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We claim that three binary relations, 0, 1, and 2, are both necessary and sufficient
for formal semantics: 1 and 2 are the well-known “subject of” and “object of” re-
lations, and 0 corresponds to the subsumption or “is a” relationship well known
from knowledge representation. We describe how these can be used to composi-
tionally assign a semantic representation built from primitives (morphemes, se-
mantic atoms) and how the system can be related to the computational “word vec-
tor” semantics which is surprisingly effective even though it appears to employ no
grammatical rules or constraints.

1 Introduction

There is no evidence that in English the vestigial system of object marking can be
extended beyond personal pronouns, yet we have little doubt that English speak-
ers can fully grasp transitive constructions involving inanimate objects. Since
most linguists assume that coordination and subordination will be present in ev-
ery language, Everett’s discovery of a language lacking syntactic facilities for
these is seen as some grave error akin to a hypothetical discovery of a language
lacking subjects and objects. But when viewed from the perspective of semantics,
impoverished syntax is no more surprising than impoverished morphology, so
the question should be: what is the absolute minimum we require for semantics?

In this paper, we start from the simplest imaginable cases, subject-predicate
and modifier-head constructions, and gradually build up a system of semantic
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representation both in the tradition of Knowledge Representation (KR; Brach-
man & Levesque 2004) and in the contemporary “thought vector” approach (Le-
Cun et al. 2015, Kornai 2023). These are not competing but complementary views
of the same subject matter, both true at the same time like the algebraic and
the function-theoretic views of polynomials. While the KR view does not sig-
nificantly depart from the common linguistic view that structures are to be rep-
resented by some kind of graphs (an idea common to transformational and de-
pendency grammar formalisms), the vector approach is very unfamiliar: if the
representations are 𝑛-tuples of numbers, what are the rules?

This question is especially vexing in light of the observation that the main vec-
tor operation, vector addition, plays only a marginal role in the computational
system: it is used for solving analogical puzzles like France is to Germany as Paris
is to X (Mikolov et al. 2013) and little besides. Using the KR side to explore the
issue we find that three binary operations, 0, 1, and 2, are both necessary and
sufficient for formal semantics. 1 and 2 are the well-known “subject of” and “ob-
ject of” relations, and 0 corresponds to the subsumption relationship known as
“is a” in KR and as hyponymy in lexicography. (The vector equivalents of these
operations are somewhat more technical, and are not required for making our
main point that the minimum is three – see Kornai (2023) for details.)

The sufficiency of these operations is not trivial – students of Relational Gram-
mar andmany similar systemswill no doubt wonder about “3” and perhaps differ-
ent kinds of linkers such as thematic (proto)roles or kārakas. For indirect objects,
the reader is referred to Kornai (2012), and for deep cases, thematic roles and
kārakas see Chapter 2.4 of Kornai (2023). The main line of attack in reduction
to “1” and “2” is that “3” can itself be considered (together with other conceptual
relations typically expressed by case markers and adpositions) to have their own
subjects and (prepositional) objects. This will of course complicate the graphs
(in ways that will be familiar from generative semantics) but ensure that we will
never need hyperedges just hypernodes. The resulting system is rather similar to
the Resource Description Framework1 used in the Semantic Web2 where binary
relations are encoded in a (subject verb object) triple. Since such triples can be
substituted for one another, for give we obtain an analysis “cause to have” so
that x gives y to z becomes (x cause (z has y)). This method is immune to
the standard criticisms (Fodor 1970) leveled against generative semantics-style
meaning decomposition that were based on the pronominalization possibilities
of the ‘to + inf’ natural language paraphrase, since the formulas explicitly con-
tain this information. Kornai (2010) discusses how the other criticism, that such

1https://en.wikipedia.org/wiki/Resource_Description_Framework
2https://en.wikipedia.org/wiki/Semantic_Web
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a decomposition (cause to die → cause not to have life functions → cause not
to metabolize, respond, …) may never terminate, is actually irrelevant in an alge-
braic setup that enables circularity, and Kornai (2012) describes how higher arity
verbs, such as promise can be handled in the same manner.

