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Abstract. In the paper, a lateral control strategy is presented using
Physics-Informed Neural Network (PINN) for automated vehicles. The
main idea is that the physics information is incorporated into the training
process, which leads to an improvement in the performance level of the
control algorithm. Moreover, in the highly nonlinear range of the lateral
dynamics, which is not properly covered by the training dataset, the
stability of the vehicle is guaranteed. The results are compared to a
conventional neural network trained to control the vehicle.
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1 Introduction

In general, the modeling process of an arbitrarily chosen system often relies on
large datasets, which must cover the whole operational range of the system. This
can be a challenging task, and the presence of nonlinearities and uncertainties
makes it even harder. However, the modeling phase is essential since the reach-
able performance level highly depends on the accuracy of the model in several
applications such as control and observer design.

In the field of control design, the applied methods can be sorted into two
main groups, based on how the collected dataset is utilized. The first group
contains the classical methods, in which the dataset is used for constructing
a nominal mathematical model. Whilst the second group consists of methods,
which directly use the data points during the control design [1]. In practice, the
machine learning-based solutions cannot be used for control purposes in safety-
critical systems. However, combined control structures give an option for the
control-oriented use of machine learning-based methods [5].
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Although the combined solutions can guarantee the robustness of the con-
trol loop, the neural network-based layer must have a high accuracy, which
can achieved using non-conventional training methods such as Physics-Informed
Neural Network (PINN). The main idea behind this approach is to consider
the physical information of the system during the training process [2,7]. The
goal of the paper is to present a high-performance level neural network for com-
bined control structures. In the paper, a comparison study can be found between
the conventional and the modified training process of the network. The whole
method is validated through an automated vehicles-motivated problem: trajec-
tory tracking.

The paper is structured as: In Sect. 2 the data generation process, and the
nonlinear system are presented. In Sect. 3 the physics-informed neural network
is detailed in terms of control purposes. The results of the simulations can be
found in Sect. 4. Finally, the paper is summarized in Sect. 5.

2 System Description and Data Generation

In this section, the mathematical formulation of the vehicle dynamics and the
data acquisition of the training process is presented. The main equations of the
vehicle dynamics rely on the lateral forces, which can be computed from the slip
angles (αi), where i = {f, r}, f denotes the front, while r is the rear axis [8].
The axle positions measured from the center of gravity are denoted by li. Using
these values and the tire characteristics (Magic formula), the lateral forces of
both the front and the rear tires can be computed using [6]:

Fy,i = mglf,rL
−1μisin(c · tan−1(b · αi)). (1)

The shape of the nonlinear tire characteristics is determined by the parameter
c, b. The distance between the rear and front axis is: L = lf +lr. The vehicle mass
is m, while the gravitational acceleration is g. Based on the tire characteristics
and the slip angles, the lateral forces can be computed for the axles. The vehicle
motion is described by two main equations:

d2ψ

dt2
=

1
Iz

(lfFy,f − lrFy,r),
dvy

dt
=

1
m

(Fy,f + Fy,r), (2)

where ψ̇ is the angular velocity (yaw-rate), and the lateral velocity is given
by vy. The goal is to calculate the derivatives during the training process of
these signals, which can be done using the continuous dynamical equations:
ẋ = F(x0, u, pi), where F is the dynamical system, x0 gives the initial conditions,
u is the control input and the varying parameters are given by pi. In practice, the
continuous systems are discretized to fulfill the requirements of the implemen-
tation [3], for the time-varying system: x(k + 1) = A(k)x(k) + B(k)u(k), y(k) =
CT (k)x(k). Using the discrete state space model of the system, the output can
be predicted based on the input signals sequence (U = [u(1), u(2)...u(Np)]). The
tracking error can be computed from the predicted output and the reference
value (yref ∈ R

n×Np) as ε(k) = yref (k) − y(k). Then, using the predicted error
signal, the following quadratic optimization can be formed [3]:
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min
U

Np∑

i=1

(
γ(yref (i) − y(i))2 + λu2(i)

)
, s.t. φU < b and lb ≤ u ≤ lu, (3)

where γ ∈ R and λ ∈ R are weights, which make the balance between the
tracking accuracy and the energy used for the control purposes. The upper and
lower bounds for the control input signal are denoted by lb, lu. Moreover, a
bound is defined for the chosen, predicted states of the system (b), and φ can be
constructed from the system matrices.

