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Abstract

Systematic faults can often occur during the development of a system. The later such faults are discovered, the more expensive it 

can be to correct them. In systems engineering practice, there are many methods and tools to reduce the likelihood of systematic 

faults. In this paper, we present the application of a formal model–based verification technique – called model checking – to assist 

railway engineers in designing and verifying the safety-related functionality of railway control systems. The proposed process is part 

of a specification-verification environment that facilitates the construction of correct, complete, consistent, and verifiable functional 

specifications during development. The results and experience in model checking are illustrated by a case study of a vehicle detection 

point, a common component in this domain. The model checking of the case study has been performed in the widely used UPPAAL 

modeling and simulation framework, which can also verify formal properties and generate a counterexample in case of a property 

violation. By analyzing the counterexample, the designer can gain insights into the system's behavior and identify potential design 

flaws or failures. Model checking can be used to achieve a higher quality functional specification that is typically more complete and/

or contains fewer faults compared to the traditional development approach.
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1 Introduction
Society's expectations of safety-critical systems are 
increasing worldwide in all sectors, including railway 
engineering. Hazard identification and risk management 
have become a standardized process in this field (see 
e.g., CENELEC, 2018). There are many ways to achieve 
and maintain an appropriate level of safety integrity, sup-
ported by well-developed methodologies and techniques, 
and a wide range of tools to support the system develop-
ment process (CENELEC, 2011; see CENELEC, 2018; 
CENELEC, 2017a; CENELEC, 2017b). These can be 
usefully complemented by formal methods from com-
puter science (Roggenbach et al., 2022), whose semantics 
and syntax are well defined and complete, thereby forc-
ing the applying engineer to think deeply and systemati-
cally about the problem under consideration, thus signifi-
cantly reducing ambiguities and gaps in the specifications. 
Research into the application of formal methods in systems 
engineering practice in the field of railway automation 

systems engineering has a long history and many results 
(Nanda and Grant, 2019). Despite the progress made, the 
translation of these methods into everyday engineering 
practice is still to be achieved.

Model-Based Systems Engineering (MBSE), (Gnesi and 
Margaria, 2013) is gaining popularity in the practice. This is 
also preferred by railway engineers due to the advantages 
and power of modeling. Using mathematical/logical rules, 
formal modeling (Vyatkin and Hanisch, 2001) provides a 
way to precisely specify the functionality of systems.

Based on the motivations described above and on cur-
rent practice, the aim of our research is to achieve a meth-
odology based on formal methods, suitable for industrial 
application, at the systems engineering level, to support the 
development of safety-critical railway automation systems. 
This methodology includes the selection of appropriate 
specification and verification technologies and suitable sup-
porting tools and their integration into a unified framework. 
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In developing the methodology, particular attention has 
been paid to MBSE techniques that form one basis of cur-
rent systems engineering practice. The result of the research 
provides a framework for railway systems engineers that 
can be used to design and verify the safety-critical functions 
of the developed systems in a cost-effective and verifiably 
correct way. The scope of the research has been functional 
requirements and support for the design and verification of 
functional safety. Non-functional requirements and related 
design and verification activities were therefore not included 
in the research. The principles of the methodology were con-
ceptualized in the paper (Lukács and Bartha, 2022a), here-
after referred to as Formal Model-Based Railway Safety 
Engineering (FMBRSE).

In this paper, our purpose is to highlight and present 
in detail the verification part of our framework. To assess 
the practical applicability of model checking in the rail-
way domain, we developed some case studies in detail 
(Lukács and Bartha, 2021; Lukács and Bartha 2022a), of 
which we publish here the results achieved through the 
example of one case study (Lukács and Bartha, 2022a). 
For model checking, we used the UPPAAL framework, 
which proved to be suitable for handling the domain 
we investigated.