But the necessity of three different operations is even less trivial: after all,
natural language semantics is often viewed as translation to First Order Predi-
cate Calculus (FOPC; Blackburn & Bos 2015) and via combinators (Curry & Feys
1958) FOPC can be reduced to strings of a single symbol 𝐽 with the appropriate
parenthetization (Schönfinkel 1924, English transl. van Heijenoort 1967). We can
take the no-frills approach further, since the parens can be eliminated in favor of
Reverse Polish Notation (RPN), leaving us with binary strings. As the first sym-
bol is always 𝐽 , which we denote by ‘1’, we can use ‘0’ for the binary operator
symbol of RPN, and we are guaranteed that each well-formed predicate formula
corresponds to a unique integer written in base 2. Furthermore, the translation
between the original formula and the binary number is computable mechanisti-
cally in either direction by a rather simple Turing machine. Taking this to the
extreme, binary integers can be written in base 1, and again translation between
the formats by a Turing machine is available in both directions, so that all we
need is a single symbol which can be repeated as many times as we need. If we
are happy with integers, base unspecified, Gödel numbering would work just as
well.

This is not just a walk through some rarely visited pages of the mathematical
logic bestiary. There are sophisticated attempts at using combinatory logic in se-
mantics since the 1980s (Szabolcsi 1987, Steedman 1987, Jacobson 1999, Baldridge
2002), with important links to mild context sensitivity/polynomial parsability
(Joshi et al. 1991). Clearly, neither FOPC nor higher order intensional calculi
such as those employed in Montague Grammar have a privileged status as the
One True Formalism (OTF) for semantics, and the search for OTF is not a trivial
one. Our argument will rely on a stricter understanding of compositionality than
the one generally assumed: while the mapping from Gödel numbers (or binary
strings) back to logic formulas is unique, and Turing-computable, not every such
mapping is compositional in the accepted sense of taking some string X, decom-
posing it by simple means as AB, and computing the meaning of the whole from
the meanings of the parts A and B.

In Section 2 we set expectations by discussing some important desiderata for
OTF. We also introduce some less commonly taught desiderata students of lin-
guistic semantics may not even have heard of, such as smooth transition from
morphology to syntax and embeddability, and argue that these are actually part
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of the same cluster of desiderata. Our own proposal, the 4lang system (see https:
//github.com/kornai/4lang/tree/master/V2), is discussed in Section 3, where we
return to the issue whether there is, or should be, a minimal system among the
proposals meeting the desiderata.

2 What do we expect of semantics?

Let us begin with some standard desiderata:

D1 Comes with reasonable model theory

D2 Reasonably simple (compositional) mapping from natural language to OTF

D3 Mapping in the reverse direction into passable natural language so that
OTF can serve as a translation pivot

D4 Usable for disambiguation

D5 Usable for characterizing synonymy

D6 Extends smoothly to verbal description of non-verbal material (music, sci-
entific models, functional description of algorithms, …)

D1 is taken very seriously by proponents of logical semantics, who treat all
other approaches (by natural language paraphrase, by diagrams, and by KR in
general) as markerese since Lewis (1970). To satisfy this, OTF must contain three
well-defined parts: a language of formulas 𝐿, a collection of models ℳ, and an
interpretation relation 𝑖∶ 𝐿 → ℳ between the two (Tarski 1956). By well-defined
we mean the existence of effective procedures to decide whether something is a
(well-formed) formula and to decidewhether something amounts to amodel. The
mapping itself needs to be not just effective (Turing-computable), but computable
in a particularly simple manner we will discuss at D8 below.

