
402|https://doi.org/10.3311/PPtr.23344
Creative Commons Attribution b

Periodica Polytechnica Transportation Engineering, 52(4), pp. 402–411, 2024

Cite this article as: Lukács, G., Bartha, T. (2024) "Verification of Railway Control Systems Using Model Checking and CTL, Explained Through a Case Study",
Periodica Polytechnica Transportation Engineering, 52(4), pp. 402–411. https://doi.org/10.3311/PPtr.23344

Verification of Railway Control Systems Using Model Checking
and CTL, Explained Through a Case Study

Gábor Lukács1*, Tamás Bartha1,2

1 Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

2 Institute for Computer Science and Control (SZTAKI), Kende street 13-17., H-1111 Budapest, Hungary
* Corresponding author, e-mail: lukacs.gabor@edu.bme.hu

Received: 02 September 2023, Accepted: 24 May 2024, Published online: 04 June 2024

Abstract

Systematic faults can often occur during the development of a system. The later such faults are discovered, the more expensive it

can be to correct them. In systems engineering practice, there are many methods and tools to reduce the likelihood of systematic

faults. In this paper, we present the application of a formal model–based verification technique – called model checking – to assist

railway engineers in designing and verifying the safety-related functionality of railway control systems. The proposed process is part

of a specification-verification environment that facilitates the construction of correct, complete, consistent, and verifiable functional

specifications during development. The results and experience in model checking are illustrated by a case study of a vehicle detection

point, a common component in this domain. The model checking of the case study has been performed in the widely used UPPAAL

modeling and simulation framework, which can also verify formal properties and generate a counterexample in case of a property

violation. By analyzing the counterexample, the designer can gain insights into the system's behavior and identify potential design

flaws or failures. Model checking can be used to achieve a higher quality functional specification that is typically more complete and/

or contains fewer faults compared to the traditional development approach.

Keywords

verification, model checking, computation tree logic, railway control system

1 Introduction
Society's expectations of safety-critical systems are
increasing worldwide in all sectors, including railway
engineering. Hazard identification and risk management
have become a standardized process in this field (see
e.g., CENELEC, 2018). There are many ways to achieve
and maintain an appropriate level of safety integrity, sup-
ported by well-developed methodologies and techniques,
and a wide range of tools to support the system develop-
ment process (CENELEC, 2011; see CENELEC, 2018;
CENELEC, 2017a; CENELEC, 2017b). These can be
usefully complemented by formal methods from com-
puter science (Roggenbach et al., 2022), whose semantics
and syntax are well defined and complete, thereby forc-
ing the applying engineer to think deeply and systemati-
cally about the problem under consideration, thus signifi-
cantly reducing ambiguities and gaps in the specifications.
Research into the application of formal methods in systems
engineering practice in the field of railway automation

systems engineering has a long history and many results
(Nanda and Grant, 2019). Despite the progress made, the
translation of these methods into everyday engineering
practice is still to be achieved.

Model-Based Systems Engineering (MBSE), (Gnesi and
Margaria, 2013) is gaining popularity in the practice. This is
also preferred by railway engineers due to the advantages
and power of modeling. Using mathematical/logical rules,
formal modeling (Vyatkin and Hanisch, 2001) provides a
way to precisely specify the functionality of systems.

Based on the motivations described above and on cur-
rent practice, the aim of our research is to achieve a meth-
odology based on formal methods, suitable for industrial
application, at the systems engineering level, to support the
development of safety-critical railway automation systems.
This methodology includes the selection of appropriate
specification and verification technologies and suitable sup-
porting tools and their integration into a unified framework.

https://doi.org/10.3311/PPtr.23344
https://doi.org/10.3311/PPtr.23344
mailto:lukacs.gabor%40edu.bme.hu?subject=

Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024 |403

In developing the methodology, particular attention has
been paid to MBSE techniques that form one basis of cur-
rent systems engineering practice. The result of the research
provides a framework for railway systems engineers that
can be used to design and verify the safety-critical functions
of the developed systems in a cost-effective and verifiably
correct way. The scope of the research has been functional
requirements and support for the design and verification of
functional safety. Non-functional requirements and related
design and verification activities were therefore not included
in the research. The principles of the methodology were con-
ceptualized in the paper (Lukács and Bartha, 2022a), here-
after referred to as Formal Model-Based Railway Safety
Engineering (FMBRSE).

In this paper, our purpose is to highlight and present
in detail the verification part of our framework. To assess
the practical applicability of model checking in the rail-
way domain, we developed some case studies in detail
(Lukács and Bartha, 2021; Lukács and Bartha 2022a), of
which we publish here the results achieved through the
example of one case study (Lukács and Bartha, 2022a).
For model checking, we used the UPPAAL framework,
which proved to be suitable for handling the domain
we investigated.