2 Related work
The formal verification of various safety-critical con-
trol systems has been researched in recent years, and the 
results are described in several publications. These papers 
have demonstrated the general applicability of formal ver-
ification, in particular model checking, in the context of 
these systems. In the subsequent paragraphs, we present 
various examples from some domains.

Cyber-physical systems (CPS) are safety-critical and can 
be analyzed using experimental testing and model-based 
verification. However, accurate models have the potential 
to reach risk-free simulation of system behavior even in 
extreme scenarios. To address the challenges of CPS model-
ing and design, the research of (Alshalalfah, et al., 2023) uses 
the INCOSE/OMG System Modelling Language (SysML), 
(Friedenthal, et al., 2011) standard to accurately specify 
CPSs. A limited number of SysML elements are defined 
to accurately capture the meaning of continuous and dis-
crete time system behaviors. These elements are described 
by the creation of a novel algebra called Enhanced Activity 
Calculus (EAC). EAC assists in the creation of compara-
ble timed automata models by developing a new methodi-
cal procedure to accurately translate the SysML models into 

the inputs of the UPPAAL-SMC statistical model check-
ing tool. The latter examines whether the system is accurate 
and secure. The reliability of the translation mechanism was 
confirmed, and its efficiency was demonstrated in a real-life 
scenario, namely the artificial pancreas.

The VerifCar (Arcile et al., 2019) is a framework deve-
loped for modeling and model checking communicating 
autonomous vehicles (CAVs). This approach focuses on 
the formal modeling of connected autonomous vehicles 
using timed automata, enabling a formal analysis of vehi-
cle behavior. For model checking, CTL is used.

A study from the railway industry (Laursen et al., 2020) 
investigates the modeling and model checking of a dis-
tributed railway interlocking system algorithm using the 
UPPAAL framework. The verification of interlocking 
systems for particular railway networks is achieved by 
using a generic model instantiated with configuration data 
describing the network and trains. Various versions of the 
generic model are used. Verification has been performed 
on all variants to ensure their correctness and to compare 
their performance.

Finally, we would also like to present an example from 
the nuclear industry that demonstrates one possible practi-
cal application for model checking. In this research, model 
checking is presented by (Pakonen, et al., 2017) to prove 
the correctness of the application logic of instrumenta-
tion and control (I&C) systems using some projects from 
the Finnish nuclear industry. MODCHK is presented as 
a user-friendly graphical modeling tool. It can be used to 
verify function block-based application logic. MODCHK 
creates the necessary input files for the NuSMV 2.6.0 
model checker (Cimatti, et al., 2002). It performs the anal-
ysis and displays the results. The counterexamples pro-
duced by NuSMV are visualized using a 2D animation. 
The analyst can play the animation back and forth.

Based on these results, we have determined that identical 
principles and methods have been depending on purposes, 
tailored to the specialties of the industry. It can be assumed 
that distinct solutions are occasionally needed in different 
fields to fulfill the specified goals, regarding specification, 
model formation, and verification. The FMBRSE approach 
is based on existing methods and techniques. Its mathemat-
ical foundations and tools are well established. The way 
these are selected and integrated is specifically tailored to the 
engineering of safety-critical control systems in the railway 
domain. One of the methods included in FMBRSE is model 
checking. This paper presents how it is used in FMBRSE 
and what we have learned from experimenting with it.
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3 Methodology
In this section, we present an overview of our proposed 
methodology. For a more detailed explanation of the meth-
odology, please refer to (Lukács and Bartha, 2022a).

The purpose of FMBRSE is to aid railway engineers 
– designers who comply with the EN 50126-2 standard 
(CENELEC, 2017b) – in utilizing formal specification and 
verification when developing a safety-critical railway sys-
tem. The application of this methodology throughout the 
development process yields a verified functional model of 
the railway system under consideration.

