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A B S T R A C T

Pairwise comparison matrices (PCMs) are frequently used in different multicriteria decision making problems.
A weight vector is said to be efficient if no other weight vector is at least as good in estimating the elements
of the PCM, and strictly better in at least one position. Understanding the efficient weight vectors is crucial
to determine the appropriate weight calculation technique for a given problem. In this paper we study the set
of efficient weight vectors for three and four dimensions (alternatives) from a geometric viewpoint, which
is a complementary to the algebraic approach used in the literature. Besides providing well-interpretable
demonstrations, we also draw attention to the particular role of weight vectors calculated from spanning
trees. Weight vectors corresponding to line graphs are vertices of the (polyhedral, but usually nonconvex)
set of efficient weight vectors, while weight vectors corresponding to other spanning trees are also on the
boundary.
1. Introduction

Pairwise comparisons are popular in many different fields, such as
decision making, preference modelling, psychometry, and sports [1–3].

One of the most extensively studied multicriteria decision making
methods, the Analytic Hierarchy Process (AHP) [4,5], also applies pair-
wise comparisons to evaluate the alternatives according to a criterion
as well as to determine the importance of the different criteria.

Usually it is easier for the decision maker to determine how many
times a given alternative is better compared to another one than to
provide direct priorities (weights) of the alternatives (criteria). In the
AHP these pairwise comparisons are placed into a matrix, that is a
pairwise comparison matrix (PCM).

There have been many weight (priority) calculation techniques
proposed in the literature to derive the weights (priorities) from a PCM,
e.g., the eigenvector method originally suggested by Saaty [4], the least
squares method [6,7], the logarithmic least squares (geometric mean)
method [8], or the spanning tree technique [9–13]. For further methods
and their comparisons, see, for instance [14].

In the case of a real-world PCM, usually there are some contradic-
tions, inconsistencies among the elements that can be measured several
ways (see, for instance, Brunelli [15], Kubler et al. [16], Kułakowski
and Talaga [17] and Mazurek [18]). If there is not any contradictions,
then we are dealing with a consistent matrix, and in that case we
usually expect the weight calculation techniques to provide the same
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vector [19, Axiom 1]. However, if the matrix is inconsistent, then
the different methods can provide different weight vectors [20], and
several solutions can be optimal in some sense.

The (Pareto-)efficiency of a 𝑤 weight vector informally means that
there is no weight vector that estimates the elements of the PCM as
good as 𝑤 in every component and even better in at least one element.
The efficiency of weight vectors has not been extensively studied in the
literature, however, several new findings has been made recently.

Blanquero et al. [21] provided a large set of tools to deal with this
problem. They proved that the logarithmic least squares (geometric
mean) method provides an efficient weight vector, while the eigenvec-
tor method can be inefficient, and developed LP models to test whether
a weight vector is efficient.

Conde and de la Paz Rivera Pérez [22] also used linear optimization
problems to derive efficient weight vectors. Based on that, they defined
a consistency index and a weakly efficient weight vector associated to
it.

Bozóki [23] has shown that an arbitrarily small inconsistency of
a pairwise comparison matrix can still lead to the inefficiency of the
weight vector calculated from it with the eigenvector method.

According to Ábele-Nagy and Bozóki [24] the principal right eigen-
vector of a PCM is efficient if the matrix is a simple perturbed one,
i.e., it only differs from a consistent PCM by one element (and its
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reciprocal). This result has been extended to double perturbed PCMs,
and for a special class of triple perturbed matrices, which differ from
a consistent PCM by two and three elements (and their reciprocals)
by Ábele-Nagy et al. [25] and Fernandes and Furtado [26], respec-
tively. Furtado and Johnson [27] also examined the efficiency of the
eigenvector method for so-called block perturbed PCMs.

Bozóki and Fülöp [28] proved that the eigenvector method is
weakly efficient, while also developed LP models and provided algo-
rithms to improve an inefficient weight vector.

The efficiency of weight vectors calculated from empirical PCMs of a
real-world decision problem has been examined by Duleba and Moslem
[29].

In [30] the inconsistent PCMs have been approximated by a consis-
tent one via distance minimization, and an iterative algorithm has been
provided that results in a unique, efficient weight vector.

da Cruz et al. [31] and Furtado [32] gave algebraic descriptions of
all efficient vectors for simple and double perturbed PCMs, respectively.