In the next step, the data generation process is presented. Considering that
the tire characteristics significantly depend on the operational point of the vehi-
cle, the nonlinear system is linearized at each operational point. Furthermore, it
is assumed, that the reference longitudinal velocity is known over the prediction
horizon. The data generation process is carried out by driving the vehicle along
the reference trajectory, which is defined as:

yref (t) = β(p1x(t)3 + p2x(t)2 + p3x(t) + p0)sin(ωt), (4)

where t provides the simulation time. The parameters of the reference lat-
eral position are varied randomly to generate trajectories with different radius.
The parameters of the reference positions are selected to: p1 ∈ [−1, 1], p2 ∈
[−2, 2], p3 ∈ [−0.5, 0.5], ω ∈ [0, 0.5], β = 0.1. The sampling time is set to
Ts = 0.02 s, and the longitudinal velocity is set between 10 and 20 m/s.

Firstly, the initial states and the parameters of the reference trajectory are
randomized. Secondly, the vehicle is driven along the route solving the optimiza-
tion problem (3), which calculates the control input signal sequence, and several
signals are saved during the simulation. The measured states of the vehicle are:
x = [y0, vy, ψ̇, ψ, ]T , and the control input is the steering angle (δ). Moreover,
the output of the system is the lateral position. During the data generation the
weights are set to γ = 1, λ = 5 to ensure smooth trajectory tracking. Moreover,
the yaw-rate (ψ̇) is limited to 0.7 rad/s ≥| ψ̇ | and the limits for the control input
is set to 0.2 rad ≥| u | ∀u ∈ U to ensure stable motion requirements. Finally, the
prediction horizon is selected to Np = 45.

3 Physics Informed Neural Network in Control Structure

Fig. 1. Structure of the training process

In Fig. 1, the whole training structure
is presented of the neural network.
The input vector consists of the ini-
tial states of the vehicle (x0). Since
the neural network is implemented for
trajectory tracking, the input vector
is augmented with a sequence of the
reference signal (yref,1...yref,k), where
k denotes the length of the reference
signal. Moreover, taking into account



A Novel Control Method Based on PINN 815

the varying parameters of the system (p1...pn), these values are also incorporated
into the input vector. In practice, the horizon length for the reference signal and
for the changing parameters should be chosen to the same. Finally, the uMPC

gives the reference control signal value, which is computed from (3). In Figure
L gives the computation method of the loss function within one iteration step.

3.1 Computation of the Loss Function

The loss function, which is the base of the optimization process, is built up
from two main parts: the data-based part and the physics-based part. Firstly,
the data-based loss function is detailed. In every iteration step, the predicted
output signal of the neural network is denoted as û and computed as:

û = F̂ (x0, p1,2...n, yref,1, yref,2, yref,m), (5)

where F̂ is the approximated function of the system. Using the predicted value
of the network, for the given set of training datasets the error between the target
and the predicted data can be computed as εdata = û − uMPC . Secondly, the
physics-based loss function is calculated. The derivative(s) of the specific states
can be computed using the nonlinear function of the system (2). Using the ini-
tial states, the varying parameters, and the predicted neural network output:
˙̂x = F(x0, û, pi). Since the real output of the neural network is known (uMPC),
the real derivatives can be also computed by the nonlinear description of the sys-
tems. The calculated error between the derivatives is crucial during the training
process. This part of the algorithm takes into account the nonlinear effects of
the dynamics for the error between the real and the results of the neural net-
work. This makes the estimation more accurate within the ranges, where a small
deviation between the real and the estimated value results in a significant error
in the changes of the system states. This effect is observable, especially within
the ranges influenced by highly nonlinear effects. This makes the performance
level of the neural network higher within these ranges, which makes the neural
network more reliable. Both the data-based loss function (Lossdata), and the
physics-based part (Lossphy) is computed using L2 loss:

LNN = Q1
1
N

N∑

i

||(εdata,i)||2 +
1
M

M∑

j

Qj
1
N

N∑

i

|| ˙̂xi,j − ẋi,j ||2, (6)

where M gives the number of the computed derivatives and Q1, Qi aims to
scale the loss values to each other. These values are computed for each mini-
batch of the neural network and also computed for every epoch. The training
process of the neural network can be made using an optimizer such as the ADAM
optimization algorithm [4]. In the following, the effectiveness of the proposed
training process is demonstrated through a lateral trajectory tracking problem
of automated vehicles.
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3.2 Training Dataset and the Neural Network