2 Related work
The formal verification of various safety-critical con-
trol systems has been researched in recent years, and the
results are described in several publications. These papers
have demonstrated the general applicability of formal ver-
ification, in particular model checking, in the context of
these systems. In the subsequent paragraphs, we present
various examples from some domains.

Cyber-physical systems (CPS) are safety-critical and can
be analyzed using experimental testing and model-based
verification. However, accurate models have the potential
to reach risk-free simulation of system behavior even in
extreme scenarios. To address the challenges of CPS model-
ing and design, the research of (Alshalalfah, et al., 2023) uses
the INCOSE/OMG System Modelling Language (SysML),
(Friedenthal, et al., 2011) standard to accurately specify
CPSs. A limited number of SysML elements are defined
to accurately capture the meaning of continuous and dis-
crete time system behaviors. These elements are described
by the creation of a novel algebra called Enhanced Activity
Calculus (EAC). EAC assists in the creation of compara-
ble timed automata models by developing a new methodi-
cal procedure to accurately translate the SysML models into

the inputs of the UPPAAL-SMC statistical model check-
ing tool. The latter examines whether the system is accurate
and secure. The reliability of the translation mechanism was
confirmed, and its efficiency was demonstrated in a real-life
scenario, namely the artificial pancreas.

The VerifCar (Arcile et al., 2019) is a framework deve-
loped for modeling and model checking communicating
autonomous vehicles (CAVs). This approach focuses on
the formal modeling of connected autonomous vehicles
using timed automata, enabling a formal analysis of vehi-
cle behavior. For model checking, CTL is used.

A study from the railway industry (Laursen et al., 2020)
investigates the modeling and model checking of a dis-
tributed railway interlocking system algorithm using the
UPPAAL framework. The verification of interlocking
systems for particular railway networks is achieved by
using a generic model instantiated with configuration data
describing the network and trains. Various versions of the
generic model are used. Verification has been performed
on all variants to ensure their correctness and to compare
their performance.

Finally, we would also like to present an example from
the nuclear industry that demonstrates one possible practi-
cal application for model checking. In this research, model
checking is presented by (Pakonen, et al., 2017) to prove
the correctness of the application logic of instrumenta-
tion and control (I&C) systems using some projects from
the Finnish nuclear industry. MODCHK is presented as
a user-friendly graphical modeling tool. It can be used to
verify function block-based application logic. MODCHK
creates the necessary input files for the NuSMV 2.6.0
model checker (Cimatti, et al., 2002). It performs the anal-
ysis and displays the results. The counterexamples pro-
duced by NuSMV are visualized using a 2D animation.
The analyst can play the animation back and forth.

Based on these results, we have determined that identical
principles and methods have been depending on purposes,
tailored to the specialties of the industry. It can be assumed
that distinct solutions are occasionally needed in different
fields to fulfill the specified goals, regarding specification,
model formation, and verification. The FMBRSE approach
is based on existing methods and techniques. Its mathemat-
ical foundations and tools are well established. The way
these are selected and integrated is specifically tailored to the
engineering of safety-critical control systems in the railway
domain. One of the methods included in FMBRSE is model
checking. This paper presents how it is used in FMBRSE
and what we have learned from experimenting with it.

404|Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024

3 Methodology
In this section, we present an overview of our proposed
methodology. For a more detailed explanation of the meth-
odology, please refer to (Lukács and Bartha, 2022a).

The purpose of FMBRSE is to aid railway engineers
– designers who comply with the EN 50126-2 standard
(CENELEC, 2017b) – in utilizing formal specification and
verification when developing a safety-critical railway sys-
tem. The application of this methodology throughout the
development process yields a verified functional model of
the railway system under consideration.

FMBRSE is based on a well-defined process that fol-
lows the lifecycle model described in the standards
(CENELEC, 2017a, CENELEC, 2018). The process
receives input in the form of requirements that are specified
in detail by different stakeholders. The first stages (speci-
fying the system requirements, designing the architecture,
and allocating the system requirements) are familiar to rail-
way engineers because of their inclusion in the standard
(CENELEC, 2017a). The FMBRSE methodology provides
a framework for specifying how to design system compo-
nents according to their functionality. This framework has
four fundamental pillars: requirements, interfaces, configu-
ration, and behavior. The development of a formal model for
the system or component aligns with these pillars.

FMBRSE also offers a verification environment
that implements formal verification through the pro-
cess of model checking (see Fig. 1). Model checking
(Baier and Katoen, 2008) is the use of discrete mathematics

to answer the question "Does the model satisfy a set of
requirements or in the case of deviation, what sequence of
events can lead to this situation?".

The goal of model checking is to verify the functionality
of a designed system before its implementation. For express-
ing formal requirements, we use Computation Tree Logic
(CTL) formulas (Chatterjee and Doyen, 2016), which in our
case are derived from the requirements and formal models
based on the system's functional specifications.