For linguistic semantics to follow the same architecture one would expect 𝐿
to contain all well-formed (grammatical) strings, and only these, and would use
ℳ, the collection of models, to capture the world that is being talked about, with
𝑖 mapping elements of the language onto their meanings. In reality, Montague
Grammar (MG; Montague 1970, 1973) represents a considerable departure from
this architecture. On the left side, we do not find 𝐿, natural language, but𝐷, disam-
biguated language, a theoretical construct that contains not just the well-formed
expressions of language but also their constituents and derivation histories (see
discussion of D4 below).
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𝐿 𝐷 𝐹 ℳ 𝑊𝑑 𝑡 𝐼 𝑔

Figure 1: Information objects associated with MG

On the right side, we do not find real-world objects or even formal objects
(models), but formulas 𝐹 of a particular logic calculus. The full picture of MG is
composed of the first two or three arrows in Figure 1, with the primary atten-
tion focused on the translation homomorphism 𝑡 . The models ℳ are reasonably
standard set-theoretical constructs (except for an internal time parameter that
temporal semantics often relies on), and the grounding 𝑔 in the real world is
completely left out – Montague was no doubt familiar with Quine’s and others’
criticism of direct reference.

The disambiguationmapping 𝑑 is an elegant technical device that helps a great
deal in simplifying subsequent stages of the mapping. Unfortunately, scholars
in the MG tradition have spent little effort on building grammatical models of
natural language that could serve as a starting point for disambiguation in the
sense Montague urged, and the use of 𝑑 in semantics is more a promissory note
than an actual algorithmic method. In this key respect, MG actually fails D4.

D2 is also taken very seriously, so much so that important ranges of phenom-
ena where it obviously fails, such as noun-noun compounding, are simply de-
clared out of scope for semantics. Fodor (1998) is typical in treating all word
meanings as atomic, i.e. ignoring all productive morphological phenomena. This
of course requires the memorization of all word meanings and brings back the
psychological problem (Partee 1979, 2013) of accounting for infinite data sets in
a finite brain.

Clearly, expressions like ropeladder ‘ladder made of rope,’ testtube ‘tube used
for testing,’ and manslaughter ‘slaughter undergone by man’ (Kiparsky 1982) are
not entirely compositional. Equally clearly, the meaning of novel compounds
is largely predictable, as are the meanings conferred by productive derivational
processes. The Lexicalist Hypothesis (Chomsky 1970) segregating morphology
from syntax is clearly untenable (Bruening 2018), and in its place we offer our
own desideratum:

D7 Compositional (syntactic) and non-compositional (morphological) pro-
cesses must be part of the same continuum

In other words, there cannot be a different semantics for morphology and for
syntax, especially as the border between the two is not uniform across languages.
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It must be one and the same interpretation mechanism that takes you “frommor-
pheme to utterance”. This is not to say that there is no word unit that syntax can
refer to (the classical psycholinguistic evidence in favor of memorized units with
lexicalized meanings cited in Müller (2018) is hardly controvertible), but simply
to insist on deriving as much of this meaning by compositional means as pos-
sible. In Section 3 we offer a mechanism that deals with the non-compositional
aspects by means of subdirect products, which contain the fully compositional
direct products as a limiting case.

D3, while in principle compatible with many theories, is seriously underre-
searched. Using a natural language (typically English) as pivot (intermediary)
between two languages is common both in manual and in machine translation.
The use of a formal language is almost unheard of: the only proposal with actual
translations is Universal Networking Language (Cardeñosa et al. 2005), and the
use of logic formulas is unattested. Given how common it is to consider semantics
“the language of thought”, the single-minded focus on translation to, but never
from, mentalese is rather surprising.