Besides proving that the geometric mean of any collection of distinct
columns of a PCM is an efficient weight vector, Furtado and Johnson
[33] also determined necessary and sufficient conditions for an efficient
vector for an 𝑛×𝑛 matrix 𝐴 to be an extension of an efficient vector for
n (𝑛 − 1) × (𝑛 − 1) principal submatrix of 𝐴. This was used by Furtado
nd Johnson [34] to provide an algorithm that determines inductively
he complete set of efficient weight vectors for a reciprocal PCM.

In this paper, we provide the geometric interpretation of the sets of
fficient weight vectors for three and four alternatives—that was so far
issing in the literature—as well as analyse which points determine

hem. Our geometric demonstrations are complementary to the alge-
raic view [35], and hopefully help understanding better the somehow
uzzling set of efficient weight vectors. We also draw attention to the
articular role of weight vectors calculated from spanning trees. Weight
ectors corresponding to line graphs are vertices of the (polyhedral, but
sually nonconvex) set of efficient weight vectors, while weight vectors
orresponding to 3-stars are also on the boundary.

The rest of the paper is organized as follows. Section 2 introduces
he key definitions and former results used in the paper connected to
airwise comparison matrices and efficient weight vectors. Section 3
rovides the main results, the geometric interpretation of efficient
eight vectors for three (Section 3.1) and four (Section 3.2) alter-
atives. Finally, Section 4 concludes and provides further research
uestions.

. Pairwise comparison matrices and efficient weight vectors

Let us denote the number of criteria (alternatives, voting powers,
tc.) by 𝑛.

efinition 1 (Pairwise Comparison Matrix (PCM)). The 𝑛 × 𝑛 matrix
= [𝑎𝑖𝑗 ] is called a pairwise comparison matrix if it is positive (𝑎𝑖𝑗 > 0

or all 𝑖 and 𝑗) and reciprocal (1∕𝑎𝑖𝑗 = 𝑎𝑗𝑖 for all 𝑖 and 𝑗).

The judgements of decision makers usually contain a certain level
f inconsistency.

efinition 2 (Consistent PCM). A PCM is said to be consistent if
𝑖𝑘 = 𝑎𝑖𝑗𝑎𝑗𝑘 for all 𝑖, 𝑗, 𝑘. If a PCM is not consistent, then it is called
nconsistent.

xample 1 ((In)Consistent PCM). An illustrative example for an incon-
istent PCM for three alternatives can be seen below:

𝐧𝐜𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐭 𝐏𝐂𝐌 𝐂𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐭 𝐏𝐂𝐌

⎡

⎢

⎢

⎣

1 2 5
1∕2 1 3
1∕5 1∕3 1

⎤

⎥

⎥

⎦

⇒

⎡

⎢

⎢

⎢

⎣

1 2 6

1∕2 1 3

1∕6 1∕3 1

⎤

⎥

⎥

⎥

⎦

2 
One can see in Example 1 that the only triad (i.e., the set of all
pairwise comparisons of three given alternatives) of the original matrix
is inconsistent, but it can be made consistent by modifying one element.

Bozóki et al. [36] studied PCMs that can be made consistent by
modifying at most 3 elements. In other problems [37,38] also used the
main idea of comparing two PCMs that differ in only one element.

Definition 3 (Simple, Double and Triple Perturbed PCMs). A PCM is said
to be

• simple perturbed if it can be made consistent by altering only one
element (and its reciprocal);

• double perturbed if it can be made consistent by altering only two
elements (and their reciprocals);

• triple perturbed if it can be made consistent by altering only three
elements (and their reciprocals).

Example 2 (Simple, Double and Triple Perturbed PCMs). An illustra-
tive example for simple, double and triple perturbed PCMs for four
alternatives—which will be used later on—can be seen in Box I.

These kinds of matrices are also important for real-world deci-
sion problems and quite often appear in empirical matrices, especially
among smaller ones [25,36].