The paper (Lukács and Bartha, 2022b) provides a thor-
ough explanation of how CTL formulas, which serve as
one of the inputs to model checking, are generated by a
rule-based technique that transforms natural language
descriptions into a formal specification language. Fig. 2
contains examples that are intended to demonstrate the
expressive power of CTL as it is used in FMBRSE and as
it compares to other temporal logics.

The system behavior is automatically generated as
timed automata models, which are transformed from UML
statecharts (Lukács and Bartha, 2022c). We have defined a
simplified subset of UML state machines for this mapping
(see Lukács and Bartha, 2022c). This subset allows a clear
correspondence between UML statecharts and UPPAAL
timed automata systems.

The two necessary inputs for model checking – the
CTL formulas and the formal model – are both available in
the generated UPPAAL timed automata model, as shown
in the previous two paragraphs and in Fig. 1. The paper
(Lukács and Bartha, 2022a) provides a comprehensive
explanation of the theoretical foundation of model check-
ing. In this study, we solely discuss the supplementary
requirements for conducting model checking in FMBRSE.

There are two key stages to the FMBRSE model check-
ing process. As a first step (referred to as model validation),
the model is checked for deadlocks and state reachability.

Fig. 1 The process of the model checking Fig. 2 Expressive power of temporal logics

Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024 |405

The FMBRSE framework currently verifies only these
properties, but it could be expanded to other properties
deemed significant in practice, such as safety properties.
The second step of verification (referred to as functional
requirements verification in FMBRSE) involves checking
the functional requirements of the model as defined by the
stakeholders. Validating the correctness of the model before
the second verification step is a critical phase. The reason
for this is that a comparison of stakeholder requirements
with a model that has been incorrectly implemented can
have misleading or inaccurate outcomes.

So far, we have explained an ideal model checking pro-
cess and some FMBRSE-specific considerations. However,
our practical experience with FMBRSE has shown that mod-
eling the system environment is usually also necessary to
supplement this process. Modeling the system environment
is an additional component required for model checking that
can significantly impact the other two inputs, specifically
the CTL formulas and the formal model (refer to Fig. 1).
Both inputs need to be refactored based on the defined envi-
ronment. This usually involves augmenting the model and
the requirements with environmental conditions.

In FMBRSE, we present a potential model for the envi-
ronment, with the understanding that this is not the only
possible solution. Our goal is to provide a simple tem-
plate that domain engineers can use as a basis for con-
structing their environment models within the FMBRSE
framework. The proposed environment model consists of
three parts: action timing model, function call sequence
model, and input function model. These are specific to the
designed system; thus, they need to be designed individu-
ally with the modeling objectives in mind. In summary, a
formal behavioral model of a system is composed of two
main elements: the automata representing the functional-
ity and the necessary elements modeling the environment.

Finally, the FMBRSE framework can be applied at both
the system and component levels. This paper discusses
the application of the framework at the component level
through a case study (refer to Section 4). Another illustra-
tive case study of the system-level application is described
in (Lukács and Bartha, 2021). However, applying
FMBRSE at the system level could result in a well-known
difficulty: state space "explosion". This is because the sys-
tem-level models have a larger and more complex state
space than the component-level models. Compositional
verification, as proposed by (Bensalem et al., 2008), is one
approach to address this issue. It entails deducing global
properties of intricate systems from the properties of their

constituent parts. For more information on the limitations
and constraints of model checking, see, for example, the
refe renced book (Clarke et al., 2018).

4 Case study
The purpose of the detection point (DP) is to detect a
train within its range. The functionality of the detection
point can be simply described as follows: If the train is
over the detection point, it is 'occupied'; and if the train
is not over the detection point, it is 'free'. Railway engi-
neers can, based on previous experience and domain spe-
cific knowledge, significantly extend this behavior during
functional specification.

The DP has four functional inputs and two outputs.
The inputs are Fault, /Fault, Presence, and /Presence.
These inputs and parameters determine how this compo-
nent behaves and sets its outputs: Failure and Occupancy,
which are inputs to other components that are required for
their operation. The detailed specification and construction
of the UPPAAl model of the DP component is described
in the paper (Lukács and Bartha, 2022a). Our goal here is
simply to summarize the experience of model checking
the DP component. For this purpose, we provide the most
relevant parts of the specification and the UPPAAl model
of the DP component in the following paragraphs.

From the detailed design of the DP component, the
following functions can be defined: checking compli-
ance with the configuration rules, checking antagonism
between presence and negated presence inputs, presence
handling, fault handling, release handling, setting com-
ponent outputs. Fig. 3 shows the internal structure of the
DP component based on these functionalities. The compo-
nents within the DP interact via global variables, with the
key variables illustrated in Fig. 3.