This onesidedness cannot be entirely attributed to the fact that systems of
translation to logic formulas (including descendants of MG such as Dynamic
Predicate Logic) have very little coverage to begin with. It appears the real issue
is lack of transparency, a phenomenon well observable on the Schönfinkel-style
reduction step of replacing the standard 𝑆 and 𝐾 combinators by a single combi-
nator 𝐽 . This 𝐽 is defined by cases:

𝐽𝑥 = {𝐾 if 𝑥 = 𝑆
𝑆 otherwise

Therefore, we have 𝐽 𝐽 = 𝑆; 𝐽 (𝐽 𝐽 ) = 𝐽𝑆 = 𝐾 eliminating the original 𝑆 and
𝐾 entirely in favor of a single entity. Notice that the method would be just as
applicable if we didn’t have 2 things to reduce but 52. We would only need to
stretch the case-by-case definition accordingly (see Curry & Feys 1958: Chapter
1E4).

For a concrete example, consider the translation of the English reflexive pro-
noun himself which Szabolcsi (1987) argues to be the combinator 𝑊 , defined as
𝑊𝑥𝑦 = 𝑥𝑦𝑦 . In the standard 𝑆, 𝐾 basis 𝑊 is expressible as ((𝑆𝑆)(𝑆𝐾)) so 𝑊 is
(((𝐽 𝐽 )(𝐽 𝐽 ))((𝐽 𝐽 )(𝐽 (𝐽 𝐽 )))). Continuing with the no-frills approach, the order of
applications encoded in the parenthetization can be just as well encoded by RPN,
using the operator symbol ∘. This will make the formula into 𝐽𝐽 ∘ 𝐽 𝐽 ∘ ∘𝐽 𝐽 ∘
𝐽 𝐽 𝐽 ∘ ∘ ∘ ∘ which, by transliterating 𝐽 as 1 and ∘ as 0 becomes the binary number
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11011001101110000, better known to us as decimal 111472, which could be writ-
ten in unary base as a string of 111472 1s (see Fokker (1989) on how to obtain
one-combinator bases).

It is worth emphasizing that the tricks of converting to combinatory logic,
using the Schönfinkel reduction, converting the parenthesized 𝐽 strings to binary
numbers (and finally converting the binaries to unaries) are not essential for
this undertaking. As is well known to students of logic, every formula (e.g. the
kinds of formulas used in Montague’s intensional logic) can be converted to a
number by Gödel numbering3, and a Turing-computable and invertible mapping
of natural language meanings to numbers is not hard to define.

But when we see decimal 69720375229712477164533808935312303556800 what
is it exactly that we see? Well, we see 26 ⋅ 34 ⋅ 52 ⋅ 72 ⋅ 11 ⋅ 13 ⋅ 17 ⋅ 19 ⋅ 23 ⋅ 29 ⋅ 31 ⋅ 37 ⋅
41 ⋅ 43 ⋅ 47 ⋅ 53 ⋅ 59 ⋅ 61 ⋅ 67 ⋅ 71 ⋅ 73 ⋅ 79 ⋅ 83 ⋅ 89 ⋅ 97 which would be the Gödel code
for [6, 4, 2, 2, 1, ..., 1] (a total of 21 1s). The problem is not that the translation back
from the Gödel code to the 𝑛-tuple is not computable, but rather that it is not
at all transparent, requiring a relatively powerful Turing machine to compute.
For a translation, we would want compositionality, D2, which in turn requires
a transparent machine, one that finds the boundary in the expression to make
the first split into substrings A and B, and can recursively repeat the process for
A and B. The real problem is that there is no boundary in the decimal number
that the Gödel coding yields. Even if there were compositional boundaries in the
original, these are washed out in the encoding process. Therefore, we replace the
original desiderata D2 and D3 with D8 (mnemonic: 8 = 23):

D8 The form↔meaning mapping should be maximally transparently compo-
sitional in both directions

D4 and D5 are part of the Katz & Fodor (1963) criteria that for many years
were (and in many ways remain) the standard statement regarding the adequacy
of any semantic theory:

A semantic theory describes and explains the interpretative ability of speak-
ers by accounting for their performance in determining the number and
content of the readings of a sentence, by detecting semantic anomalies, by
deciding on paraphrase relations between sentences, and by marking every
other semantic property or relation that plays a role in this ability.