In order to use an 𝑛 × 𝑛 PCM 𝐴 to evaluate alternatives or to
compare criteria, the determination of a 𝑤 component-wise positive
weight vector is necessary. The most commonly used weight calcula-
tion techniques are the eigenvector method and the logarithmic least
squares (geometric mean) method.

Definition 4 (Logarithmic Least Squares Method (LLSM)). Let 𝐴 be an
𝑛 × 𝑛 PCM. The weight vector 𝑤 of 𝐴 determined by the LLSM is the
optimal solution of the following problem:

min
𝑤

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1

(

ln(𝑎𝑖𝑗 ) − ln
(

𝑤𝑖
𝑤𝑗

))2
, (1)

where 𝑤𝑖 is the 𝑖th coordinate of 𝑤.

Definition 5 (Eigenvector Method). Let 𝐴 be an 𝑛 × 𝑛 PCM. The weight
vector 𝑤 of 𝐴 determined by the eigenvector method is defined as
follows:

𝐴 ⋅𝑤 = 𝜆max ⋅𝑤, (2)

where 𝜆𝑚𝑎𝑥 is the principal eigenvalue of matrix 𝐴.

The solution vectors of these methods are only unique up to a
scalar multiplication, thus, the sum of the components (the weights)
are usually normalized to one (∑𝑛

𝑖=1 𝑤𝑖 = 1).
There can be many cases, when some elements of a PCM are miss-

ing, which can happen because of the loss of data, the comparisons are
simply not possible (for instance in sports [39]), or the decision maker
has no time or willingness to provide them [40]. A PCM with some
missing entries is called an incomplete pairwise comparison matrix.

Definition 6 (Incomplete Pairwise Comparison Matrix (IPCM)). An 𝑛 × 𝑛
matrix 𝐴 = [𝑎𝑖𝑗 ] is an incomplete pairwise comparison matrix (IPCM)
if:

• 𝑎𝑖𝑗 ∈ R+ ∪ {∗} ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and

– 𝑎𝑗𝑖 = 1∕𝑎𝑖𝑗 if 𝑎𝑖𝑗 ∈ R+,
– 𝑎𝑗𝑖 =∗ if 𝑎𝑖𝑗 =∗,

where ∗ denotes the missing elements, and R+ is the set of positive real
numbers.

The analysis of IPCMs can be handled suitably with the help of their

graph representation.
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𝐓𝐫𝐢𝐩𝐥𝐞 𝐃𝐨𝐮𝐛𝐥𝐞 𝐒𝐢𝐦𝐩𝐥𝐞 𝐂𝐨𝐧𝐬𝐢𝐬𝐭𝐞𝐧𝐭

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 7 5
1
2 1 3 8
1
7

1
3 1 4

1
5

1
8

1
4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 6 5
1
2 1 3 8
1
6

1
3 1 4

1
5

1
8

1
4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 6 5
1
2 1 3 12
1
6

1
3 1 4

1
5

1
12

1
4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⇒

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 6 24
1
2 1 3 12
1
6

1
3 1 4

1
24

1
12

1
4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

Box I.
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Fig. 1. The representing graph of the IPCM 𝐴 of Example 3.

Fig. 2. The BCC directed graph of the PCM 𝐴 with the weight vector 𝑤 of Example 4.

efinition 7 (Representing Graph). An incomplete pairwise comparison
atrix 𝐴 can be represented by an undirected graph 𝐺 = (𝑉 ,𝐸), where:

• the vertices 𝑉 = {1, 2,… , 𝑛} correspond to the alternatives,
• while the edge set 𝐸 represents the known elements of 𝐴 outside

the main diagonal:

𝑒𝑖𝑗 ∈ 𝐸 ⟺ 𝑎𝑖𝑗 ≠∗ and 𝑖 ≠ 𝑗.

xample 3 (Representing Graph). Let 𝐴 be the following incomplete
airwise comparison matrix:

1 2 6 ∗
1
2 1 ∗ 12
1
6 ∗ 1 4

∗ 1
12

1
4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

The 𝐺 representing graph of 𝐴 can be seen in Fig. 1.
As one can see, the representing graph does not depend on the

xact values of the pairwise comparisons, but the fact that whether
given comparison is available or missing. There is an edge between

wo alternatives (vertices) if and only if the appropriate comparison is
nown (i.e., there is no comparison between alternatives 1 and 4, and
and 3).