The structure of the UPPAAL model is built up using
the components shown in Fig. 3. Each component is rep-
resented in the UPPAAL model as an automaton. As an
example, consider the automaton shown in Fig. 4, which
describes the behavior of the PresenceHandling compo-
nent. In order to interpret this automaton, the following
extra information is required:

• interfaces (see Fig. 3)
• parameters (see Table 1.)
• additional automata to ensure simulation and model

checking in UPPAAL (see next paragraph).

To make the simulation and model checking in UPPAAL,
the specifics of the runtime environment must also be

406|Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024

included in the formal model. For this purpose, we use the
environmental model described in Section 3. We include
three additions in the UPPAAL model of the detection
point to describe the essential features of the runtime envi-
ronment: time handling (A), execution control (B), and an

input function (C). For example, in Fig. 4, the interfaces to
these additional automata are a channel (ALLOWEDRUN)
and a variable (PERMISSION).

The PresenceHandling automaton (Fig. 4) consists of
two primary states: free and occupied (which itself con-
sists of six sub-states named as "occ_..."). The system
can enter the free state if it identifies a 'false' on both
of its presence inputs (in_presence_p, in_presence_n).
Depending on the type of occupancy from which the DP
enters the free state, it can set a failure at its output (set
PFault to 'true'). When a presence ('True') is detected on
one of its presence inputs, the DP enters an occupied state.
The timer "To" (occupancy time) is activated when the DP
is in use. During usage, the DP remains in one of the six
"occ_..." states depicted in Fig. 4, which is determined by
the configuration (refer to Table 1) and the timer "To".

The state occ_wfault_short_occupancy indicates that
the detection point was occupied for an exceedingly
brief duration. In practice, it is physically impossible
for a train to cause such a short occupancy. For DP, this

Fig. 3 The internal structure of the detection point

Fig. 4 Automaton for handling of presence (PresenceHandling)

Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024 |407

means that the timer value To was below the minimum
parameter (PTomin) while both presence inputs were free
(PFault 'true'). If there is an upper limit to the occupancy
time (as indicated by PTomaxE being 'true'), the automa-
ton may enter the state occ_wfault_overflowed_PTomax
as well. The value of PTomax value indicates that the DP
has been occupied for an extraordinary extended period of
time. In practice, a train cannot occupy the detection point
for such a long time. In the case of the DP, if the value of
the To timer exceeds the PTomax parameter and the DP
transitions to the free state, a fault will be triggered on its
output at the same time (with PFault set to 'true'). Until the
point at which To reaches the maximum value for an 8-bit
integer (PTomaxE is 'true'), the DP component will pro-
vide precise data to the diagnostic regarding the dura-
tion of the presence (refer to the status occ_wfault_over-
flowed_CInt8Max). There may be occasions where it is
unnecessary to use an upper limit for the time To. In these
instances, if train presence is detected, the DP will uti-
lize the states occ_wfault_non_overflowed_CInt8Max
and occ_wfault_overflowed_CInt8Max. Finally, if the DP
has correctly detected the occupancy based on the con-
figuration (PTomaxE can be either 'true' or 'false'), the
train presence remains in the state occ_wfault_not_over-
flowed_PTomax. From this state, the DP can enter the free
state if there is no fault (i.e. with PFault 'false').

Another important automaton for the case study is
OutputHandling (see Fig. 5 which corresponds to the
Output Interface component in Fig. 3). This automaton sets
the outputs of the DP component that can be used by other
components connected to the DP. To carry out this oper-
ation, the OutputHandling automaton interfaces with the
PresenceHandling automaton (and its OOccupancy output),
the FaultHandling automaton (and its OFailure output), and
the ReleasePermission automaton (and its RPermit output).
The output of the DP can indicate a failure together with
occupancy (the failure_occupied state), and the absence of
a failure together with an unoccupied or occupied state.

The parameters of the DP model have significant impact
on model checking. For certain parameter sets, part of the
state space may even be inaccessible – so recording these
settings is a prerequisite for model checking reproducibil-
ity. The model parameters used during model checking are
listed in Table 1.

In practice, it is not sufficient to perform validation and
verification with only a well-defined set of system param-
eters. Another known difficulty is that there can be an
incredible number of parameter configurations (over 108
variations in our case study). To deal with this problem,
we recommend using the approaches suggested by ISTQB
(Graham, et. al., 2008): equivalence partitioning and bound-
ary value analysis. In this paper, we do not present these
principles in detail, but only describe the model checking
results in addition to the configuration according to Table 1.

Finally, a computer with an Intel® Core™ i5–7200U
CPU and 8 GB of memory was used for model checking.
The configuration of UPPAAL during the model check-
ing was: breadth-first search order (BFS), conservative
state space reduction, Difference Bounds Matrices (DMB)
state space representation, no diagnostic trace, automatic
extrapolation, 16 MB hash table size, and reuse and para-
metric comparisons were enabled.