3http://bit.ly/3S0zTcX
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Over the years, as emphasis gradually shifted from lexical to compositional
semantics, it became clear that these criteria are exceedingly hard to meet: D4
required some one-to-many mapping from form to “disambiguated language”,
a technical device that (somewhat akin to universal phonetic realization) was
never worked out in sufficient detail.

D4, together with D5, which is generally conceived of as a many-to-one map-
ping from different forms to the same meaning, jointly amount to assuming
a form-to-meaning relation that is not functional in either direction. But the
branching factors are very different: ambiguity is everywhere, synonymy is rare,
in fact it is often claimed that no two natural language expressions are perfectly
synonymous. This, if true, is highly problematic for Boolean connectives, where
the logic creates synonymy: if something is translated as 𝑝 ∧𝑞 it is perforce trans-
lated as 𝑞 ∧ 𝑝 which then translates back to a non-synonymous natural language
expression. This in fact happens: I went home and had dinner is not synonymous
to I had dinner and went home.

This particular problem instance can be eliminated by insisting that the logic
translation must also include an update of the temporal index that tracks event
time, but the overall problem is much harder, since now all natural language
tautologies must mean the same thing ⊤, and all natural language falsities must
mean the same thing ⊥. For this reason in Section 3 we will considerably relax
D4 and D5: whatever is OTF, translation from it should not be more difficult than
translation to it, and a full capture of ambiguity and paraphrase is impossible.

D6 is very ambitious, and is not shared widely among linguists, except those
with a more semiotic bent. Clearly, there is such a thing as “the language of
music”. It even has a written form, scores. But it is not clear that when we say
that “music speaks to us” wemean the sequence of notes as traditionally depicted
in scores: everyday experience shows that mechanical rendering of a score often
fails to elicit the kind of emotional response that is triggered, according to many
artists, precisely by those minute departures from the score that are the essence
of human interpretation.

The same can be said for scientific theories: it is hard not to be touched by a
deep sense of awewhen understanding theMaxwell equations. But the awe is not
a constitutive factor of the equations, and it is not clear how it is communicated
to us, it just is there: we see the truth, and we marvel. And it’s not the truth, in
and of itself, that triggers this response: we also see the truth of 3 = 3 but we
don’t particularly marvel.

This is not to say that music or science are somehow ineffable, impossible to
explain, but without some notion of what is it that needs explication it is very
hard to make progress on their semantics. With D1, as commonly understood,
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this is much easier, because one of the several functions of natural languages is
the interpretative function, to tell us things about the world, and model theory is
an attempt to explicate how things are (or at least how things can be) in the world.
If we had a substantive theory of being awestruck, “feeling great respect for the
importance, difficulty, or seriousness of someone or something” (LDOCE, Procter
1978), we could make some progress on the semantics of these non-linguistic
domains by leveraging the lexical semantics of words like awe, a matter we shall
return to in Section 3.

Until now we have discussed a set of desiderata that any semantic theory
should meet, selecting D1, D7, and D8 as our central desiderata. D2 and D3 are
subsumed under D8, while D4, D5, and D6 are seen as good to haves, criteria that
must be subordinated to the central ones. That failure to meet these three is not
generally considered fatal is best seen from the widespread acceptance of MG
and similar theories.

Perhaps the most important takeaway so far concerns D8, compositionality.
The point of our “logic bestiary” examples is that semantics requires more than
any old Turing-computable algorithm, it requires a specific mechanism of de-
composing expressions into constituent parts, and computing the results based
on the parts. Decomposition itself must be a simple operation, ideally expressed
by a low-power Turing machine such as a finite state transducer that detects the
constituent boundary. The overall semantics is obtained by (i) successive decom-
position steps that together yield a parse tree of the input, and (ii) rolling back
these steps by merging constituents. Proposals for these two steps go back as far
as Wells (1947) and Knuth (1968) respectively. Whether the parse tree is strictly
binary or not, whether it can contain discontinuous (gapped, interleaved) con-
stituents are questions of great technical importance, but compositionality can
be achieved either way.