There are weight calculation techniques for the incomplete case as
ell, mainly relying on the completion of the IPCM (for a comparative

tudy see, for instance, Tekile et al. [41]). However, the most often used
ethods only provide a unique weight vector if the representing graph

s connected [42], i.e., there has to be at least an indirect comparison
etween any two items.

efinition 8 (Connected Graph). In an undirected graph, two vertices
and 𝑣 are called connected if the graph contains a path from 𝑢 to 𝑣.
graph is said to be connected if every pair of vertices in the graph is

onnected.

Spanning trees have a special role in connection with pairwise com-
arisons, as they provide the smallest connected system of comparisons,
hich contains 𝑛 − 1 edges for 𝑛 vertices.
3 
efinition 9 (Spanning Tree). Let 𝐺 = (𝑉 ,𝐸) be a connected graph.
′ = (𝑉 ,𝐸′) is a spanning tree of 𝐺 if 𝐸′ ⊆ 𝐸 is a minimal set of edges

hat connects all vertices of 𝐺.

emark 1. An IPCM 𝐴 with representing graph 𝐺 can always be
omplemented to get a consistent complete PCM if 𝐺 is a spanning tree.

From Remark 1 and Example 1 one can also see that a 3 × 3
atrix is either a simple perturbed or a consistent one, while Example 2
emonstrates that a 4 × 4 matrix can also be double or triple perturbed.

efinition 10 (Efficient Weight Vector). Weight vector 𝑤 =
𝑤1, 𝑤2,… , 𝑤𝑛

)𝑇 is said to be (Pareto-)efficient, if no positive weight
ector 𝑤′ =

(

𝑤′
1, 𝑤

′
2,… , 𝑤′

𝑛
)𝑇 exists such that:

• ∀𝑖, 𝑗 ∶
|

|

|

|

𝑎𝑖𝑗 −
𝑤′
𝑖

𝑤′
𝑗

|

|

|

|

≤
|

|

|

|

𝑎𝑖𝑗 −
𝑤𝑖
𝑤𝑗

|

|

|

|

, and

• ∃𝑘, 𝑙 ∶
|

|

|

|

𝑎𝑘𝑙 −
𝑤′
𝑘

𝑤′
𝑙

|

|

|

|

<
|

|

|

|

𝑎𝑘𝑙 −
𝑤𝑘
𝑤𝑙

|

|

|

|

.

If a weight vector is not (Pareto-)efficient, then it is called inefficient.

It is worth mentioning that for a consistent PCM (regardless of its
size) there is only one possible efficient weight vector, as there exists
exactly one component-wise positive and normalized weight vector that
estimates the elements of the PCM perfectly in this case. Consequently,
a weight vector calculated from an IPCM with a spanning tree as its
representing graph is also always efficient because of Remark 1. This
is the case, because there are no inconsistencies for an IPCM with a
spanning tree representing graph, as there are no cycles in the system
of comparisons (there are not enough comparisons for that). However,
this way the calculated weight vector will estimate the known elements
perfectly, thus, it will be efficient.

We heavily rely on the results of Blanquero et al. [21], who showed
that one can determine whether a weight vector is efficient for a PCM
using an appropriately defined directed graph.

Definition 11 (Blanquero–Carrizosa–Conde (BCC) Directed Graph). Let
= [𝑎𝑖𝑗 ] be an 𝑛 × 𝑛 PCM, and let 𝑤 =

(

𝑤1, 𝑤2,… , 𝑤𝑛
)𝑇 be a positive

weight vector. The Blanquero–Carrizosa–Conde (BCC) directed graph
𝐺 = (𝑉 , #»𝐸 )𝐴,𝑤 is defined as follows:

• the vertices 𝑉 = {1, 2,… , 𝑛} correspond to the alternatives,
• #»𝐸 = {𝑎𝑟𝑐(𝑖 → 𝑗) | 𝑤𝑖∕𝑤𝑗 ≥ 𝑎𝑖𝑗 , 𝑖 ≠ 𝑗}.