4.1 Validation of the model
As mentioned before, we validated the model of the DP
object for deadlock freedom and the reachability of the
states. In this section, we illustrate the examination of
these properties through an example. The special CTL
formulas in the following sections are given using the
UPPAAL textual notation.

Deadlock freedom is typically a basic expectation
against the models of systems in continuous operation,
where planned stopping (reaching a deadlock) occurs
rarely (or not at all) and is not modeled. Deadlock freedom

Table 1 Parameter settings of DP component for model checking

Id. Brief description Setting

PTopn Maximum time allowed for antagonism
between Presence inputs. 10 [s]

PTomin Minimum time of train presence within the
range of the detection point. 20 [s]

PTomax Maximum time of train presence within the
range of the detection point. 50 [s]

PTomaxE Existence of upper limit Tomax. true

PTr Release preparation time. 10 [s]

Fig. 5 Automaton for handling of output (OutputHandling)

408|Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024

means that there is no such state that has no subsequent
state(s). In the corresponding CTL formula F1, si represents
the states belonging to the state space S (S:{si}), and next
(si ) represents the set of consecutive states from the state si .

F next1 0: AG si� �� � �
In UPPAAL, we can check the deadlock freedom with
query where deadlock is a reserved keyword in the tool:
A[] not deadlock. After executing this query on the
model of the DP case study, model checking confirmed
that the property is satisfied.

The reachability of particular states of the model can
be checked using the CTL formula F2, where statei is the
particular state being checked.

F state2 : EF i

The interpretation of formula F2 is that there exists a path
in the state space graph where a reachable state has the
identifier statei. In other words, formula F2 asserts the
existence of an executable path within the system where
statei is included at some point along the path. If no such
path can be found, then the proposition is false, indicating
that statei is not reachable. As an example, checking the
reachability of the "free" state of the PresenceHandling
automaton of the DP case study can be done with formula
E<> presencehandling.free in UPPAAL. After
executing this query on the DP model, the result of the
model checking showed that the property is satisfied.

Using formula F2, we checked the reachability of all
states of the DP. In summary, this meant checking the
reachability of 20 states of the DP case study (based on
functional specification) and checking the reachability of
the states of the supplementary automata (runtime envi-
ronment, see Section 4), an additional 11 states. In total,
this meant executing 31 queries on the model.

4.2 Verification of the functional requirements
The informal functional requirements for the detection
point were described in Paragraph 1 of Section 4 in italics.
These are high-level system requirements. In other words:

1. When the detection point detects a rail vehicle within
its range, it emits an "occupied" signal at its output.

2. If the detection point does not detect a rail vehicle
within its range, it emits a "free" signal at its output.

To perform the model checking in UPPAAL, we need
to transform the above requirements. There is a detailed
description of the transformation steps in the paper

(Lukács and Bartha, 2022b). The UPPAAL textual form
of the CTL requirements are:

• Q1: A[] (in _ presence _ p == true ||
 in _ presence _ n == true) imply
 out _ occupancy == true
• Q2: A[] (in _ presence _ p == false &&
 in _ presence _ n == false) imply
 out _ occupancy == false.

In the following, we will first present the results of the
model checking of property Q1 and then property Q2 and
the lessons learned.

The result of checking property Q1 was that the pro-
perty is not satisfied. The reason is that, due to the struc-
ture of the model (multilevel/hierarchical processing), the
expected result does not appear on the output immediately
- more precisely, in the next step. At the beginning of a
given step, the InputGenerator automaton (see Section 4,
input function (C)) of the model sets the inputs, but the
result can be emitted to the outputs (out_occupancy) only
after the OutputHandling automaton (see Fig. 3) has run
(at the end of the given cycle). Therefore, the "running
time"of the cycle must also be included in the CTL expres-
sion to obtain the expected result during model checking.
More precisely, the condition ISRUN == true (ISRUN is
a global variable) must be included in the property to be
checked. Note that the paper (Lukács and Bartha, 2022a)
describes the structure of the model in detail.

The lesson from this is that the requirements must
be adapted to the model, since the model usually also
reflects some kind of implementation. However, even at
this stage of the system design, we do not necessarily have
all the information about the system architecture and the
planned implementation solutions (only the requirements
are known). Considering what has been described, prop-
erty Q1 needs to be completed before model checking.
The result of property modification will be according to
UPPAAL formula:
Q3: A[] ((in_presence_p == true ||
 in_presence_n == true) && ISRUN ==
 true) imply out_occupancy == true.

When model checking is performed on property Q3, the
result will be as expected: the property is satisfied.