This leaves us with one central desideratum we have not touched upon so far,
learnability. In theory, the interpretation mechanism can be given externally (e.g.
as a lex/yacc parser), but in practice we would prefer the entire algorithm to be
learnable, ideally from positive data alone. Whether this is just good to have, or
a non-negotiable desideratum as urged by Chomsky (1965) is hard to say, but
one thing is clear: so far, all successful learners are supervised, requiring labeled
data. These include self-supervised techniques where the labels are generated by
simple automated methods from initially unsupervised data (raw text). At the
price of demanding orders of magnitude more data than encountered by human
language learners during language acquisition, such self-supervision is used to
great effect in Large Language Models.
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The difference between the purely symbolic algorithms, such as lex/yacc par-
sers commonly developed for computer languages by their creators on the one
hand, and the machine learned algorithms on the other, generally boils down
to a difference between the use of symbolic debugging versus optimization. The
learning algorithm closest to the former is “principles and parameters” learning
as proposed in Chomsky & Lasnik (1993), which has many precursors in formal
language theory (for a survey, see Angluin 1980).

Since Large Language Models (LLMs) are far more successful in acquiring syn-
tax than any symbolic approach, the hopes of acquiring semantics by symbolic
means are rather dim, especially as compositionality requires the acquisition of a
system that creates the parse tree, i.e. the acquisition of at least rudimentary syn-
tax capabilities. Therefore, making the system optimization-friendly appears as
a central desideratum. Since optimization is performed by gradient descent, this
requires a system, any system, that states the problem in a framework where gra-
dient descent is feasible, i.e. a smooth systemwhere derivatives can be computed.
Whether derived from a learnability desideratum or seen as a practical necessity,
we have

D9 The problem statement must be embedded in a differentiable setup

One of the key inventions that powered the LLM revolution was enabling gra-
dient learning by means of a new semantic structure, word vectors (Schütze 1993,
Collobert et al. 2011). This is by no means the only relevant invention: we al-
ready mentioned self-supervision; and we should mention at least byte pair en-
coding (Gage 1994); sequence to sequence transformation (Sutskever et al. 2014);
and attention (Vaswani et al. 2017). By replacing the discrete tree structures used
since Katz & Fodor (1963) for encoding the meaning of lexical items by vectors
in 𝑛-dimensional space where partial derivatives can be taken, learning based on
optimization became possible. It is worth emphasizing that the resulting conti-
nuity/differentiability fully applies to the terminal nodes in the representation of
lexical meanings, which were conceptualized as discrete (typically, binary) fea-
tures by Katz and Fodor, and rightly objected to as “atomization of meaning” by
Bolinger (1965).

In the next Section we turn to the vector-based, and thus optimization-friendly
4lang system, with special emphasis on meeting the desiderata by a minimal sys-
tem from this class of models. In fact, the system is so skeletal that the vectors can
be computed just by solving a system of equations, a goal that makes particular
sense for “low density” languages where training data is in short supply.
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3 Hypergraphs and their linearization

In what follows, we take the system of polytopes4 induced by word vectors as
our starting point (Kornai 2023), and begin with the trivial observation that the
thought vectors of LeCun et al. (2015), which are intended as semantic represen-
tations of the (already spoken part of) sentences and larger discourses, appear in
the same space. This takes care of D7, which asks for a style of representation
that is common to subword units (morphemes, or the bytepair-like units used in
the WordPiece algorithm of Wu et al. 2016), phrases, sentences, and even larger
units. In this system, non-compositionality corresponds to subdirect products,
and compositionality appears as a special case, direct products (Kornai 2010) –
the difference is illustrated in Figure 2.