FMBRSE is based on a well-defined process that fol-
lows the lifecycle model described in the standards 
(CENELEC, 2017a, CENELEC, 2018). The process 
receives input in the form of requirements that are specified 
in detail by different stakeholders. The first stages (speci-
fying the system requirements, designing the architecture, 
and allocating the system requirements) are familiar to rail-
way engineers because of their inclusion in the standard 
(CENELEC, 2017a). The FMBRSE methodology provides 
a framework for specifying how to design system compo-
nents according to their functionality. This framework has 
four fundamental pillars: requirements, interfaces, configu-
ration, and behavior. The development of a formal model for 
the system or component aligns with these pillars.

FMBRSE also offers a verification environment 
that implements formal verification through the pro-
cess of model checking (see Fig. 1). Model checking 
(Baier and Katoen, 2008) is the use of discrete mathematics 

to answer the question "Does the model satisfy a set of 
requirements or in the case of deviation, what sequence of 
events can lead to this situation?".

The goal of model checking is to verify the functionality 
of a designed system before its implementation. For express-
ing formal requirements, we use Computation Tree Logic 
(CTL) formulas (Chatterjee and Doyen, 2016), which in our 
case are derived from the requirements and formal models 
based on the system's functional specifications.

The paper (Lukács and Bartha, 2022b) provides a thor-
ough explanation of how CTL formulas, which serve as 
one of the inputs to model checking, are generated by a 
rule-based technique that transforms natural language 
descriptions into a formal specification language. Fig. 2 
contains examples that are intended to demonstrate the 
expressive power of CTL as it is used in FMBRSE and as 
it compares to other temporal logics.

The system behavior is automatically generated as 
timed automata models, which are transformed from UML 
statecharts (Lukács and Bartha, 2022c). We have defined a 
simplified subset of UML state machines for this mapping 
(see Lukács and Bartha, 2022c). This subset allows a clear 
correspondence between UML statecharts and UPPAAL 
timed automata systems.

The two necessary inputs for model checking – the 
CTL formulas and the formal model – are both available in 
the generated UPPAAL timed automata model, as shown 
in the previous two paragraphs and in Fig. 1. The paper 
(Lukács and Bartha, 2022a) provides a comprehensive 
explanation of the theoretical foundation of model check-
ing. In this study, we solely discuss the supplementary 
requirements for conducting model checking in FMBRSE.

There are two key stages to the FMBRSE model check-
ing process. As a first step (referred to as model validation), 
the model is checked for deadlocks and state reachability. 

Fig. 1 The process of the model checking Fig. 2 Expressive power of temporal logics
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The FMBRSE framework currently verifies only these 
properties, but it could be expanded to other properties 
deemed significant in practice, such as safety properties. 
The second step of verification (referred to as functional 
requirements verification in FMBRSE) involves checking 
the functional requirements of the model as defined by the 
stakeholders. Validating the correctness of the model before 
the second verification step is a critical phase. The reason 
for this is that a comparison of stakeholder requirements 
with a model that has been incorrectly implemented can 
have misleading or inaccurate outcomes.

So far, we have explained an ideal model checking pro-
cess and some FMBRSE-specific considerations. However, 
our practical experience with FMBRSE has shown that mod-
eling the system environment is usually also necessary to 
supplement this process. Modeling the system environment 
is an additional component required for model checking that 
can significantly impact the other two inputs, specifically 
the CTL formulas and the formal model (refer to Fig. 1). 
Both inputs need to be refactored based on the defined envi-
ronment. This usually involves augmenting the model and 
the requirements with environmental conditions.

In FMBRSE, we present a potential model for the envi-
ronment, with the understanding that this is not the only 
possible solution. Our goal is to provide a simple tem-
plate that domain engineers can use as a basis for con-
structing their environment models within the FMBRSE 
framework. The proposed environment model consists of 
three parts: action timing model, function call sequence 
model, and input function model. These are specific to the 
designed system; thus, they need to be designed individu-
ally with the modeling objectives in mind. In summary, a 
formal behavioral model of a system is composed of two 
main elements: the automata representing the functional-
ity and the necessary elements modeling the environment.