In the case of model checking based on property Q2,
the UPPAAL framework also provided us with a coun-
terexample. We analyzed the counterexample in detail by
tracking states, variables, and clock variables during each
step (more precisely in each cycle). The counterexample

Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024 |409

occurred when the 12 cycles were executed. At the begin-
ning of the 12th cycle, the free state was simulated at the
inputs of the detection point, but the occupied output was
still observable at its outputs, i.e., the input change did not
take effect immediately. In the counterexample, the set-
ting of the free state on the inputs was represented by the
following lines:

• Pre: (run, step1, generation, config_ok, non_
antagonism, free, non_ faulty, release_allowed,
non_ failure_ free),

• Tr: ALLOWEDRUN: runcontrol → inputgenerator[15],
• Res: (run, step2, generation, config_ok, non_

antagonism, free, non_ faulty, release_allowed,
non_ failure_ free).

In the list above you can see the preceding state (Pre),
the state resulting due to the transition (Res) and the state
transition (Tr) that led to the counterexample. For the
states Pre and Res, each list represents the current state of
each automaton in the DP model (see Fig. 3 or in detail in
(Lukács and Bartha, 2021)).

We can see the states of the automata implemented in the
UPPAAL framework listed in parentheses (see Pre and Res),
and that the execution control automaton has given the instruc-
tion to the input generator automaton to simulate the occu-
pancy at the input of the detection point (for this the input gen-
erator automaton has randomly chosen the input combination
[15]). The next line of the counterexample reflects that the
input setting has not yet happened (i.e., the effect of changing
the input did not immediately take effect in the modeled sys-
tem, the output of the detection point remained 'free').

The result of the model checking of property Q2 was
that the property is not satisfied. Analyzing the counter-
example, we found that besides the addition of the prop-
erty presented in the previous example ('ISRUN == true'),
other additions were also needed in this case. The reasons
for this are described below.

The detailed design, specification, and modeling were
the result of an iterative process of changing the functional
requirements of the component (requirements analysis).
Because of this, the "fault" inputs also appeared in the speci-
fication, and the specification was also supplemented with the
release preparation time. As a result, even if the occupancy and
error inputs are appropriate, the occupancy output of the evalu-
ation element cannot be free until the release time has expired.
In this case, these have influenced the state of the occupancy
outputs of the detection point. Therefore, these new conditions

must also be included in the original requirement. In addition,
changes to the requirements must also be negotiated with the
customer. The formula produced by the analysis of the require-
ments can be given in UPPAAL as follows:
Q4: A[] ((in_presence_p == false &&
 in_presence_n == false &&
 in_fault_p == false && in_fault_n
 == false) && ISRUN == true &&
 releasepermission.release_allowed)
 imply out_occupancy == false.

When model checking is performed on property Q4,
the result is as expected: the property is satisfied.

5 Discussion
The purpose of this section is to summarize our experience
in model checking the case study described in Section 4.

In practice, the design, specification, and development
of models usually follow an iterative development process
(there may be exceptions for trivially simple systems).
To achieve efficient model checking, it is advisable to
ensure that, in addition to the artifacts mentioned above,
the requirements specification is also properly maintained.

For model checking (and simulation), it is not enough
to model the functional requirements, the model must also
embody a possible implementation solution. At this level
of system design, in most cases only the requirements are
known, so it is advisable to choose simple mechanisms
for this purpose. Also, the choice of the future implemen-
tation solution and its modeling will typically not coin-
cide with the implemented system. It is always necessary
to consider that the chosen implementation solution may
affect the results of the model checking.

We have identified two basic cases:
3. the modeled implementation solution can automati-

cally (by itself) ensure that certain properties are met,
4. the modeled implementation solution may also con-

tain solutions that need to be known and understood
in order to correctly complement the functional
requirements with these elements incorporated into
the model that reflect the future implementation
(the requirements need to be adapted to the model).

In addition to the above conditions, there may also be lim-
itations due to the applied framework (in this case: UPPAAL).
For UPPAAL, one such limitation is that the 'next' (next-state/
next-time) or 'X' CTL operator has not been implemented.
The output of model checking can also be affected by the

410|Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024

parameters of the component or system being modeled –
e.g., because there may be a set of parameters for which
a part of the state space is inaccessible. Fortunately, there
are widely known techniques (e.g., equivalence partitioning
and boundary value analysis) for dealing with large param-
eter spaces, which can also be used during model checking.

If the investigated property is not satisfied during model
checking, some frameworks (e.g., UPPAAL) can provide
counterexamples in various forms. Examining and inter-
preting counterexamples is not trivial in most cases, and
their interpretation requires, among other things, taking
into account all of the clauses mentioned above.

Another lesson is that neither the UPPAAL tool (nor
any other tool) can determine the expected result of model
checking, it has to be defined by the user. Also, the inter-
pretation of any counterexample is left to the user.

