ V (Gi )

}
⊆ Pi . The converse inclusion is obvious by

the definition of network flow representability. ��
Theorem 4 can be straightforwardly extended to the polytopes

P=
i =

⎧
⎨

⎩x ∈ R
n≥0

∣∣∣∣∣∣

n∑

j=1

x j = αi ,
∑

j∈L
x j ≤ bL , ∀L ∈ Li

⎫
⎬

⎭ , i ∈ �m�,

where αi > 0 for i ∈ �m�, since the defining equations
∑n

j=1 x j = αi have no impact on
the laminar family induced by the inequalities.
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Fig. 2 Illustration of the a�
i values

The depth of the laminar family L is the length of the longest chain, i.e., the number of
nodes of the longest path from s to t in the network minus 2. In Fig. 1, a longest chain is
{(x3), (x3, x4), (x3, x4, x5), (x1, x2, x3, x4, x5)} with length 4, while the longest path from
s to t has 6 nodes.

4 The affine hull of Pemb
�

Observe that the only valid equation for Pemb≤ is (4) provided that all terminal nodes in Vt
are connected to the source node s of the network. On the other hand, the structure of the
network may imply some additional valid equations for Pemb= beside (4) and (5).

Let κ be the number of the connected components (in the undirected sense) of the graph
G \ {s, t} and T1, . . . , Tκ be the components. By definition, there are no arcs between Tp

and Tq for any p �= q . Let U� be the subset of nodes of T� that belong to Vt . Note that
∪κ

�=1U� = Vt . Let a�
i denote the sum of the coefficients of those edges of subgraph Gi that

start in s and end in T�, i.e.

a�
i =

∑

e∈Ei (s,T�)

βe. (20)

See Fig. 2 for an illustration.

Proposition 7 The equations

m∑

i=1

a�
i λi =

∑

j : v j∈U�

x j ∀� ∈ �κ� (21)

are all valid for Pemb= .

Proof Wehave to prove that all (x, λ) ∈ Pemb= satisfy all of theEq. (21). For any (x, λ) ∈ Pemb=
we have

κ∑

�=1

m∑

i=1

a�
i λi =

m∑

i=1

αiλi =
n∑

j=1

x j =
κ∑

�=1

∑

j : v j∈U�

x j ,

since Vt = ∪κ
�=1U� and

∑κ
�=1 a

�
i = αi for all i ∈ �m�. We will prove that for any � ∈ �κ�,

for all (x, λ) ∈ Pemb= the sum of the capacity of edges that enter T� is exactly the sum of
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the capacity of the edges that leave T�. In any s − t flow in N (x, λ), the arcs that leave s
and enter T� are saturated, otherwise Eq. (5) is not satisfied. Also, the arcs leaving T� and
entering t are saturated, for the same reason. No flow that enters T� enters any other Tk , and
the conservation flow implies that the sum of the capacities of the arcs entering T� is equal
to the capacity of those arcs leaving T� and entering t , which is the statement we wanted to
prove. ��

Observation 1 Consider any face F of Pemb= . Then F consists of those points (x, λ) ∈ Pemb≤
that satisfy (5), and some other Eq. (15) for distinct subsets U ⊂ Vt .

Note that a face FU may be equal to the intersection of several FU ′ for distinct subsetsU ′ of
Vt .

Proposition 8 The system of equations consisting of (4), and (21) constitute a maximal
linearly independent equation system for Pemb= .

Proof By observation (1), Pemb= consists of those points of Pemb≤ that satisfy (5) and some
equations of the form (15) for distinct subsets U ⊂ Vt . Suppose there exists a subset U ′ of
Vt other than (U�)

κ
�=1 such that all (x, λ) ∈ Pemb= satisfy the equation

m∑

i=1

k′
iλi =

∑

j : v j∈U ′
x j , (22)

where k′
i is the coefficient of λi in the inequality (15) for U ′. We can distinguish two cases:

i) there exists some index � such that U ′ ⊂ U�, and ii) the set U ′ intersects multiple U� sets.
We will prove that case i) is impossible and we will reduce case ii) to case i). Suppose that
case i) holds. By subtracting (22) from (21) we obtain

m∑

i=1

(a�
i − k′

i )λi =
∑

j : v j∈U ′
x j . (23)

Now, since T� is connected, there exists Gi and v ∈ V (Gi )∩V (T�) such that the parent node
of v is s and at least one node from bothU ′ andU�\U ′ is reachable from v on a directed path.
Let p1 and p2 be two directed paths connecting v with nodes v j ′ ∈ U ′, and v j ′′ ∈ U�\U ′,
respectively.

We fix λi = 1, and λk = 0 for all k �= i . We construct a feasible flow φ in the network
as follows. We set φsu = βsu for su ∈ E(Gi ), otherwise φsu = 0. Then, for each w ∈
V (Gi ) \ (Vt ∪ {s}), we split the flow entering w among the out-arcs of w proportionally to
their capacities, i.e.,

φe = βe∑
e′∈δ(w) βe′

φei (v), ∀e ∈ δ(w).

We let x j equal the flow entering v j , and also let φv j t = φei(v j). Finally, we let φe = 0 for

all other arcs. This defines a feasible flow in N (x, λ). Since
∑n

j=1 x j = αi by construction,

we have (x, λ) ∈ Pemb= . Hence, (x, λ) must satisfy (22).
Observe that φe = βe for all e ∈ δGi (s) by construction (i.e., all the out-arcs of s are

saturated). Moreover, for each w ∈ V (Gi )\{s}, 0 < φe < βe for all e ∈ δ(w). Hence,
0 < φ < βe for all arcs of p1 and p2. Let ε = min{φe, βe − φe e ∈ E(p1) ∪ E(p2)}.
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We perturb φ as follows: we decrease the value of φ on the arcs of p2 by ε and increase
φ on the arcs of p1 by ε:

φ′
e =

⎧
⎪⎨

⎪⎩

φe + ε e ∈ p1
φe − ε e ∈ p2
φe otherwise

(24)

Clearly, φ′ is a feasible flow. Now let (x ′, λ) ∈ Pemb= a point such that

x ′
j =

⎧
⎪⎨

⎪⎩

x j ′ + ε if j = j ′

x j ′′ − ε if j = j ′′

x j otherwise.

(25)

Note that
∑n

j=1 x j = ∑n
j=1 x

′
j , but

∑
j∈U ′ x j �= ∑

j∈U ′ x ′
j . Since φ′ is a feasible flow

in N=(x ′, λ) of value
∑n

j=1 x
′
j , (x ′, λ) belongs to Pemb= . However (22) is not satisfied by

(x ′, λ), since
∑

j∈U ′ x j �= ∑
j∈U ′ x ′

j . Hence, Eq. (22) is not valid for all points of Pemb= , a
contradiction.

As for case (ii), we can assume that U ′ intersects exactly two of the sets U1, . . . ,Uκ

(otherwise it can be reduced to this case by induction), and that the two sets are U1 and U2

(by possibly re-labeling U1, . . . ,U�). Let
[
S, S

]
be a dominating s − t cut w.r.t. Vt\U ′. Let

T ′
1 = S ∩ T1, T ′

2 = S ∩ T2 and U ′
1 = U1 ∩ U ′,U ′

2 = U2 ∩U ′. Let k1i denote the sum of the
coefficients on those cut-arcs that enter T ′

1 and belong to Gi , and define k2i similarly for T ′
2.