Finally, the FMBRSE framework can be applied at both 
the system and component levels. This paper discusses 
the application of the framework at the component level 
through a case study (refer to Section 4). Another illustra-
tive case study of the system-level application is described 
in (Lukács and Bartha, 2021). However, applying 
FMBRSE at the system level could result in a well-known 
difficulty: state space "explosion". This is because the sys-
tem-level models have a larger and more complex state 
space than the component-level models. Compositional 
verification, as proposed by (Bensalem et al., 2008), is one 
approach to address this issue. It entails deducing global 
properties of intricate systems from the properties of their 

constituent parts. For more information on the limitations 
and constraints of model checking, see, for example, the 
refe renced book (Clarke et al., 2018).

4 Case study
The purpose of the detection point (DP) is to detect a 
train within its range. The functionality of the detection 
point can be simply described as follows: If the train is 
over the detection point, it is 'occupied'; and if the train 
is not over the detection point, it is 'free'. Railway engi-
neers can, based on previous experience and domain spe-
cific knowledge, significantly extend this behavior during 
functional specification.

The DP has four functional inputs and two outputs. 
The inputs are Fault, /Fault, Presence, and /Presence. 
These inputs and parameters determine how this compo-
nent behaves and sets its outputs: Failure and Occupancy, 
which are inputs to other components that are required for 
their operation. The detailed specification and construction 
of the UPPAAl model of the DP component is described 
in the paper (Lukács and Bartha, 2022a). Our goal here is 
simply to summarize the experience of model checking 
the DP component. For this purpose, we provide the most 
relevant parts of the specification and the UPPAAl model 
of the DP component in the following paragraphs.

From the detailed design of the DP component, the 
following functions can be defined: checking compli-
ance with the configuration rules, checking antagonism 
between presence and negated presence inputs, presence 
handling, fault handling, release handling, setting com-
ponent outputs. Fig. 3 shows the internal structure of the 
DP component based on these functionalities. The compo-
nents within the DP interact via global variables, with the 
key variables illustrated in Fig. 3.

The structure of the UPPAAL model is built up using 
the components shown in Fig. 3. Each component is rep-
resented in the UPPAAL model as an automaton. As an 
example, consider the automaton shown in Fig. 4, which 
describes the behavior of the PresenceHandling compo-
nent. In order to interpret this automaton, the following 
extra information is required:

• interfaces (see Fig. 3)
• parameters (see Table 1.)
• additional automata to ensure simulation and model 

checking in UPPAAL (see next paragraph).

To make the simulation and model checking in UPPAAL, 
the specifics of the runtime environment must also be 
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included in the formal model. For this purpose, we use the 
environmental model described in Section 3. We include 
three additions in the UPPAAL model of the detection 
point to describe the essential features of the runtime envi-
ronment: time handling (A), execution control (B), and an 

input function (C). For example, in Fig. 4, the interfaces to 
these additional automata are a channel (ALLOWEDRUN) 
and a variable (PERMISSION).

The PresenceHandling automaton (Fig. 4) consists of 
two primary states: free and occupied (which itself con-
sists of six sub-states named as "occ_..."). The system 
can enter the free state if it identifies a 'false' on both 
of its presence inputs (in_presence_p, in_presence_n). 
Depending on the type of occupancy from which the DP 
enters the free state, it can set a failure at its output (set 
PFault to 'true'). When a presence ('True') is detected on 
one of its presence inputs, the DP enters an occupied state. 
The timer "To" (occupancy time) is activated when the DP 
is in use. During usage, the DP remains in one of the six 
"occ_..." states depicted in Fig. 4, which is determined by 
the configuration (refer to Table 1) and the timer "To".

