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Abstract. This paper presents a slip control design method for a four
wheel driven electric race car with low hardware requirements. In addi-
tion, to achieve robustness against the changing frictional conditions, a
discrete-time Luenberger tractive force observer is designed. The tun-
ing is carried out using the high-precision vehicle dynamics simulation
software CarMaker. The performance of the controller is demonstrated in
real-world tests. An extensive comparison is given to show the advantage
of the proposed method over a previously designed PID controller.
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1 Introduction

In the past decades, the development of whee-

Fig. 1. Longitudinal characteris-
tics of the Hoosier R20 tire

lslip control solutions has been a challeng-
ing task both for passenger and race vehi-
cles. When dealing with the former one, the
main goal is to maintain stability of the vehi-
cle. Racing cars on the other hand have more
requirements, such as to achieve the best pos-
sible lap time. To accomplish this, it is nec-
essary to maximize the accelerations of the
vehicle. In order to achieve this in the lon-
gitudinal direction, it is vital to extract the
maximum tractive and braking forces from the
tires (Fig. 1).

When examining the longitudinal tire
characteristics, it is evident that the tractive
force is significantly impacted by the longitu-
dinal slip. Therefore, it is crucial to maintain
optimal wheelslip during braking and acceleration. The longitudinal wheelslip -
in case of acceleration - can be calculated using the following formula:
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κ =
rω − vx

rω
(1)

where κ is the slip, r is the dynamic wheel radius, ω is the rotational velocity of
the given tire and vx is the longitudinal velocity.

Designing a controller capable of maintaining optimum wheel slip is still a
challenging task today due to the highly nonlinear behaviour of the tire/road
interface. Several solutions can be found in the literature: the most recent ones
include model predictive control (MPC) [1] or application of neural network
[2]. MPC has the advantage of being able to handle constraints, but it requires
significant computational capacity. A Formula Student car have limited capacity
due to financial causes and weight limitations. The use of a neural network
requires a substantial amount of reliable data for training. Conducting sufficient
testing within the available time is not feasible. Therefore, it is advisable to
consider classical control solutions that do not require significant computing
capacity. In this paper a design of SMC for controlling slip is proposed.

2 Design of the Sliding Mode Controller

2.1 Longitudinal Model

To achieve optimal longitudinal wheelslip using sliding mode control, a longitu-
dinal model must be established. It contains the longitudinal forces acting on
the vehicle, as well as the forces and moments acting on a specific wheel. These
forces and moments can be expressed as:

mv̇x = FxFL
+ FxFR

+ FxRL
FxRR

− Faero − Fr (2)

where m is the mass of the car, Fxi
are the tractive forces on the four wheels,

Faero is the aerodynamic drag, Fr is the tire resistance.

θω̇ = Mwheel − Fxr + Frr (3)

where θ is the wheel inertia, ω̇ is the angular acceleration of the wheel, Mwheel

is the torque applied to the wheel, r is the wheel radius.

2.2 Idea Behind Sliding Mode Control

Sliding mode control is a nonlinear control technique that aims to achieve the
optimal trajectory/reference even in the presence of significant uncertainties. The
controller is a variable structure controller containing a discontinuous switching
function. Its design ensures that the system always approaches and remains at
the switching point of the function. This state is the sliding surface, defined
by S(x) = 0. The function S(x) is typically a linear combination of the state
variables x, which equals to 0 if and only if the desired control objective is
met. The controller design consists of creating the sliding surface, defining the
switching function to ensure that the system always moves towards the sliding
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surface and finally deriving the equivalent function make sure that the system
slides along this surface. In the case of wheelslip control the configuration space
can be

S(κ, ω) = (κ − κopt)ω (4)

where κ is the longitudinal wheelslip, κopt is the optimal slip, ω is the angular
velocity of the given tire. This is a common solution that can be found in the
literature [3].

2.3 Equivalent Control

The goal of the equivalent control is to keep the system in the sliding mode
defined in Sect. 2.2. It is obtained by satisfying the equation

Ṡ(v, ω) = 0 (5)

The derivative of the longitudinal velocity from Eq. 2 after coupling tractive
forces losses into one term each yields:

v̇x =
Fxsum

− Floss

m
(6)

The derivative of the angular velocity of the wheel can be expressed from 3:

ω̇i =
Mwheeli − Fxi

r + Tri

θ
(7)

The configuration space 4 can be rewritten using 1:

S(v, ω) =
rωi − v

rωi
ωi − κoptωi,→ S(v, ω) = (1 − κopt)ωi − v

r
(8)

Taking the derivative of this, and cy substituting the terms from 6 and 7,we
can get:

Ṡ(v, ω) = (1 − κopt)ω̇i − v̇

r
, Ṡ(v, ω)i =

1 − κopt

θ
(Mwheeli − Fxi

r + Frir) (9)