Since there are no arcs between T ′
1 and T ′

2 in any direction, we can decompose Eq. (22) the
following way:

m∑

i=1

k1i λi +
m∑

i=1

k2i λi =
∑

j : v j∈U ′
1

x j +
∑

j : v j∈U ′
2

x j , (26)

which is exactly the sum of the equations

m∑

i=1

k1i λi =
∑

j : v j∈U ′
1

x j (27a)

m∑

i=1

k2i λi =
∑

j : v j∈U ′
2

x j . (27b)

This means that there is an implied valid equation acting on U ′
1, which is a proper subset of

U1, thus reducing it to case (i). ��

The above propositions give a simple method to determine a maximal system of linearly
independent valid equations for Pemb= .

5 Characterization of facet inducing s − t cuts of Pemb≤ and Pemb=

In this section we give new characterizations of the facet inducing s − t cuts for the Pemb≤
and Pemb= polytopes, respectively.
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Theorem 5 Let U be an arbitrary subset of the terminal nodes, [S−, S−] and [S+, S+] the
minimal and the maximal dominating s − t cut w.r.t. U , respectively. U induces a facet of
Pemb≤ if and only if

1. The subgraph of G induced by S+ \ {t} is connected in the undirected sense, and
2. The subgraph of G induced by S− is connected in the undirected sense.

Proof These conditions are equivalent to those of Theorem 1 in Kis and Horváth (2022). ��

Now we turn to Pemb= . In order to characterize its facets, we may assume that a maximal,
linearly independent system of valid equations for Pemb= consists of (4) and (5), see Kis
and Horváth (2022), which is equivalent to the condition that G \ {s, t} is connected (by
Proposition 8). In Kis and Horváth (2022), the characterization of non-trivial facets of Pemb=
implicitly assumes that the node-set of the network can be partitioned as {s, t}∪Vs∪Vt , where
Vs and Vt are the neighbors of the source s, and sink t , respectively, and the three subsets,
namely, Vs , Vt , and {s, t}, are pairwise disjoint. Below we give a new characterization which
is valid for any network.

Theorem 6 Suppose that the only valid equations for Pemb= are (4) and (5). Fix someU ⊂ Vt ,
and let [S−, S−] and [S+, S+] be the minimal and the maximal dominating s− t cut w.r.t. U ,
respectively. U induces a facet of Pemb= if and only if

1. the subgraph of G induced by S+ \ {t} is connected in the undirected sense and
2. the subgraph of G induced by S− \ {s} is connected in the undirected sense.

For the proof of Theorems 6, see Appendix B.
These characterizations lead to polynomial-time separation algorithms, which is the topic

of the next section.

6 Separation algorithms

The separation algorithms for both of Pemb≤ and Pemb= aim to solve the following problem:
given a point (x, λ) ∈ R∗, decide if (x, λ) ∈ Pemb

� , and if not, then determine a violated facet
inducing inequality. Both algorithms are based on the network flow representation of Pemb

� ,
and use the s − t cuts of the network.

We can decide if a vector (x, λ) ∈ R∗ belongs to Pemb
� by computing the capacity C of a

minimum capacity s − t cut in N (x, λ) and compare it to
∑n

i=1 xi . If

C <

n∑

i=1

xi , (28)

then (x, λ) is not contained in the polytope, otherwise it is, see Sect. 1.
At first, we describe twomethods to find amaximimal and a minimal dominating s− t cut,

respectively w.r.t. U ⊂ Vt in Sect. 6.1. We will need them in the separation algorithms for
Pemb≤ , and Pemb= , respectively, which are presented in Sects. 6.2 and 6.3, respectively, along
with a proof of correctness.
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6.1 Findingminimal andmaximal dominating s − t cuts w.r.t. a given set U

Wewill use the properties described in Propositions 2 and 3 for findingminimal andmaximal
dominating s − t cuts, respectively. The algorithm for finding the minimal dominating s − t
cut w.r.t.U is depicted in Algorithm 1. Initially we let S− = V \(U ∪{t}), S− = U ∪{t} and
E− = E

(
S−, S−

)
. We process each subgraph Gi separately. Let Wi denote V (Gi ) ∩ U .

We want to cover all paths from s to Wi in Gi with arcs of minimum total capacity. We
choose a node fromWi , and we examine the path from s to v in Gi , and denote it by πi (s, v).
Let e = uw be the first tight arc of the path πi (s, v). Note that all such paths contain at
least one tight arc by Proposition 2. We extend the set of cut-arcs E− with arc e and delete
those cut-arcs from E− that are in the subgraph σ(w). We delete the nodes of σ(w) from S−
and extend S− with the same nodes. We delete the terminal nodes of σ(w) from Wi . This
is repeated while Wi is not the empty set. By Proposition 2, this algorithm finds a minimal
dominating s − t cut.

Algorithm 1 Find minimal dominating s − t cut w.r.t. U
Input: U ⊆ Vt
Output:

[
S−, S−

]
minimal dominating s − t cut w.r.t. U and E− cut-arcs

Find a maximum s − t flow in (G, cU )

S− ← V \ (
U ∪ {t}), S− ← U ∪ {t}, E− ← E

(
S−, S−

)

for i = 1, . . . ,m do
Wi ← U ∩ V (Gi )
while Wi �= ∅ do

Let v ∈ Wi
πi (s, v) ← unique path from s to v in Gi
e = uw ← first tight arc of πi (s, v)

Wi ← Wi \ σ(w)

S− ← (S− \ σ(w)) ∪U
S− ← (S− ∪ σ(w)) \U
E− ← (E− \ E (σ (w))) ∪ {e}

end while
end for
return

[
S−, S−

]
, E−

For finding the maximal dominating s − t cut w.r.t. U , the procedure is the same, except
that we choose the last arc of the path πi (s, v). The corresponding algorithm is depicted in
Algorithm 2.

6.2 Facet separation algorithm for polytope Pemb≤

Consider Algorithm 3. The following results ensure that the algorithm always gives the
correct answer in polynomial time.

Consider the minimal dominating s − t cut
[
S−, S−]

w.r.t. U , and suppose that the
subgraph of G induced by S− is not connected. Let S0, S1, . . . , SN denote the node sets of
its connected components such that s ∈ S0. Let U0 = S0 ∩ Vt . See Fig. 3.

Proposition 9 For each � ∈ �1, N� there exists v ∈ Vt such that S� = {v}.
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Algorithm 2 Find maximal dominating s − t cut w.r.t. U
Input: U ⊆ Vt
Output:

[
S+, S+

]
maximal dominating s − t cut w.r.t. U and E+ cut-arcs

Find a maximum s − t flow in (G, cU )

E+ ← ∅, S+ ← V \U , S+ ← U
for i = 1, . . . ,m do

Wi ← U ∩ V (Gi )
while Wi �= ∅ do

Let v ∈ Wi
πi (s, v) ← unique path from s to v in Gi
e = uw ← last tight arc of πi (s, v)

Wi ← Wi \ (σ (w) ∩ Wi )
S+ ← (S+ \ σ(w)) ∪U
S+ ← (S+ ∪ σ(w)) \U
E+ ← E+ \ E (σ (w)) ∪ {e}

end while
end for
return

[
S+, S+

]
, E+

Algorithm 3 Find violated facet for polytope Pemb≤
Input: U ⊂ Vt , (x∗, λ∗) ∈ R≤ such that the inequality (14) induced by U is violated by (x∗, λ∗)

Output: U ′ facet inducing and violated by (x∗, λ∗)[
S−, S−

]
← minimal dominating s − t cut w.r.t. U found by Algorithm 1

if S− is not connected then
S0 ← vertex set of the connected component of G(S−) containing s
U ← S0 ∩ Vt

end if[
S+, S+

]
← maximal dominating s − t cut w.r.t. U found by Algorithm 2

if G(S+ \ {t}) is not connected then
T1, . . . , TK ← connected components of S+ \ {t}
for � = 1, . . . , K do

if U \ ⋃
k∈�K�\{�}(Tk ∩ Vt ) is violated by (x∗, λ∗) then

U ′ ← U \ ⋃
k∈�K�\{�}(Tk ∩ Vt )

end if
end for

else
U ′ ← U

end if
return inequality (14) for U ′

Proof We argue that S� ⊂ Vt for each � ∈ �1, N�, from which the statement follows. If not,
then observe that there is no arc uv of the graph G such that u ∈ S0, v ∈ S�, since S� is the
node set of a connected component of G(S−). Hence,

cx,λ
[
S− \ (S� \ Vt ), S− ∪ (S� \ Vt )

]
≤ cx,λ

[
S−, S−

]
.