In summary, railway engineers should expect the appli-
cation conditions described in this section when using
model checking in the FMBRSE framework.

Finally, we have found that in many cases the informal
requirements look good, but they are not precise enough,
and this only becomes apparent during modeling/model
checking. Therefore, even if we try to hide the formal
details from the domain engineer, it is in vain. In our view,
it is essential to use formal methods and formal descrip-
tions at least in the requirements analysis phase, because
this is where the most difficult and costly mistakes can be
made, which will later be deeply embedded in the system
design. As long as the requirements are not formally ver-
ified, the FMBRSE methodology cannot be used to effec-
tively help the design process.

6 Conclusion
In this paper, we have presented the verification part of a
formal model–based methodology that facilitates the con-
struction of correct, complete, consistent, and verifiable
functional specifications during development. The process
we propose provides a specification/verification environ-
ment for railway engineers. Using this framework, they
can achieve a higher quality functional specification com-
pared to traditional development. The main advantage of
the described approach is that it hides the formal method–
related details from the railway engineers, so that they can
acquire a formal verification result without learning the
necessary mathematical background.

Our experience during the development of the case
study is that the application of model checking is only
possible under several restrictions that the domain engi-
neers have to consider. These limitations may also depend
on the method itself, the tool used, and the system being
modeled, as well as the possible implementation solutions.

We have found that the main difficulty for railway engi-
neers is the preparation of the requirements specification.
The problem is that they do not (want to) deal with the
formalization of the requirements during the prepara-
tion of specifications. To solve this problem, we started to
develop an intermediate domain-specific restricted textual
language for the railway field.

Considering the experiences described in this paper,
the proposed methodology proved to be suitable for the
design of electronic railway control systems. A high-qual-
ity functional specification, written by railway engineers
at the system development level, can be achieved using
formal models and model checking.

References
Alshalalfah, A.-L., Mohamed, O. A., Ouchani, S. (2023) "A framework

for modeling and analyzing cyber-physical systems using statisti-
cal model checking", Internet of Things, 22, 100732.

 https://doi.org/10.1016/j.iot.2023.100732
Arcile, J., Devillers, R., Klaudel, H. (2019) "VERIFCAR: a framework

for modeling and model checking communicating autonomous
vehicles", Autonomous Agents and Multi-Agent Systems, 33,
pp. 353–381.

 https://doi.org/10.1007/s10458-019-09409-x
Baier, C., Katoen J.-P. (2008) "Principles of model checking", [pdf]

The MIT Press Cambridge, Massachusetts London, England,
ISBN: 9780262026499.

Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.-H. (2008)
"Compositional verification for component-based systems and
application", International Symposium on Automated Technology
for Verification and Analysis, Springer, Heidelberg, Berlin.

 https://doi.org/10.1007/978-3-540-88387-6_7

CENELEC (2011) "EN 50128 Railway applications – communication,
signalling and processing systems – software for railway control
protection systems", Management CentreBrussels, Belgium.

CENELEC (2018) "EN 50129 Railway applications – communica-
tion, signaling and processing systems – safety related elec-
tronic systems for signaling", CEN-CENELEC Management
CentreBrussels, Belgium.

CENELEC (2017a) "EN 50126-1 Railway applications – the specification
and demonstration of reliability, availability, maintainability and
safety (rams) – part 1: generic RAMS process", CEN-CENELEC
Management CentreBrussels, Belgium.

CENELEC (2017b) "EN 50126-2 Railway applications – the specifica-
tion and demonstration of reliability, availability, maintainability
and safety (rams) – part 2: systems approach to safety", CEN-
CENELEC Management CentreBrussels, Belgium.

https://doi.org/10.1016/j.iot.2023.100732
https://doi.org/10.1007/s10458-019-09409-x
https://doi.org/10.1007/978-3-540-88387-6_7

Lukács and Bartha
Period. Polytech. Transp. Eng., 52(4), pp. 402–411, 2024 |411

Chatterjee K., Doyen L. (2016) "Computation tree logic for synchroni-
zation properties", 43rd International Colloquium on Automata,
Languages, and Programing (ICALP 2016).

 https://doi.org/10.48550/arXiv.1604.06384
Cimatti, A. Clarke, E. Giunchiglia, E. Giunchiglia, F. Pistore, M. Roveri, M.