Theorem 1 ([21], Corollary 10). Let 𝐴 = [𝑎𝑖𝑗 ] be an 𝑛×𝑛 PCM. A weight
vector 𝑤 is efficient if and only if 𝐺 = (𝑉 , #»𝐸 )𝐴,𝑤 is a strongly connected
directed graph, that is, there exists a directed path from 𝑖 to 𝑗 and from 𝑗
to 𝑖 for all pairs of nodes 𝑖, 𝑗.

Example 4 (BCC Directed Graph). Let 𝐴 be the following pairwise

comparison matrix, and 𝑤 the corresponding weight vector calculated
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Fig. 3. The unit 3-simplex {(𝑤1 , 𝑤2 , 𝑤3) ∈ R3
+|𝑤1 +𝑤2 +𝑤3 = 1} for 𝑛 = 3 and line 𝓁1 corresponding to 𝑤2∕𝑤3 = 𝑎23.

Fig. 4. Efficient weight vectors for 𝑛 = 3 in the case of an inconsistent PCM are highlighted from all the possible weight vectors by green colour.
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Fig. 5. The spanning trees that determine the efficient weight vectors for 𝑛 = 3
(denoted by orange in Fig. 4).

by the LLSM.

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1 2 7 5
1
2 1 3 8
1
7

1
3 1 4

1
5

1
8

1
4 1

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝑤 = (0.5079, 0.3268, 0.1160, 0.0494)𝑇

The corresponding 𝐺 BCC directed graph can be seen in Fig. 2.
It can be seen that 𝐺 is strongly connected, thus according to
Theorem 1, 𝑤 is an efficient weight vector of PCM 𝐴.

5 
Between any pairs of vertices of the BCC digraph, there is an edge
in at least one of the two possible orientations. However, there are
edges in both possible directions between two vertices only in the case
when the comparison between them is estimated perfectly by the given
weight vector. We will see that this latter case can only happen at
the boundary of the set of efficient weight vectors. However, (Furtado
and Johnson [33], Theorem 6) proved that it is a closed set, thus, it
is enough to focus on the case when there is an edge between every
pair of vertices and it has exactly one orientation, which means that
the relevant BCC digraphs are tournaments.

Definition 12 (Tournament). A tournament is a directed graph in which
every pair of vertices is connected by a directed edge with only one of
any one of the two possible orientations.

This also implies that it can be determined whether a weight vector
is efficient by focusing on whether its BCC digraph has a Hamiltonian
cycle (a cycle that visits each vertex exactly once).

Theorem 2 ([43]). Let 𝐺 be a tournament. Then, 𝐺 is strongly connected
if and only if 𝐺 has a Hamiltonian cycle.

One can see that the BCC directed graph 𝐺 in Example 4 also has a
Hamiltonian cycle along the path of 1 − 4 − 3 − 2 − 1.
Fig. 6. Efficient weight vectors for the 𝑛 = 4 triple perturbed case.
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Fig. 7. The planes that determine the polyhedra for the 𝑛 = 4 triple perturbed case. The equation determining the given plane is always placed above the subfigure, e.g., the top
left plane is determined by the equation 𝑤1∕𝑤2 = 𝑎12.
3. Results

3.1. The case of three alternatives

The results of an illustrative example in the case of three alternatives
(𝑛 = 3) can be seen in Fig. 4. As the sum of the components is fixed
at 1, the possible weight vectors are in the unit 3-simplex (see Fig. 3)
that can be presented in two (𝑛 − 1) dimensions as a regular triangle
(from now on denoted by 𝑆3, see Fig. 4), therefore, we can visualize
our findings in a two dimensional figure.

As mentioned above, 𝑆3 (the large triangle in Fig. 4 that is the two
dimensional representation of the unit 3-simplex in Fig. 3) contains
all the possible weight vectors for three alternatives. The vertices
correspond to the cases when two coordinates are zero, while each edge

shows the vectors where exactly one component is zero, and the others

6 
are positive. Thus, the feasible solutions are inside the triangle, where
every element of the vector is positive. Lines 𝓁1,𝓁2, and 𝓁3 show the
set of solutions, in which a given element of the matrix is estimated
perfectly, i.e., the given fraction calculated from the gained weight
vector is equal to the appropriate element of the PCM:

𝓁1 ∶ 𝑤2∕𝑤3 = 𝑎23,

𝓁2 ∶ 𝑤1∕𝑤3 = 𝑎13,

𝓁3 ∶ 𝑤1∕𝑤2 = 𝑎12.