Consequently,
[
S−\(S�\Vt ), S− ∪ (S�\Vt )

]
is a dominating s − t cut w.r.t. U , while S− \

(S� \ Vt ) is a proper subset of S−, a contradiction. ��
For convenience, let x� denote the capacity of the unique arc in E (S�, t) (Figs. 3 and 4).
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Fig. 3 Illustration of S−, S−\{t},U0 and S0, S1, . . . , SN node sets

Fig. 4 There is a path (in the undirected sense) unsaturated by g from U� \U to s and from s to U

Proposition 10 If (x∗, λ∗) ∈ R≤ violates the dominating s − t cuts w.r.t. U , then it also
violates the dominating s − t cuts w.r.t. U0.

Proof The minimal dominating s − t cut w.r.t.U0 is
[
S0, S− ∪

(⋃N
�=1 S�

)]
. There exists no

arc uv such that u ∈ S0 and v ∈ S� for any � ∈ �N�, since S− is not connected. Also, there
exists no arc uv such that u ∈ S� and v ∈ S− \ {t} by Proposition 9. The inequality induced
by

[
S−, S−

]
is violated by (x∗, λ∗), i.e.

m∑

i=1

kiλ
∗
i <

∑

j : v j∈U
x∗
j , (29)

and the inequality induced by
[
S0, S− ∪

(⋃N
�=1 S�

)]
is

m∑

i=1

kiλi ≥
∑

j : v j∈U
x j +

N∑

�=1

x�, (30)
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which is also violated by (x∗, λ∗). ��

From now on we assume that G(S−) is connected.
Now suppose that

[
S, S

] ∈ Cmin (U ) is violated by (x∗, λ∗), and the subgraph induced

by S+ \ {t} is not connected in the undirected sense, and the node sets of its connected
components are T1, . . . , TK for some K > 1. Let

U� = U ∪
⎛

⎝
⋃

k∈�K�\{�}
(Vt ∩ Tk)

⎞

⎠

for all � ∈ �K �. We will show that at least one of the setsU� induces a facet of Pemb≤ violated
by (x∗, λ∗).

Proposition 11 There exists � ∈ �K � such that the dominating s − t cut w.r.t. U� is violated
by (x∗, λ∗).

Proof Since (x∗, λ∗) violates the dominating s − t cuts w.r.t. U , we have

m∑

i=1

kiλ
∗
i <

∑

j : v j∈Vt\U
x∗
j . (31)

Since there are no arcs between Tr and Tq for any r �= q , the above inequality decomposes
to

m∑

i=1

K∑

�=1

k�
i λ

∗
i <

K∑

�=1

∑

j : v j∈T�∩Vt
x∗
j (32)

where k�
i denotes the portion of ki that enters T�, i.e.,

k�
i =

∑

e∈Ei(S−,T�)

βe.

Suppose for a contradiction that for each � ∈ �K � the set U� does not induce a violated cut,
i.e.,

m∑

i=1

k�
i λ

∗
i ≥

∑

j : v j∈T�∩Vt
x∗
j . (33)

Summing up these inequalities gives

m∑

i=1

K∑

�=1

k�
i λ

∗
i ≥

K∑

�=1

∑

j : v j∈T�∩Vt
x∗
j ,

which contradicts inequality (32), hence, there is at least one index � such that (33) does not
hold for �. ��

Theorem 7 If the subgraph induced by S− is connected, then for any � ∈ �K �, the dominating
s − t cut w.r.t. U� is facet inducing for Pemb≤ .
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Proof Let
[
Z+, Z+

]
denote themaximal dominating s−t cut w.r.t.U�.We first prove thatU�

satisfies condition i)ofTheorem5.To this end, it suffices to verify that Z+ = S+∪
(⋃

r �=� Tr
)
,

since then Z+ = T� ∪ {t}, and T� is connected by definition. Recall that S+ = ∪K
r=1Tr ∪ {t}

and S+ ⊂ Z+ by Proposition 5. We have to prove that we get Z+ from S+ by moving all
Tr , r �= � to the source side of the cut.

Firstly, we argue that T� ∩ Z+ = ∅. Suppose for contradiction that ∅ �= T� ∩ Z+. There is
no path from any node of T� ∩ Z+ to Tr for any r �= �. Let

[
S′, S′

]
denote the s− t cut we get

as the result of extending S+ by Z+ ∩T�. Observe that S′ ∩Vt = U , since T� ∩ Z+ ∩Vt = ∅.
Let Z� = Z+\T�. Then

[
Z�, Z�

]
is an s − t cut w.r.t. U�. Recall the definition of ki in (10),

and define k′
i analogously for [S′, S′]. If

[
S+, S+

]
dominates [S′, S′], then there exists i such

that ki < k′
i . Observe that

k′
i = ki +

∑

e∈Ei(Z+∩T�,T�\Z+)

βe −
∑

e∈Ei(S+,Z+∩T�)

βe. (34)

Since ki < k′
i by assumption, we have

∑

e∈Ei(Z+∩T�,T�\Z+)

βe >
∑

e∈Ei(S+,Z+∩T�)

βe. (35)

We define the coefficients k+
i and k�

i for
[
Z+, Z+

]
and

[
Z�, Z�

]
using (10), respectively.

We have

k�
i = k+

i −
∑

e∈Ei(Z+∩T�,T�\Z+)

βe +
∑

e∈Ei(S+,Z+∩T�)

βe. (36)

Now inequality (35) implies that k+
i > k�

i , which means that
[
Z+, Z+

]
is dominated by

[
Z�, Z�

]
, a contradiction. Otherwise, if [S′, S′] dominates

[
S+, S+

]
, then

[
S+, S+

]
is not a

dominating s− t cut w.r.t.U , a contradiction. Finally, if [S′, S′] neither dominates
[
S+, S+

]
,

nor is dominated by
[
S+, S+

]
, then they have the same capacity. But then,

[
S+, S+

]
is not

a maximal dominating s − t cut w.r.t. U , since S+ ⊂ (
S+ ∪ (

Z+ ∩ T�

))
.

Finally, we argue that for all r �= � we have Tr ⊆ Z+. Suppose for contradiction that
Tr\Z+ �= ∅. By definition, there is no path between Tr and T�, however, there exists a path
from S+ ⊂ Z+ to Tr , hence moving Tr \ Z+ to Z+ decreases the capacity of the resulting

s − t cut, which contradicts that the s − t cut
[
Z+, Z+

]
is dominating.