The control input is the torque applied to the wheel. The equivalent part can
be expressed using 5 and 9:

ui(eq) =
(1 − κopt) (r (Fxi

− Fri))
θ

+
θ

1 − κopt
· Fxsum

− Floss

rm
(10)

2.4 Switching Function

The idea behind the switching function is to drive the system from its initial state
towards the sliding surface. Once it has reached sliding mode, it is also necessary
to reject noise and uncertainties that the equivalent control could not handle.
In order to move towards the desired sliding mode, the expression SṠ = −η|S|
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must be satisfied, where η is a positive constant. This means that the sign of
S(x) is always opposite to the sign of its derivative, which drives S to 0. To
achieve this, the required input signal is

usw = −η sgn(S) (11)

In theory, the switching function should be a discontinuous signum function. Due
to the highly oscillatory nature of this input signal, it is replaced by a sigmoid
function to avoid unnecessary wear on the mechanical components:

usw = −η
s

|s| + δ
(12)

where δ is a parameter that “softens” the chatter. Given the characteristics of
the tire, the main objective is to ensure that the slip remain in the optimal
region, rather than tracking a specific reference value.

3 State Estimation

3.1 Tractive Force Observer

Fig. 2. Actual and estimated tractive forces

The input signal is the sum of the
switching and the equivalent func-
tions. Accurate estimation of trac-
tive forces is crucial as it significantly
influences the latter. Tire-road fric-
tion can vary in a wide range due to
various factors such as surface, tem-
perature, etc. Therefore, it is neces-
sary to implement a force observer.
The estimated states at time step k+1
of the discretized Luenberger observer
are written as x̂(k + 1) = Adx̂(k) +
Bdu(k) + Ld(y(k) − ŷ(k)), where x̂(k)
are the estimated states, u(k) are the
inputs, y(k) are the measured states, ŷ(k) are the estimated outputs at time k.
Ad is the state matrix, Bd is the input matrix, Ld is the observer gain matrix
[4].

The aim is to estimate the tractive forces using the introduced Luenberger
observer. By writing Eqs. 2 and 3 into state-space form, the estimator can
be designed. The states are xT = [vx ωFL ωFR ωRL ωRR FFL FFR FRL FRR]
and the inputs are: uT = [TFL TFR TRL TRR Floss], where [FL, FR, RL, RR]
marks the front left, front right, rear left and rear right wheels.

The system is then discretized using Tustin transform. The observer gain is
calculated via pole allocation and simulation results. The final poles in contin-
uous time are p = [−1 − 2 · · · − 9] · 50. The formula pdisc = epTs is used to
obtain the discrete poles, where Ts is the sampling time, which is 0.005 s. To
demonstrate the performance of the observer, I made test runs in Carmaker with
different friction coefficients. The results can be seen in Fig. 2.
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3.2 Velocity Estimation

In reality, the longitudinal velocity cannot be measured with low-cost sensors, so
its estimation is crucial to the successful implementation of the controller. The
idea is to use Kalman filter in order to take advantage of the accuracy of the
GPS and the quickness of the inertial sensors. This method is introduced in [5]
and the realization for this particular race car can be found in [6].

4 Results, Comparison with PID

Fig. 3. Front left wheelslip Fig. 4. Torques (front and rear left)

The controller has been designed using Matlab/Simulink. C code is generated
from the model, which runs on a Texas Instruments TMS570LS1227 microcon-
troller. The SMC is compared to a run with a previously designed PID controller
and to a run without wheelslip control.

Figure 3 shows that the wheelslip oscillates less with SMC than with PID.
This also means that the torques oscillate more with PID (Fig. 4), which can
cause the premature failure of certain drive train elements. In terms of perfor-
mance, the SMC has a slightly higher overshoot, but is also faster. Its settling
time is around 0.4 s, while the PID only settles after 0.75 s, also with a larger set-
tling error. During the test, the car completed the 70 m straight in under 3.56 s
without controller, 3.52 s with PID and under 3.4 s with SMC. The latter is an
improvement of 4.495%. Looking at Fig. 5, we can see that the maximum accel-
eration was around 11.75 m

s2 without control, 12.25 m
s2 with PID and 12.5 m

s2 with
SMC. It can be seen that the SMC performs better especially in the 0.3–0.75 s
time interval, which is consistent with the fact that it settles faster (Fig. 6).
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Fig. 5. Longitudinal acceleration Fig. 6. Longitudinal velocity

5 Conclusion, Further Recommendations

This paper demonstrated that the proposed SMC is more advantageous than
the previously designed PID wheelslip controller. The current design is only
suitable for operation in straight-line acceleration scenarios. It would be advan-
tageous to incorporate lateral dynamics in the future. This implies that the
combined slip must be considered in lieu of the pure longitudinal, and that the
force observer must also consider losses resulting from turning. Furthermore,
with a slightly faster microcontroller it would be worth considering a simple
MPC, as its attributes are highly suitable for this particular problem.
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