(a) Direct product (b) Subdirect product

Figure 2: Direct and subdirect products of the same two intervals [0, 12]
and [0, 8]

The subdirect product5, standardly defined as a subset of the direct product sat-
isfying projection requirements is not unique: there can be many subsets of the
direct product that project onto both components. This means that the semantics
itself is underdetermined, but this is only to be expected in cases like noun-noun
compounding. Whatever portion of the semantics is rule-governed is captured,
e.g. that in N-N compounding we have ‘N2 that is V-ed by N1’ with the V inde-
terminate: ladder made of rope, slaughter undergone by man, tube used for test
(Kiparsky 1982), the non-compositional part is admitted as such. This seems to
be the right approach not just for morphology, but also for the grey zone of con-
structions between the purely morphological and the purely syntactic such as NP
of NP studied in Berkeley Construction Grammar6 (Kornai 1988), taking care of
our desideratum D7.

4https://en.wikipedia.org/wiki/Polytope
5https://en.wikipedia.org/wiki/Subdirect_product
6http://bit.ly/4cCkLe5
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What are, then, the non-negotiable elements of vector semantics? One, per-
haps the most important one, is the notion of containment, IsA, which we see
as essential for the reconstruction of Aristotelian genus. Whatever definition we
provide for dachshund or labrador, the first thing in the definiens will be dog.
Given that we use polytopes (polyhedra-line 𝑛-dimensional regions) around the
word vectors, IsA comes for free as the set-theoretical inclusion “⊂” relation. This
works well for ordinary (intersective) adjectival modifiers as well: a brown dog
is in the intersection of the brown and the dog polytopes. (For non-intersective
adjectives like former, see Chapter 3.2 of Kornai 2023).

The method of assigning semantics to Kim is a donkey by leveraging set-theo-
retical containment cannot be directly generalized. Clearly, there is nothing in
set theory that would directly work forKim has a donkey, but the underlying idea
of taking a relation, in this example the possessive relation Has, and using that
for assigning meaning, is solid. (Has can be further subdivided into inalienable
and ordinary possession, but we will not pursue this matter here.) There remains
one technical difficulty: however the language signals the distinction, John ate
the fish and The fish ate John should not be treated as synonymous. We use Sub-
jectOf and ObjectOf for the disambiguation. These are good candidates for uni-
versality, even in languages where the distinction is made in absolutive/ergative
terms.

With this, we are done – we don’t need further disambiguators (deep cases,
thematic roles or proto-roles, etc.) to get to ditransitive or even higher arity pred-
icates, since these can be obtained by classic techniques of meaning decomposi-
tion that go back to generative semantics (Kornai 2012). (The 4lang systemwrites
=agt and =pat, but we could have written “1” and “2” as well – the only theoret-
ical claim here is that there is no “3” required.) The representation structures
we obtain are best depicted as hypernode graphs that can contain other such
graphs as nodes (but not as edges). These should be familiar from the Resource
Description Framework that is standard on the WorldWideWeb.

It is easy to check that the system presented here meets our desiderata D1
and D8 as well, so our work is done. Readers interested in how the system can
be extended, without adding further operators, to issues of temporal and spatial
semantics, indexicals, negation, quantification, probability, modality, gradience,
implicature, and other issues generally considered relevant for semantics are ad-
vised to look at Kornai (2023). But one word of caution is in order: not having
further operations is not the same as not having further primitives.

The 4lang system actually treats a handful of binary relations at, between,
cause, er, follow, for, from, has, in, ins, isA, lack, mark, on, partOf, un-
der as primitives (and makes the claim that all others are derivable). These cor-
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respond to matrices, rather than vectors. Remarkably, what traditional syntax
treats as higher order operators, quantifiers in particular, will require only vec-
tors, rather than full matrices: the central example is the generic quantifier gen,
which simply corresponds to the 𝑛-dimensional vector (1/𝑛, 1/𝑛, ..., 1/𝑛) (for de-
tails see Kornai (2023) Chapter 4.5). The bulk of the primitives are unaries (vec-
tors) appearing in a system of mutually constraining definitions, and this in-
cludes most verbs that can have an optional object like eat as well.