Now we prove that condition (ii) of Theorem 5 holds for Z−, where
[
Z−, Z−

]
denotes

the minimal dominating s− t cut w.r.t.U�. We claim that there is no cut arc on any path from

s to ∪r �=�Tr in the s − t cut
[
Z−, Z−

]
. Let cU , cU� be capacity functions as described by

Eq. (11) w.r.t. U and U�, respectively, and f be maximum flow in the network (G, cU ). We
construct a maximum flow g in (G, cU� ). First let g = f . Let π = s, v0, . . . , vn be a directed
path in subgraph Gi where vn ∈ ∪r �=�Tr ∩Vt . Since cU� (vnt) = 0, we have gvn−1vn = 0. For
each arc e of π , let ge = fe − fvn−1vn . Repeat this for all paths from s to the terminal nodes
in ∪r �=�Tr , for all subgraphs Gi . The flow g is a feasible flow in (G, cU� ) and it is maximum
flow, since we cannot increase the flow value on any paths from s to T� ∩ Vt , because f and
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thus g saturates all cut arcs separating S+ from T�. Now ge < fe holds for all arcs of all

directed paths from s to ∪r �=�Tr , hence, none of these arcs are cut arcs in
[
Z−, Z−

]
, because

those cut-arcs are saturated in every maximum flows in (G, cU� ) , see Fig. 4. Since S− ⊆ Z−
by Proposition 4, and Tr , r �= �, is a subset of Z−, by the above arguments, it follows that
Z− is connected.

��

6.3 Facet separation algorithm for Pemb=

The transformation of a set U into a facet inducing set U ′ is similar to the one described in
Sect. 6.2. For simplicity we assume that κ = 1, i.e. G \ {s, t} is connected in the undirected
sense, otherwise we run the algorithm for the components separately. See Algorithm 4.

Algorithm 4 Facet separation for polytope Pemb=
Input: U ⊂ Vt , (x∗, λ∗) ∈ R= such that the inequality (14) induced by U is violated by (x∗, λ∗)

Output: U ′ facet inducing and violated by (x∗, λ∗)[
S−, S−

]
← minimal dominating cut w.r.t. U

if S− \ {s} is not connected then
S1, . . . , SN ← connected components of S− \ {s}
for � = 1, . . . , N do

if S� ∩ Vt induces an inequality violated by (x∗, λ∗) then
U ← S� ∩ Vt
break

end if
end for

end if[
S+, S+

]
← maximal dominating cut w.r.t. U

if S+ \ {t} is not connected then
T1, . . . , TK ← connected components of S+ \ {t}
for � = 1, . . . , K do

if U \ ⋃
r∈�K�\{�}(T� ∩ Vt ) induces an inequality violated by (x∗, λ∗) then

U ′ = U \ ⋃
r∈�K�\{�}(T� ∩ Vt )

end if
end for

else
U ′ = U

end if
return inequality (14) for U ′

The following statements ensure the correctness of the algorithm.First, assume thatG(S−\
{s}) is not connected, and let S1, . . . , SN be the node-sets of its connected components. Let
U� = S� ∩ Vt .

Proposition 12 There exists � ∈ �N� such that the inequality induced by [S�, S�] is violated
by (x∗, λ∗).

Proof Suppose (x∗, λ∗) violates inequality (14) for set U . By Eq. (5), this is equivalent to

m∑

i=1

(αi − ki ) λ∗
i >

∑

j : v j∈U
x∗
j . (37)
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Fig. 5 Illustration of the k0i , k1i , . . . , kNi and α0i , α1i , . . . , αN
i values

We will decompose the αi and the ki the following way. Let

k�
i =

∑

e∈Ei

(
S�,S−

)
βe ∀� ∈ �N�, ∀i ∈ �m�

α�
i =

∑

e∈Ei (s,S�)

βe ∀� ∈ �N�, ∀i ∈ �m�

k0i = α0
i =

∑

e∈Ei

(
s,S−

)
βe ∀i ∈ �m�.

(38)

See Fig. 5 for an illustration. Observe that

αi = α0
i +

N∑

�=1

α�
i , ki = k0i +

N∑

�=1

k�
i .

We can decompose the left hand side of inequality (37) as follows:

m∑

i=1

(αi − ki ) λ∗
i =

m∑

i=1

(
α0
i +

N∑

�=1

α�
i − k0i −

N∑

�=1

k�
i

)
λ∗
i

=
m∑

i=1

(
N∑

�=1

α�
i −

N∑

�=1

k�
i

)
λ∗
i

=
N∑

�=1

m∑

i=1

(
α�
i − k�

i

)
λ∗
i ,
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and the right hand side as

∑

j : v j∈U
x∗
j =

N∑

�=1

∑

j : v j∈U�

x∗
j .

Therefore, inequality (37) implies that there exists an � such that

m∑

i=1

(
α�
i − k�

i

)
λ∗
i >

∑

j : v j∈U�

x∗
j .

Subtracting this from equality (5), we get

m∑

i=1

(
αi − α�

i + k�
i

)
λ∗
i <

∑

j : v j∈Vt\U�

x∗
j . (39)

Observe that (39) means that the inequality induced by the s − t cut [S�, S�] is violated by
(x∗, λ∗). ��

Now suppose that S− \ {s} is connected, but S+ \ {t} is not, and the node-sets of its
connected components are T1, . . . , TM . Now let

S+
� = S+ ∪

⎛

⎝
⋃

r∈�M�\{�}
Tr

⎞

⎠ and U� = Vt \ T�.

Proposition 13 There exists � ∈ �M� such that the inequality induced by [S+
� , S+

� ] is violated
by (x∗, λ∗).

Proof Recall that the dominating cut w.r.t. U being violated is equivalent to inequality (31).
We decompose ki the following way. Let

k�
i =

∑

e∈Ei(S+,T�)

βe ∀� ∈ �M�, ∀i ∈ �m�. (40)

Observe that ki = ∑M
�=1 k

�
i . Now we can decompose inequality (31):

M∑

�=1

m∑

i=1

k�
i λ

∗
i <

M∑

�=1

∑

j : v j∈Vt\U�

x∗
j . (41)

Therefore, for at least one index � we have

m∑

i=1

k�
i λ

∗
i <

∑

j : v j∈Vt\U�

x∗
j , (42)

which implies the statement. ��

Theorem 8 If the subgraph S− \ {s} is connected, then for any � ∈ �M� the set U� is facet
inducing.
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Proof We prove that the conditions (i) and (ii) of Theorem 6 hold for U� for any � ∈ �K �.

Let
[
Z+, Z+

]
denote the maximal dominating s − t cut w.r.t. U�. First we prove that Z+ =

S+ ∪
(⋃

r �=� Tr
)
and consequently Z+ = T� ∪ {t}. Note that this implies that U� satisfies

condition (i) of Theorem 6, since T� is connected by definition.
We define the arc capacities cU , cU� , and s − t flows f and g similarly to those in the

proof of Theorem 7. Then f carries 0 flow to the nodes in U , and maximum flow to the
nodes in Vt \U , and likewise, g carries 0 flow to the nodes in U� and maximum flow to the
nodes in Vt \U�. First we prove that for all r �= � we have Tr ⊆ Z+. Since there is a cut arc
between S+ and Tr which is saturated by f by construction, there is a directed path π from
s to some v j ∈ Tr ∩ U� with a positive f -flow. Since U ⊂ U�, g does not carry any flow
to v j by construction, ge < fe for each arc e of π , and thus g does not saturate any arc on
π . This means that there is no cut-arc (for the capacities cU� ) on any path from s to any Tr ,
r �= �, hence Tr ⊂ Z+ for r �= �. Moreover, this shows that Tr ⊆ Z−. ��
Second, we prove that T� ∩ Z+ = ∅. The arcs that cut T� from S+ are saturated by g, hence

they cut T� from Z+. Hence, Z+ = S+ ∪
(⋃

r �=� Tr
)
as claimed.