The whole training dataset consists of 60000 data points, which are saved during
the 4000 randomly generated test scenarios. The output of the neural network is
computed through the input vector (5). In the vehicle-oriented implementation,
the input vector is T = [vy, ψ, ψ̇, v1,p, ε1...n]. εi gives the predicted error between
the current lateral position and the reference trajectory. However, for training
purposes, not the whole reference trajectory is used, but it is sampled along the
prediction horizon as i = {1, 12, 23, 34, 45}. Moreover, the first and the predicted
last longitudinal velocity is used. Since the goal is the trajectory tracking, the
output of the network is the steering angle. During the training process, based
on the nonlinear differential equations, the predicted derivatives of the lateral
displacement and the yaw-rate are considered (see: (2)) in the data-based part
of the loss function. Moreover, the weights in the loss function are Qdata =
10, Qψ̈ = 5, Qv̇y

= 1.
The size of the input vector of the neural network is 10, while the output is 1.

The network has 3 hidden layers and the number of neurons is 25, 40, 20. More-
over, the activation functions are Hyperbolic tangent, ReLU, and Hyperbolic
tangent. The training process of the network is carried out using the Adaptive
Moment Estimation (ADAM) algorithm [4]. During the optimization the Learn-
ing rate is selected to 0.01, the size of the mini batch is 256, while the maximum
epoch number is 200.

4 Simulation Results

In this section, the conventionally trained and the PINN are compared to each
other in terms of tracking performance. The test scenarios are implemented in
CarMaker vehicle dynamics simulation software, in which a Tesla Model S vehicle
is used. For training purposes, a small amount of data is used to highlight the
advantage of the incorporation of physical information. Moreover, dynamical
ranges are eliminated from the training dataset in terms of yaw-rate: (0.35 ≤|
ψ̇ |≤ 0.45) ∨ (0.55 ≤| ψ̇ |≤ 0.65). The results are summarized in Table 1.

Table 1. Test results using different neural networks

Size of data n = 2000 n = 4000 n = 8000 n = 12000 n = 16000

PINN ✗ ✓ ✓ ✓ ✓

Conv. NN ✗ ✗ ✗ ✓ ✓

The test is said to be successful if the vehicle fulfills the stable motion require-
ments during the scenario. In Table 1, successful tests are marked with a check-
mark (✓), while unsuccessful tests are marked with a crossmark (✗). Considering
the results shown in the table, it can be observed, that the PINN-based solution
was successful in reference trajectory tracking with the use of 4000 data points,
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whereas the conventionally trained network required at least 12000 data points.
Furthermore, the lateral positions are depicted in Fig. 2a, for three cases: PINN,
with 4000 and 8000 training data points, and the conventionally trained with
12000 points. Although the conventional trained model used more data points,
the physics-based extension in the loss function increased tracking accuracy as
shown in Fig. 2a. In Fig. 2b the yaw-rates during the trajectory tracking can
be examined. The regions, which are not covered by the training dataset, are
highlighted in red.
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(a) Lateral positions during test scenarios (b) Yaw-rates of the vehicle

Fig. 2. The velocity and the trajectory of the vehicle

5 Conclusion

The paper presented a novel PINN-based lateral control strategy for autonomous
vehicles. The physics-based information of the vehicle has been utilized during
the training process of the vehicle. As the simulation examples have shown the
this information can significantly improve the performance level of the controller
and guarantee the stable motion even under extreme circumstances.
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paper was partially funded by the National Research, Development and Innovation
Office under OTKA Grant Agreement No. K135512. The work of Daniel Fenyes was
supported by the Janos Bolyai Research Scholarship of the Hungarian Academy of
Sciences.

References

1. Aradi, S.: Survey of deep reinforcement learning for motion planning of autonomous
vehicles. IEEE Trans. Intell. Transp. Syst. 23(2), 740–759 (2020)

2. Arnold, F., King, R.: State-space modeling for control based on physics-informed
neural networks. Eng. Appl. Artif. Intell. 101, 104195 (2021)



818 T. Hegedűs et al.
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