These lines determine the polygons of Fig. 4, which correspond to
the sets of weight vectors that generate the Blanquero–Carrizosa–Conde
directed graphs highlighted by black vertices for each case. The colours

of the edges correspond to the colours of the lines, which determine
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Fig. 8. The spanning trees that determine the efficient weight vectors for the 𝑛 = 4 triple perturbed case.
Fig. 9. Efficient weight vectors for the 𝑛 = 4 double perturbed case.
v
g

𝑇
f

hem, e.g., 𝓁1 determines the orientation of the edge between alterna-
ives 2 and 3 (as shown outside of 𝑆3), and they are all highlighted by
ed.

Based on Theorem 2, the only way to get a strongly connected
irected graph for three alternatives is to have a 3-cycle. There is only
ne such case in our illustrative example, thus, all the efficient weight
 t

7 
ectors can be found in the small triangle in the middle highlighted by
reen background colour.

It is an important fact that the vertices of this triangle (denoted by
1, 𝑇2, 𝑇3, and highlighted by orange) are the weight vectors calculated
rom the three possible labelled spanning trees for three alternatives
hat can be seen in Fig. 5. Thus, the set of efficient weight vectors is
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Fig. 10. The structure of the spanning trees in our illustrative example for the 𝑛 = 4
ouble perturbed case. The spanning trees framed the same way determine the same
eight vectors (the same vertices in Fig. 9).

he convex hull of the priority vectors calculated from the spanning
rees.

A direct geometric proof of the efficiency of the eigenvector (for
hree alternatives coinciding with the logarithmic least squares optimal
eight vector [44, Section 3.2]) can be given as: the geometric mean
f row elements is located in the small green triangle in the middle, the
et of efficient weight vectors.

It is also worth mentioning that, although Fig. 4 only shows an
llustrative example (where 𝑎12 ⋅𝑎23 > 𝑎13), the main results are always

the same for inconsistent matrices. If we use another PCM, then the
lines 𝓁1,𝓁2, and 𝓁3, and so the exact size and shape of the polygons will
e different, but their main properties will be the same. The efficient
ectors will be in a similar triangle determined by the spanning trees,
xcept for the case of a consistent PCM (which means 𝑎12 ⋅ 𝑎23 = 𝑎13),

when there is only one efficient weight vector (lines 𝓁1,𝓁2, and 𝓁3
are concurrent), i.e., the results calculated from the spanning trees
correspond to each other. It can also happen for other PCMs (when
𝑎12 ⋅ 𝑎23 < 𝑎13) that the 3-cycle of the Blanquero–Carrizosa–Conde
directed graph of the efficient vectors is oriented in the opposite way.
It is easy to show that if there is a feasible solution for the inequalities
determining one of the two possible directed 3-cycles, then there is
no feasible solution for the other case, however, there will be always
exactly one strongly connected directed graph among the possible BCC
digraphs.

3.2. The case of four alternatives

As mentioned before, in the case of three alternatives, a PCM is
either inconsistent (simple perturbed) or consistent. However, for four
alternatives it is important to distinguish between triple perturbed,
double perturbed, and single perturbed inconsistent matrices as well
as the consistent ones (when there is always only one efficient weight
vector).

Fig. 6 shows the main results of an illustrative triple-perturbed
example (the one that is also presented in Example 2) in the case of four
alternatives (𝑛 = 4). Again, because of the fixed sum of the elements of
weight vectors, the possible outcomes are in the unit 4-simplex that can
be presented in three (𝑛−1) dimensions as a regular tetrahedron (from
now on denoted by 𝑆4).