Let
[
Z−, Z−

]
denote the minimal dominating s − t cut w.r.t. U�, and we verify the

condition (ii) of Theorem 6. We proceed with the following:

Claim 1 The subgraph spanned by S+ \ {s} is connected in the undirected sense.

Proof Suppose for contradiction that the subgraph spanned by S+\{s} has multiple compo-
nents, S0, S1, . . . , SK . Since the subgraph spanned by S− \ {s} is connected by assumption,
one of these components contains S−\{s}. Let S0 be that component. Since S+ ∩ Vt = U =
S− ∩ Vt , no other component contains any terminal nodes. There exists at least one arc that
emanates Sk and enters Tr for some k ∈ �K � and r ∈ �N�, otherwise no terminal node is
reachable from the nodes of Sk , which contradicts that from Sk at least one terminal node
is reachable. Since Sk contains no terminal nodes or node s, it is a rooted tree with root

w ∈ V (Gi ) for some i . If cw > βei (w), then the s − t cut
[
S+, S+

]
is dominated by s − t cut

[
S+ \ Sk, S+ ∪ Sk

]
, contradiction. If cw ≤ βei (w) then the capacity function is not reduced,

since all arcs leaving Sk enter S+, contradiction. Hence we have that no such Sk exists, and
S+ \ {s} is connected. ��

To finish the proof of the theorem, it suffices to prove the following:

Claim 2 For each r �= �, there exists an undirected path connecting a node in Tr ∩ U� with

a node in U containing no cut arc in
[
Z−, Z−

]
.

Proof First suppose there exists an arc e between S− and Tr .
So there is an undirected path π containing e, which connects some node in U to some

node in Tr ∩U�. No arc of π is saturated by g, since the part of π in S− contains no saturated
arc by Proposition 2 5), the part of π in Tr has zero flow by definition of g, and similarly
ge = 0. Since no arc of π is saturated by g, it contains no cut arc.

If the arc e above does not exist, then there is an undirected path between Tr and S− which
contains a node from S+ \ S−. Recall that by Proposition 6, the subgraph spanned by S+ \ S−
decomposes to rooted trees. Let τ denote the rooted tree component of S+ \ S− that contains
a part of the said undirected path, with root node v. The parent node pi (v) of v is either in
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Fig. 6 If pi (v) ∈ S− \ {s}, there is an undirected path unsaturated by g fromU� \U to pi (v) and from pi (v)

to U

S− \ {s} or it is s. If pi (v) ∈ S− \ {s}, then there is an undirected path from Tr ∩ U� to U
with no saturated arc, since any path from s to Tr has no arcs saturated by g as seen in the
proof of Theorem 7, hence, the path from pi (v) to Tr has no saturated arcs, and any path
from pi (v) to U within S− has no saturated arcs by Proposition 2 5), see Fig. 6.

If pi (v) = s, then there is at least one arc from τ to S−, since S+ \ {s} is connected as
shown above. Since there is a path from node v to Tr with arcs unsaturated by flow g, it is
enough to show that there exists a path from v to S− with arcs unsaturated by g. Suppose for
contradiction, that all paths from v to S− contain at least one arc saturated by g, and hence
saturated by f , see Fig. 7a. Observe that τ admits a maximal subtree τ ′ rooted at v such that
the flow f saturates no arc in τ ′. Then there exists no arc from any node of τ ′ to some node
in S− by our indirect assumption. Since all arcs leaving τ ′ are saturated by f , we have

βei (v) = fei (v) =
∑

e∈δ(τ ′)
fe =

∑

e∈δ(τ ′)
βe. (43)

Hence, all arcs of τ ′ are saturated by f , therefore V (τ ′) = {v} (see Fig. 7b), and thus the
network G is not reduced (see Proposition 1), a contradiction. Therefore, there must exist at
least one path from v to S− with all arcs unsaturated by flow f , and consequently unsaturated
by flow g.

This completes the proof of the theorem. ��
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Fig. 7 The wavy lines symbolize paths with no arcs saturated by g, the thick straight lines symbolize paths
with at least one saturated arc by g

7 Computational experiments

To assess the computational efficiency of the proposed facet separation procedure (Algo-
rithm 4), we implemented it within a branch-and-cut framework, and we performed
computational experiments on a set of problem instances described below. The goal of
these experiments is to demonstrate the potential computational advantage of the separation
algorithm, and we chose a rather general test problem to do so.

7.1 Test problem

Let K ,m, n ∈ N>0 and Lk
i ⊆ 2�n� be a laminar family of subsets of �n� for k ∈ �K � and

i ∈ �m�. For all L ∈ Lk
i define bL ≥ 0, and for all k ∈ �K � and i ∈ �m�, let αk

i > 0. For
each i ∈ �m�, we define the polytope P(i, k) as the convex hull of the non-negative solutions
of the system of inequalities described by the laminar family Lk

i , αk
i and {bL }L∈Lk

i
, as in

Theorem 4, i.e.,

P(i, k) =
⎧
⎨

⎩x ∈ R
n≥0

∣∣∣∣∣∣

n∑

j=1

x j = αk
i ,

∑

j∈L
x j ≤ bL ∀L ∈ Lk

i

⎫
⎬

⎭ . (44)

By Theorem 4, conv
(⋃m

i=1 P(i, k)emb
)
has a network flow representation.
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Let w j , β j > 0 for all j ∈ �n�, while the cki (for k ∈ �K �, i ∈ �m�) are arbitrary rational
numbers. Our goal is to solve the following problem:

min
n∑

j=1

w j y j +
K∑

k=1

m∑

i=1

cki λ
k
i

s.t.
K∑

k=1

xkj ≤ β j + y j , ∀ j ∈ �n�

(xk, λk) ∈
m⋃

i=1

P(i, k)emb, ∀k ∈ �K �.

(45)

In this problem we have to find a set of vectors xk ∈ R
n , k ∈ �K �, such that each xk is in

one of the polytopes P(i, k), i ∈ �m�, the λk indicates which one, and the xk also satisfy a
set of linear constraints, with the objective of minimizing the violation of these constraints
and the total cost of the chosen alternatives.

We can restate (45) as a mixed integer-linear program:

min
n∑

j=1

w j y j +
K∑

k=1

m∑

i=1

cki λ
k
i

s.t.
K∑

k=1

xkj ≤ β j + y j , ∀ j ∈ �n�

∑

j∈L
xkj ≤ bL + (1 − λki )Mk, ∀L ∈ Lk

i , i ∈ �m�, ∀k ∈ �K �

n∑

j=1

xkj =
m∑

i=1

αk
i λ

k
i , ∀k ∈ �K �

λki ∈ {0, 1} , ∀i ∈ �m�, ∀k ∈ �K �

xkj , ≥ 0 ∀ j ∈ �n�, ∀k ∈ �K �.

(46)

The constant Mk in (46) equals
∑m

i=1 αk
i + 1 for each k ∈ �K �. We will refer to (46) as the

big-M formulation.