Sebastiani, R. Tacchella, A. (2002) "NuSMV 2: an OpenSource
tool for symbolic model checking", International Conference on
Computer Aided Verification, pp. 359–364, Berlin, Germany.

 https://doi.org/10.1007/3-540-45657-0_29
Clarke, E. M., Henzinger, T. A., Veith, H., Bloem, R. (2018) "Handbook

of model checking", Springer International Publishing AG, Cham,
Switzerland, pp. 1–1197, ISBN 978-3-319-10575-8

 https://doi.org/10.1007/978-3-319-10575-8
Friedenthal, S., Moore, A., Steiner, R. (2011) "A practical guide to

SysML: the systems modeling language", Morgan Kaufmann
Publishers Inc., Elsevier, (2nd ed.). ISBN: 9780123852076

 https://doi.org/10.1016/C2013-0-14457-1
Gnesi S., Margaria T. (2013) "Some trends in formal methods appli-

cations to railway signaling", In: Formal Methods for Industrial
Critical Systems: A Survey of Applications, IEEE, pp. 61–84,
ISBN: 9781118459898

 https://doi.org/10.1002/9781118459898.ch4
Graham D., van Veenendaal E., Evans I., Black R. (2008) "Foundations

of software testing: ISTQB certification", Cengage Learning
EMEA, edition 4th, ISBN: 1473764793.

Laursen, P. L., Trinh, V. A. T., Haxthausen, A. E. (2020) "Formal
modelling and verification of a distributed railway interlock-
ing system using UPPAAL", In: Margaria, T., Steffen, B. (eds)
Leveraging Applications of Formal Methods, Verification
and Validation: Applications, Springer, Cham, pp. 415–433,
ISBN: 978-3-030-61467-6

 https://doi.org/10.1007/978-3-030-61467-6_27
Lukács, G., Bartha, T. (2021) "Formal modelling of level crossing

system for trams using UPPAAL framework", Műszaki Szemle
(Technical Review), Published by EMT as Erdélyi Magyar Műszaki
Tudományos Társaság (in English: Hungarian Technical Scientific
Society of Transylvania), (EMT) 77, pp. 18–37. (In Hungarian)
[online] Avaiable at: https://emt.ro/kiadvanyok/muszaki-szemle
[Accessed: 23 May 2024]

Lukács, G., Bartha, T. (2022a) "Formal modeling and verification of the
functionality of electronic urban railway control systems through
a case study", Urban Rail Transit 8, pp. 217–245.

 https://doi.org/10.1007/s40864-022-00177-8
Lukács G. Bartha T. (2022b) "Transformation domain requirements

specification into computation tree logic language", 2022 IEEE
1st International Conference on Cognitive Mobility (CogMob),
Budapest, Hungary, 2022, pp. 73–78. ISBN: 9781665476317

 https://doi.org/10.1109/CogMob55547.2022.10117911
Lukacs G., Bartha T. (2022c) "Practical UML subset for railway engi-

neers to support formal modeling", International Scientific
Journals, Trans and Motauto World 7(2), pp. 56–59.

Nanda, S. P., Grant E. S. (2019) "A survey of formal specification applica-
tion to safety critical systems", IEEE 2nd International Conference
on Information and Computer Technologies (ICICT), Kahului, HI,
USA, pp. 296–302.

 https://doi.org/10.1109/INFOCT.2019.8711369
Pakonen, A., Tahvonen, T., Hartikainen, M., Pihlanko, M. (2017)

"Practical applications of model checking in the Finnish nuclear
industry", Proceedings of the 10th International Topical Meeting
on Nuclear Plant Instrumentation, Control and Human Machine
Interface Technologies, San Francisco, CA, USA, pp. 1342–1352.

Roggenbach, M., Cerone, A., Schlingloff, H., Schneider, G., Shaikh, S. A.
(2022) "Formal methods for software engineering: languages, met hods,
application domains", 1st ed., Springer, ISBN: 978-3-030-38799-0

 https://doi.org/10.1007/978-3-030-38800-3
Vyatkin V., Hanisch H.-M. (2001) "Formal modeling and verification

in the software engineering framework of IEC 61499: a way to
self-verifying systems", ETFA 2001. 8th International Conference
on Emerging Technologies and Factory Automation, Proceedings
(Cat. No.01TH8597), Antibes-Juan les Pins, France, pp. 113–118.

 https://doi.org/10.1109/ETFA.2001.997677

https://doi.org/10.48550/arXiv.1604.06384
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1016/C2013-0-14457-1
https://doi.org/10.1002/9781118459898.ch4
https://doi.org/10.1007/978-3-030-61467-6_27
https://emt.ro/kiadvanyok/muszaki-szemle
https://doi.org/10.1007/s40864-022-00177-8
https://doi.org/10.1109/CogMob55547.2022.10117911
https://doi.org/10.1109/INFOCT.2019.8711369
https://doi.org/10.1007/978-3-030-38800-3
https://doi.org/10.1109/ETFA.2001.997677

	1 Introduction
	2 Related work
	3 Methodology
	4 Case study
	4.1 Validation of the model
	4.2 Verification of the functional requirements

	5 Discussion
	6 Conclusion
	References