Thus, 𝑆4 (similarly to the large triangle before) contains all the
possible weight vectors. The vertices correspond to the cases, when
exactly one coordinate is positive, for the edges there are two positive
coordinates, and for the faces there are three positive elements. Thus,
the feasible solutions compose the interior of the tetrahedron.
8 
In this case, there are so many possible polyhedra (which has a
similar role to the polygons in Fig. 4) that it would be difficult to
interpret the chart containing all of them. Thus, we only highlight the
set of efficient weight vectors in Fig. 6, and the 6 planes determining
these polyhedra (which has a similar role to 𝓁1,𝓁2, and 𝓁3 in Fig. 4) in
Fig. 7, where the equation determining the given plane can be seen
above the corresponding subfigure. For instance, the top left plane
contains the weight vectors that fulfil the equation 𝑤1∕𝑤2 = 𝑎12,
i.e., the ones that estimate the 𝑎12 element of the pairwise comparison
matrix perfectly. This can also help to understand where the different
points and sets are in 𝑆4.

As before, based on Theorem 2, for 𝑛 = 4 the only way to get
a strongly connected directed graph is to have a 4-cycle (and the
directions of the other edges do not matter). There are six possible ways
for this, however, in the half of them, the only difference is the direction
of the cycle. For a given PCM, always only one direction is possible (as
it was the case for 𝑛 = 3 as well), the inequalities determined by the
other direction have no feasible solution.

Thus, we only have to examine three possible cycles. It turns out
that each of them determine a small tetrahedron containing efficient
weight vectors. These tetrahedra are also touching each other, as the
set of efficient vectors is connected as proved by Blanquero et al. [21].

The cycles and the corresponding tetrahedra are highlighted by the
same colour in Fig. 6. It is also true that each tetrahedron is determined
by four weight vectors (four points) calculated from four spanning
trees. The (3 ⋅4 =)12 spanning trees defining the set of efficient vectors
are presented in Fig. 8, the ones corresponding to a given tetrahedron
are placed in the same row and highlighted by the same colour.

Interestingly, there are 16 possible labelled spanning trees for four
vertices. 12 of them are line graphs, which determine our tetrahedra,
and the other four are the four possible star graphs. Those also corre-
spond to efficient weight vectors, but they are not placed at the vertices
of the three small tetrahedra. They are on one of the edges of a given
tetrahedron, at the point where a plane that determines one of the other
two tetrahedra would intersect this edge.

It is also important that here the set of efficient weight vectors is
not convex, but the union of three convex sets, which are defined by
the line graph spanning trees.

When we consider double perturbed matrices for 𝑛 = 4, then the
results seem to be quite similar, however, here the set of efficient
weight vectors is determined by 9 spanning trees instead of 12, as
two vertices of each small tetrahedron correspond to each other. An
illustrative example (the one that also can be seen in Example 2) is
presented in Fig. 9.

Fig. 10 shows the spanning trees determining the set of efficient
weight vectors for this case. The triad of alternatives one, two, and
three is consistent in our example. The spanning trees that provide the
same weight vectors (framed the same way in Fig. 10) contain two
comparisons from this consistent triad, and their third comparison is
the same (the comparison between one and four, two and four, or three
and four). The consistent triad means that if we know any two of its
elements, then those determine the third one as well, thus, in these
spanning trees the used information is the same, hence they determine
the same weight vectors.

As for the convexity of the set of efficient weight vectors for double
perturbed matrices with four alternatives, the conclusion is similar to
the previous case. The set of efficient weight vectors is not convex,
but the union of three convex sets determined by 9 weight vectors
corresponding to 9 spanning trees.

The case of simple perturbed pairwise comparison matrices with
four alternatives is also presented via an illustrative example (the one
that is used in Example 2) in Fig. 11.

One of the former tetrahedra (denoted by red, and defined by the
first (top) cycle) corresponds to only one point in this case, as the
comparisons are consistent here. This also means that the only efficient

weight vector for the consistent matrix in Example 2 is this point.
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Fig. 11. Efficient weight vectors for the 𝑛 = 4 simple perturbed case.
Fig. 12. The structure of the spanning trees in our illustrative example for the 𝑛 = 4
imple perturbed case. The framed spanning trees determine the same weight vectors
same vertices in Fig. 11).

As for the other two tetrahedra, three of their four vertices pairwise
orrespond to the other tetrahedron’s three vertices. Moreover, the
oint that presents the first tetrahedron is also one of their correspond-
ng vertices. Thus, the set of efficient weight vectors is determined by
9 
5 vectors corresponding to the spanning trees detailed in Fig. 12. This
results in a triangular bipyramid (or dipyramid) that is two tetrahedra
joined along one face.