7.2 Methods compared and test environment

We implemented our separation procedure (Algorithm 4) in C++. We used FICO XPRESS
v9.4.1 for solving the mixed-integer linear program (46) with branch-and-cut. In our method,
called D-cuts, we used presolve with default settings, except for dual reductions, which was
turned off to enable cut generation. The built-in cuts of XPRESSwere disabled.We separated
disjunctive cuts in the root node of the search tree in at most 20 rounds, and then in one round
in every node of depth at most 20. A violated cut found by Algorithm 4 was added to the
LP relaxation of a node only if the absolute violation was at least 0.1. We compared the
performance of our D-cuts method to three other approaches.

The second method, called B&B, in our comparison was the branch-and-bound procedure
of XPRESS applied to (46) with presolve turned on (no cut generation at all).

The third approach, calledXPRS-cuts, is the default branch-and-cut of theXPRESS solver
applied to (46), using presolve and the built-in cuts of the solver.

In the fourth method we applied Balas’ reformulation (Theorem 2) to each disjunctive
constraint in (45), and solved the resulting MIP with presolve turned on.
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Table 1 Results on small and medium size instances

n D-cuts B&B
Gap Time Nodes Cuts† Root gap Gap Time Nodes Cuts Root gap

30 – 2.4s 1.35 109.9 0.0013 – 9.62s 1156.6 – 0.107

40 – 4.7s 1.1 161 0.0004 0.003 (9) 68.5s 7323 – 0.1009

50 – 6.7s 1.4 149.8 0.0001 0.016 (4) 189.6s 14907.8 – 0.1096

60 – 14.6s 1 217.5 0.0002 0.061 (0) 240s 10514.4 – 0.1272

70 – 26.6s 3 425.9 0.0007 0.084 (1) 237.5s 4601.7 – 0.1334

n XPRS-cuts Balas’ reformulation
Gap Time Nodes Cuts‡ Root gap Gap Time Nodes Cuts‡ Root gap

30 – 4.28s 2.6 n.a 0.0045 – 2s 1.05 0 0.0001

40 – 6.7s 4.5 n.a 0.0026 – 5.9s 1.25 0 0.0001

50 – 10.6s 2.5 n.a 0.0014 – 11.9s 1.1 0 0.0001

60 – 26.4s 38.2 n.a 0.0073 – 24.7s 1 0 0.0001

70 – 65.1s 165.3 n.a 0.0031 – 47.1s 1 n.a 0.0001

† Average number of D-cuts separated
‡ Built-in cuts of XPRESS separated

The experiments were performed on a notebook computer with i7-8850H CPU @
2.60GHz and Windows operating system. The root relaxation was always solved using 8
CPU threads by the barrier solver and 1 thread by the dual simplex method, whereas the
subsequent tree-search and cut generation use only one CPU thread. The run-time limit was
set to 240s for the smaller instances and 1200s for the larger ones.

7.3 Design and evaluation of computational experiments

The test problems were generated as follows. The laminar families defining each polyhedron
P(i, k) have depth 3 in all test instances, cf. Sect. 3. We generated 10 random problem
instances for each n ∈ {30, 40, 50, 60, 70, 100, 130}, whilem and K were both set to n in all
cases. The laminar sets Lk

i , the parameters αk
i , and the right-hand-sides bL for each L ∈ Lk

i
were chosen randomly while ensuring that the corresponding network be reduced. Finally,
the parameters β j , and the weightsw j and cki were chosen as follows: β j is a random number

from the interval [b j/2, 1.5b j ], where b j = ∑K
k=1 min{bL | j ∈ L, L ∈ Lk

i , i ∈ �m�} is
the sum of the smallest non-zero upper bounds on x j over all the disjunctive constraints.
The weights w j and cki are chosen uniformly at random from the intervals [0, 10.0] and
[−200,+200], respectively. The above choices were made after some preliminary tests to
make difficult instances.

7.3.1 Results on small andmedium size instances

In this section we summarize our computational results on those instances, where 30 ≤ n ≤
70. We ran all four methods on each problem instance in this class. Tables 1 shows for each
n average values over the 10 instances of the group. For each method and group of instances,
we provide the average optimality gap (gap), the average running time in seconds (time),
the average number of search tree nodes (nodes), the average number of cuts (cuts), and
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the average root gap (root gap). The optimality gap of a method on a problem instance is
computed as (ub− lb)/ub, where ub and lb are the best upper and lower bounds obtained by
themethod, respectively. A dash ’-’ in the column ’gap’ indicates that the optimumwas found
for all instances in the group. In case of a positive average gap, we provide in parenthesis the
number of instances solved optimally among the 10 instances in the group. The content of the
column cuts depends on the method. For the D-cuts method, it contains the average number
of cuts separated, for B&B it is a ’-’ throughout, since no cuts are generated at all. In the case
of the XPRS-cuts method, only the built-in cuts of the solver are used, but we have no data
available for their number (n.a.), whereas when using Balas’ reformulation, no built-in cuts
were generated in most cases, except for one instance for n = 70. The root-gap is calculated
by the formula (ub − root_lb)/ub, where ub is the best upper bound, and root_lb is the
lower bound after processing the root node including the separation of cuts when it applies.

In all the approaches, the node LPs were presolved by the XPRESS solver, which reduced
the computation times significantly. The root LPs were solved with default setting in all
cases, which means that the solver applied the dual simplex using one thread, and the parallel
barrier solver using 8 threads. After solving the root LP, the D-cuts method strengthened
it by at most 20 rounds of cut generation, which led to the optimal solution in most cases.
This can be seen by the low average number of search tree nodes. We can observe that as n
increases, the average computation time, and the average number of cuts increase as well, but
the average number of search tree nodes remains low. In contrast, without cut generation, the
B&B method found the optimum only for small values of n. As n increases, the number of
instances solved optimally decreases, while the average optimality gap increases. This is due
to the run-time limit of 240s, since as n increases, the size of the MIP formulation increases
as well. By the same token, the average solution time increases, and the number of search
tree nodes visited decreases. The XPRS-cuts method clearly outperforms the B&B method,
but performs worse than D-cuts, especially for larger values of n.

Balas’ extended formulation has a stable behavior. Note that the resulting MIP has much
more variables and constraints than the big-M formulation. The reason is that the xk vector
variables are copied asmany times as the number of alternatives in the disjunctive constraints,
cf. (2). In practice, this means that if xk ∈ R

n , then there are n copies of xk , since we have
m = n alternatives in every disjunctive constraint in all the problem instances. The number
of constraints is multiplied analogously. We also observed that presolve could not reduce
the size of the resulting MIPs. However, solving the root LPs using 9 CPU threads helped a
lot in reducing the computation times. As it turned out, the barrier solver implementation of
XPRESS exploited parallel processing to a great extent.Without this feature, Balas’ extended
formulation would not be a competitive method for solving the problem at hand. In most
cases, the solution of the root LP and presolve found an optimal solution, and the built-in
cuts were separated only for one problem instance with n = 70.