With eat it is reasonably easy to see how one can define it in terms of the Long-
man Defining Vocabulary ‘to put food in your mouth and chew and swallow it’
and the process of turning this into a 4lang clause can be automated (Recski 2016)
to yield =agt cause_ {=pat in mouth}, swallow, <=pat[food]>, <bite/1001>,
<chew>, =agt has mouth, which uses an even smaller defining vocabulary of 739
elements (including the 16 binaries).

Arguably eat, if not a universal semantic primitive, is at least very close to
being one, and clearly it is a “simple” word (Kornai 2021) that comes very early
in language acquisition. Our earlier example, awe, is clearly far from the sim-
ple/basic layer of the vocabulary, but the same method remains applicable: take
the LDOCE definition, in this case ‘a feeling of great respect and liking for some-
one or something’, normalize the syntax, and reduce further until only the 4lang
primitives remain.We begin with for someone or something and replace it by =pat.
great and liking are defined, great as big and like as feel {=pat[good], good
for_ =agt}. For respect, we have to go back to LDOCE to obtain “admire” , for
which we obtain ‘to look at something and think how beautiful or impressive it
is’. The process goes on, but for beautiful we obtain “extremely attractive” and
with attract we terminate at =agt cause_ {=pat want {=pat near =agt}}.

This may appear tedious, but eventually all non-4lang words are eliminated,
since the systemwas constructed from the Longman Defining Vocabulary by sys-
tematic elimination (Ács et al. 2019) until a feedback vertex set7 is obtained. The
price of the termination guarantee is that the resulting set is considerably larger
than the system of Natural Semantic Metalanguage (NSM;Wierzbicka 1992, 1996,
Goddard 2002), which in many ways served as an inspiration. But 4lang both has
a formal syntax and guarantees that all words not defined in the core are defin-
able by it via LDOCE, whereas NSM uses an informal (English) syntax, and has
no guarantees that words outside the core are actually definable as NSM stanzas.

As for minimality, we make no claim that the set of 4lang primitives is truly
minimal, just that by systematic reduction of the entire English vocabulary we
arrived at a stage where we see no further reduction possibilities. This does not

7https://en.wikipedia.org/wiki/Feedback_vertex_set
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mean that for other languages no further reductions would be possible, and it
would be an interesting research program to (i) harden NSM syntax until it be-
comes machine-parsable and (ii) define the 4lang primitives in terms of the NSM
primitives. Whether this is possible remains to be seen, but our system already
provides an upper bound on the dimension of the vector space we use for mod-
eling semantics.

4 Conclusions

Minimality requires thrift both in the number of operations and in the number
of primitives manipulated by these. To maintain compositionality in both direc-
tions, the “bestiary-style” minimalism of (Gödel) numbering has to be sacrificed
for more transparent operations. Of particular interest is the case when the ob-
jects manipulated are vectors andmatrices in finite-dimensional Euclidean space,
since these can be acquired gradually, by optimization techniques that change the
vectors only a little bit as new learning data becomes available, rather than by
huge and unpredictable discrete steps that require a complex system of inborn
directives.

As for the primitives, our current system is likely overcomplete8, at least as far
as the vectors (unaries) are concerned, though we seem to approach the limits
of reducibility for the matrices (binary relations) used. Remarkably, it is not the
verbs, transitive, ditransitive, or even higher arity, that require departure from
unary relations, but the prepositions expressing spatial relations, at, between,
follow, from, in, on, under, for which we must assume a prepositional subject
and a prepositional object, the comparative er, the negative lack, and a few con-
ceptual relation markers, quite often expressed by cases, such as cause, for, has,
ins, and partOf. Pride of place goes to isA, essential for taxonomic organization,
and mark, denoting the relation between the two parts of the Saussurian sign.
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