As one can see, all the spanning trees that do not contain the com-
parison between one and four (the only perturbed element), determine
the same weight vector, that one point that was mentioned before, as
now there are even more consistent elements in the matrix, i.e., the
used information coincide with each other. This is why the first (red)
row of Fig. 12, thus, the first cycle, determines the same weight vector
and so only one point in Fig. 11. On the other hand, the only unique
weight vectors for the other two cycles determined by a spanning tree,
are the ones, where both the comparison between one and four is
included, and the other two comparisons are not possible in the other
cycle.

Another interesting fact is that, the faces of 𝑆4 correspond to the
triads of the examined matrix. Fig. 13 presents the triads and the faces
of 𝑆4 of the simple perturbed example together. This chart is showing
the projection of the results to the different triads as well as highlight
the connection between 𝑛 = 3 and 𝑛 = 4, as each triad provides a
submatrix of the original one with only three elements, and the faces
of 𝑆4 are similar to 𝑆3.

It is important to emphasize that none of the points (weight vectors)
that can be found on the faces of 𝑆4 are possible weight vectors for
us, as we are looking for positive vectors, thus these only help to
understand and visualize the different conditions and possible points
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Fig. 13. The faces of 𝑆4 and the corresponding submatrices determined by the given triads for the 𝑛 = 4 simple perturbed case.
in the tetrahedron as well as to see the connection between the PCM
and its lower dimensional submatrices.

One can see that in the case of triad 1-2-3 and triad 2-3-4, the
equations only determine one point in the given triangle, as the given
triads are consistent.

4. Conclusion and further research

In this paper, we filled in the research gap to provide the geometric
interpretation of the sets of efficient weight vectors for three and four
alternatives. The presented geometric demonstrations are complemen-
tary to the algebraic view applied in former studies, and help to better
understand these sets. We are first in the literature to draw attention
to the special role of spanning trees in this problem.

It turned out that the set of efficient weight vectors is determined by
the vectors corresponding to spanning trees. For the simple perturbed
case with three alternatives it is the convex hull of the weight vectors of
10 
the labelled star (line) graphs that is a triangle. For pairwise comparison
matrices with four alternatives, they are determined by the line graphs,
and they can be interpreted as the union of three tetrahedra, each of
them being the convex hull of four appropriate spanning trees. The
difference between triple, double and single perturbed matrices here
is that some of the weight vectors determined by the spanning trees
coincide, while for consistent PCMs they all provide the same weight
vector.

Fig. 4 suggests that the area of the inner triangle (the set of efficient
weight vectors) might be related to the level of inconsistency. However,
this area depends on the inner triangle’s location within 𝑆3, it is larger
around the centre (i.e., when the matrix elements are closer to 1),
and it is smaller far from it (i.e., when some matrix elements are far
from 1). Compare the bottom left triangle’s area (0.0304, calculated as
(

(𝑎31𝑎12𝑎23 − 1)2
)

∕
(

(𝑎31𝑎12 + 𝑎12 + 1)(𝑎12𝑎23 + 𝑎23 + 1)(𝑎23𝑎31 + 𝑎31 + 1)
)

by Routh’s theorem [45, page 82]) in Fig. 13 to that of the triangle of
efficient weight vectors corresponding to, e.g., the 3 × 3 PCM 𝑎 =
12
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𝑎23 = 𝑎13 = 4, which is 0.0317. However, the latter matrix seems less
nconsistent (with any reasonable inconsistency index) than the 1-3-4
riad. This phenomenon is present also in the case of PCMs of higher
rder.

It is important to deal with the efficiency of the calculated weight
ectors, as it is crucial to determine the weight calculation technique
sed for a given problem, and it is difficult to argue for an inefficient
olution. We believe that our results give significant contribution to
etter understand the efficient weight vectors, while also raise several
urther research questions.

The spanning trees determine the set of the efficient weight vectors
or larger matrices as well, but almost certainly not all of them do so (as
e presented for four alternatives as well). Are the line graph spanning

rees retain their property and determine these sets for larger cases as
ell? Why is their role so unique?

What are the properties of the sets of efficient weight vectors, and
ow does this relate to the level of perturbation? Where can be the
esults of known weight calculation techniques in these sets, and why?
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