Based on the results, we can conclude that for n ≥ 40, the fastest method is D-cuts,
and the second place is shared between XPRS-cuts and Balas’ extended formulation. Note
though that with Balas’ extended formulation the optimum was found in the root node in
most cases, and it had a more stable behavior than XPRS-cuts. The longer running time with
Balas’ extended formulation is primarily due to the significantly larger problem sizes the
solver must handle with this approach. However, parallel processing also plays a crucial role
in efficiently solving the root LPs, particularly when using Balas’ extended formulation.
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Table 2 Results on large instances

n D-cuts D-cuts + XPRS-cuts
Gap Time Nodes Cuts† Root gap Gap Time Nodes Cuts† Root gap

100 – 125.9s 3 605.7 0.0007 – 119.1s 3.2 97.5 0.0010

130 – 358.4s 12.1 915.8 0.0195 – 294.1s 8.3 145.4 0.0179

n XPRS-cuts Balas’ reformulation
Gap Time Nodes Cuts‡ Root gap Gap Time Nodes Cuts‡ Root gap

100 – 133.2s 91.8 n.a 0.0119 – 242.5s 1.8 n.a 0.0001

130 – 393.5s 372.1 n.a 0.1238 – 553.2s 1.3 n.a 0.0001

† Average number of D-cuts separated
‡ Built-in cuts of XPRESS separated

7.3.2 Results on large instances

We also tested our methods on instances with n ∈ {100, 130} jobs. We run four methods
on each problem instance: D-cuts, XPRS-cuts, Balas’ reformulation, and a combination of
D-cuts, and XPRS-cuts, which we call “D-cuts + XPRS cuts”. In this method, we configured
the xpress solver to use built-in cuts, and also our separation procedure for D-cuts. Our
separation subroutine was called by the solver after generating built-in cuts. In the root node
of the search tree D-cuts cuts were separated in at most 10 rounds, and for one round in all
other nodes. We have also tested B&B, but it was always inferior to any other methods, so
we do not provide detailed results with that method. We set the run-time limit to 1200s.

Table 2 presents the results, highlighting that the “D-cuts + XPRS-cuts” method is the
fastest on average, followed closely by D-cuts. Both of these methods generate only a small
number of search tree nodes. In contrast, XPRS-cuts is slower on average, while Balas’
reformulation, though the slowest, generates the fewest search tree nodes.

Figure 8 illustrates the average run time and variance across the 10 instances for n ∈
{100, 130}. Notably, D-cuts and Balas’ reformulation exhibit the lowest run time variance
across both instance groups, while XPRS-cuts shows the highest variance.

We conclude that on the large instances, the best method is “D-cuts + XPRS-cuts”, and
D-cuts is the second best.

8 Final remarks

In this paper, we have described polynomial time exact separation algorithms for disjunctive
constraints with a network-flow representation. We have also identified the disjunctive con-
straints that can be represented in this manner. Our computational experiments on a set of
benchmark problems demonstrate the superiority of our approach. The results indicate that
the new cuts can significantly reduce the computational time of a branch-and-cut procedure,
outperforming general cutting planes applied to the same formulation.

Balas’ reformulation shows a solid performance. In most cases, the optimum of a test
problem was found already in the root node without cutting and branching (with the help
of presolve and heuristics). In fact, the LP relaxation of Balas’ reformulation of (45) is
tighter than that of (46) without adding our cutting planes. Nevertheless, when a disjunctive
constraint can be represented by a network flow, our modeling approach and separation
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Fig. 8 Average run time and variance

procedures constitute a viable alternative to Balas’ extended formulation, as our preliminary
computational results demonstrate.

A further approach for solvingMILPswith disjunctive constraints is Dantzig–Wolfe refor-
mulation with subsequent column generation. For instance, Sadykov and Vanderbeck (2013)
applied branch-and-price for solving bin packing problems with conflicts, while Almathkour
et al. (2024) proposed branch-and-cut-and-price for the 2-connected subgraph problem with
disjunctive constraints.

Our methodology can be applied to any disjunctive constraint with a network-flow rep-
resentation, facilitated by our general separation procedure that only requires a weighted
network as specified in Sect. 2.

In the future, we plan to apply our methodology to specific problems that include network-
flow representable disjunctive constraints.

Appendix A Proofs of statements in Sect. 2

Proof of Proposition 1 First we reduce the capacity function such that for each i ∈ �m�, and
v ∈ V (Gi )\({s} ∪ Vt ):

βe ≤ βei (v) ∀e ∈ δ(v),

βei (v) ≤
∑

e∈δ(v)

βe.
(A1)

Let c′
x,λ be the resulting capacity function. Then the set of feasible flows in N = (G, cx,λ)

and N ′′ = (G, c′
x,λ) is the same, see Kis and Horváth (2022). Next we apply the following
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Fig. 9 Replacement of uv ∪ δ(v)

transformation for any v ∈ V (Gi ) \ ({s} ∪ Vt ) such that

βei (v) =
∑

e∈δ(v)

βe.

Let u = pi (v) be the parent node of v. We drop the edge uv of Gi and replace each edge
vw ∈ δ(v) by the edge uw of the same capacity, see Fig. 9. Let N ′ = (G ′, c′

x,λ) be the
resulting network. It is easy to see that if f is a feasible s − t flow in N = (G, cx,λ), then
there exists a feasible s − t flow f ′ in N ′ such that

∑
e∈δG (s) fe = ∑

e∈δG′ (s) f ′
e , and vice

versa, from which the statement follows. ��
Proof of Proposition 2 Properties (1) and (2) follow from U ⊂ S− and U ⊂ S−. Property
(3) holds, because the cut-arcs are tight. Because of property (ii), all paths form s to U
contains at least one tight arc. Property (4) holds, otherwise if there were a proper subset of
E− which is still an s − t cut, we could decrease the capacity of the cut. For property (5),
suppose for the sake of a contradiction that there exist an arc uv ∈ E− and a tight arc ww′
on the unique path from s to u. Note that since uv ∈ E−, it is tight, hence, v /∈ U . Then[
S− \ σ(w′), S− ∪ σ(w′)

]
is also an s − t cut w.r.t.U , and S− \σ(w′) ⊂ S−. We claim that

the capacity of the cut
[
S− \ σ(w′), S− ∪ σ(w′)

]
is the same as that of

[
S−, S−

]
. By the

definition of cU , all the flow through ww′ goes to the nodes inU , hence the total capacity of
cut arcs in σ(w′) equals to that of arc ww′. Hence the two s − t cuts have the same capacity.

This contradicts that
[
S−, S−

]
is a minimal dominating s − t cut. ��

Proof of Proposition 3 Properties (1) to (4) can be proved analogously to those of Proposi-
tion 2. For property (5), suppose for contradiction that there exists an arc uv ∈ E+ such that
t �= v and each path from v to U has a tight arc. Let E ′ be a subset of these cut-arcs such
that no subset of E ′ covers all paths from v to U . By flow conservation, the total capacity of
the arcs of E ′ equals to that of uv. Then S+ can be extended by the nodes of σ(v) from v

to the tails of the arcs of E ′. The resulting s − t cut has the same capacity as
[
S+, S+

]
, and

its source side strictly contains S+. Hence,
[
S+, S+

]
is not a maximal dominating s − t cut,

which is a contradiction. ��
Proof of Proposition 4 Let cU , cU

′
be capacity functions as described by Eq. (11) w.r.t. U

and U ′, respectively, and f be maximum flow in the networks (G, cU ). We construct a
maximum flow g in (G, cU

′
). First let g = f . Let π = s, v0, . . . , vn be a directed path in
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G where vn ∈ U ′\U . Since cU
′
(vnt) = 0, we have gvn−1vn = 0. For each arc e of π , let

ge = fe − fvn−1vn . Repeat this for all paths from s to the terminal nodes in U ′ \ U . Let μe

denote the total decrease of flow on arc e. Let π ′ denote a path from s to U ′. For each arc e
on the path π ′, let ge = ge +mine∈π ′ {βe − ge}. Repeat this for all paths from s toU ′. Let νe
denote the total increase of flow on arc e. We argue that for each arc spanned by S− we have
μe ≥ νe. If not, then f was not a maximum s − t flow in (G, cU ).

The flow g is a feasible flow in (G, cU
′
) and it is a maximum s − t flow in (G, cU

′
), since

we cannot increase the flow value on any paths from s to U ′.
Observe that no arc e spanned by S− is saturated by g, since μe ≥ νe. ��

Proof of Proposition 5 Let cU , cU
′
be capacity functions as described by Eq. (11) w.r.t. U

and U ′, respectively, and f be maximum flow in the networks (G, cU ). We construct a
maximum flow g in (G, cU

′
). First let g = f . Let π = s, v0, . . . , vn be a directed path in

G where vn ∈ U ′\U . Since cU
′
(vnt) = 0, we have gvn−1vn = 0. For each arc e of π , let

ge = fe − fvn−1vn . Repeat this for all paths from s to the terminal nodes in U ′ \ U . Let μe

denote the total decrease of flow on arc e. Let π ′ denote a path from s to U ′. For each arc e
on the path π ′, let ge = ge +mine∈π ′ {βe − ge}. Repeat this for all paths from s toU ′. Let νe
denote the total increase of flow on arc e.

If there is an arc uv spanned by S+ which is saturated by g, consider the subtree τv rooted

at v. Let E ′ = E
(
S+, S+

)
∩E(τv). By definition, f saturates all arcs in E ′. Sinceμuv ≥ νuv ,

f saturates arc uv as well, hence, the capacity of uv is equal to the sum of capacities of arcs
in E ′. The flow g on arc uv can only go through the arcs of E ′, since there is no flow from v

to any node inU . Therefore, g must saturate all arcs in E ′. Hence, by Proposition 3 5), uv is
not a cut arc. Consequently, no arc spanned by S+ is a cut arc in (G, cU

′
), hence, S+ ⊂ Z+.��

Proof of Proposition 6 It follow from the structure of the network that any subgraph spanned
by a subset of V (G) \ (Vt ∪ {s, t}) decomposes to rooted trees. The node-set S+ \ S− does
not contain terminal nodes, and the nodes s and t , hence, it spans rooted trees. Let τv denote
the rooted tree with root node v ∈ S+ \ S−. Suppose v ∈ V (Gi ). Since v ∈ S+, it is on a
directed path from source s to some terminal node inU . Recall the definition of civ in Sect. 1.
By definition, civ(S

+) = ∑
e∈Ei

(
V (τv),S+

) βe.

Suppose for contradiction that civ �= βei (v). If civ > βei (v), then the s − t cut
[
S+, S+

]

is dominated by the s − t cut
[
S+ \ V (τv), S+ ∪ V (τv)

]
. If civ < βei (v), then the s − t cut

[
S−, S−

]
is dominated by the s − t cut

[
S+, S+

]
. ��

Appendix B Proofs from Sect. 5

Proof of Theorem 6 Necessity: Since Pemb= ⊆ Pemb≤ , the set of the facets of Pemb= is a subset
of the set of the facets of Pemb≤ , therefore, condition (1) is necessary, as proved in Theorem 5.
Indirectly, suppose that condition (2) is not satisfied byU , and the subgraph of G induced by
S− \ {s} has multiple connected components Z1, . . . , Zq . Let Ui denote V (Zi ) ∩ Vt . Recall
the inequality (14) induced by U , and the corresponding face FU defined by Eq. (15), or
equivalently, by Eq. (16).

For � ∈ �q�, let α�
i denote the sum of the coefficients of λi on those arcs of Gi that enter

the component Z�, α0
i is that of those arcs from s to S−, k�

i is the sum of coefficients of λi
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on those cut arcs that leave the component Z�, and k0i is that of those cut arcs from s to S−.
Clearly, k0i = α0

i , and

αi =
q∑

�=0

α�
i , ki =

q∑

�=0

k�
i . (B2)

Using this, we can rewrite the left hand side of equality (16):

m∑

i=1

(αi − ki )λi =
m∑

i=1

( q∑

�=1

(
α�
i − k�

i

))
λi (B3)

We can observe that U = ∪q
�=1U�. The right hand side of Eq. (16) can be decomposed as

∑

j : v j∈U
x j =

q∑

�=1

∑

j : v j∈U�

x j . (B4)

Using Eqs. (B3) and (B4) we obtain an equation equivalent to (16):

q∑

�=1

m∑

i=1

(
α�
i − k�

i

)
λi =

q∑

�=1

∑

j : v j∈U�

x j (B5)

We will show that (B5) implies q equations all valid for FU , and independent of (16). That
is, fix some index μ ∈ �q�, and consider the s − t cut induced by [{s} ∪ Zμ, {s} ∪ Zμ]. The
corresponding inequality is

q∑

�=0
��=μ

m∑

i=1

α�
i λi +

m∑

i=1

kμ
i λi ≥

∑

j : v j∈Vt\Uμ

x j . (B6)

This inequality is valid for Pemb= . Subtracting it from (5) we obtain

m∑

i=1

(α
μ
i − kμ

i )λi ≤
∑

j : v j∈Uμ

x j . (B7)

Since (B5) is valid for FU , for each μ ∈ �q�, the corresponding inequality in (B7) is also
valid for FU . Therefore, (B5) decomposes into q ≥ 2 linearly independent equations, all
valid for FU . Hence, (16) cannot induce a facet of Pemb= .

Sufficiency:
Suppose conditions (1) and (2) of this theorem hold., On the one hand, we will show

that that for each pair of terminal nodes v j , vk ∈ U , there exists (x, λ) ∈ FU such that
(x ′, λ) ∈ FU , where x ′

j = x j + ε, x ′
k = xk − ε for ε > 0 sufficiently small, and x ′

j ′ = x j ′ for
all j ′ /∈ { j, k}. Moreover, for each pair of terminal nodes v j , vk ∈ U , there exists (x, λ) ∈ FU
such that (x ′, λ) ∈ FU , where x ′

j = x j + ε, x ′
k = xk − ε for ε > 0 sufficiently small, and

x ′
j ′ = x j ′ for all j ′ /∈ { j, k}. From these two claims it follows that the points of FU cannot

saitisfy any other equations, but (4), (5), and (14).
Since S+ \ {t} induce a connected graph G+, for any pair of v j , vk ∈ U , there is a non-

directed path in S+ \ {t} connecting them. For λ = (1/m)1, we define a feasible s− t flow of
value

∑m
i=1 αi/m in the network (G, c) with arc capacities c defined as follows: ce = βe/m

for each arc not adjacent to t , and cv j ,t = +∞. Let f be a maximum s − t flow in this
network, which is neither 0, nor saturating on any arc in G+, and saturates all the cut arcs
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of [S+, S+]. Such f exists: for each node of V (G+) \ Vt , the incoming flow is distributed
among the out-arcs proportionally to their capacities. Then let x j be the total flow entering
v j ∈ Vt . Then (x, λ) ∈ FU . Since G+ is connected, we can pick an undirected path π in G+
between any pair of nodes v j , vk ∈ U , and perturb the flow and x as follows. We increase
the flow f on all forward arcs on the path from v j to vk by ε > 0, and decrease the flow on
all the backward arcs by the same amount. We choose ε > 0 sufficiently small such that the
new flow f ′ is feasible, i.e.

ε ≤ min {βe − fe, fe | e ∈ π} . (B8)

Then the corresponding vector x ′ is as required, only differs from x in j and k, and (x ′, λ) ∈
FU .

The above reasoning can be applied analogously to U and the subgraph spanned by
S− \ {s}. ��
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