The state occ_wfault_short_occupancy indicates that 
the detection point was occupied for an exceedingly 
brief duration. In practice, it is physically impossible 
for a train to cause such a short occupancy. For DP, this 

Fig. 3 The internal structure of the detection point

Fig. 4 Automaton for handling of presence (PresenceHandling)
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means that the timer value To was below the minimum 
parameter (PTomin) while both presence inputs were free 
(PFault 'true'). If there is an upper limit to the occupancy 
time (as indicated by PTomaxE being 'true'), the automa-
ton may enter the state occ_wfault_overflowed_PTomax 
as well. The value of PTomax value indicates that the DP 
has been occupied for an extraordinary extended period of 
time. In practice, a train cannot occupy the detection point 
for such a long time. In the case of the DP, if the value of 
the To timer exceeds the PTomax parameter and the DP 
transitions to the free state, a fault will be triggered on its 
output at the same time (with PFault set to 'true'). Until the 
point at which To reaches the maximum value for an 8-bit 
integer (PTomaxE is 'true'), the DP component will pro-
vide precise data to the diagnostic regarding the dura-
tion of the presence (refer to the status occ_wfault_over-
flowed_CInt8Max). There may be occasions where it is 
unnecessary to use an upper limit for the time To. In these 
instances, if train presence is detected, the DP will uti-
lize the states occ_wfault_non_overflowed_CInt8Max 
and occ_wfault_overflowed_CInt8Max. Finally, if the DP 
has correctly detected the occupancy based on the con-
figuration (PTomaxE can be either 'true' or 'false'), the 
train presence remains in the state occ_wfault_not_over-
flowed_PTomax. From this state, the DP can enter the free 
state if there is no fault (i.e. with PFault 'false').

Another important automaton for the case study is 
OutputHandling (see Fig. 5 which corresponds to the 
Output Interface component in Fig. 3). This automaton sets 
the outputs of the DP component that can be used by other 
components connected to the DP. To carry out this oper-
ation, the OutputHandling automaton interfaces with the 
PresenceHandling automaton (and its OOccupancy output), 
the FaultHandling automaton (and its OFailure output), and 
the ReleasePermission automaton (and its RPermit output). 
The output of the DP can indicate a failure together with 
occupancy (the failure_occupied state), and the absence of 
a failure together with an unoccupied or occupied state.

The parameters of the DP model have significant impact 
on model checking. For certain parameter sets, part of the 
state space may even be inaccessible – so recording these 
settings is a prerequisite for model checking reproducibil-
ity. The model parameters used during model checking are 
listed in Table 1.

In practice, it is not sufficient to perform validation and 
verification with only a well-defined set of system param-
eters. Another known difficulty is that there can be an 
incredible number of parameter configurations (over 108 
variations in our case study). To deal with this problem, 
we recommend using the approaches suggested by ISTQB 
(Graham, et. al., 2008): equivalence partitioning and bound-
ary value analysis. In this paper, we do not present these 
principles in detail, but only describe the model checking 
results in addition to the configuration according to Table 1.

Finally, a computer with an Intel® Core™ i5–7200U 
CPU and 8 GB of memory was used for model checking. 
The configuration of UPPAAL during the model check-
ing was: breadth-first search order (BFS), conservative 
state space reduction, Difference Bounds Matrices (DMB) 
state space representation, no diagnostic trace, automatic 
extrapolation, 16 MB hash table size, and reuse and para-
metric comparisons were enabled.

4.1 Validation of the model
As mentioned before, we validated the model of the DP 
object for deadlock freedom and the reachability of the 
states. In this section, we illustrate the examination of 
these properties through an example. The special CTL 
formulas in the following sections are given using the 
UPPAAL textual notation.

Deadlock freedom is typically a basic expectation 
against the models of systems in continuous operation, 
where planned stopping (reaching a deadlock) occurs 
rarely (or not at all) and is not modeled. Deadlock freedom 

Table 1 Parameter settings of DP component for model checking

Id. Brief description Setting

PTopn Maximum time allowed for antagonism 
between Presence inputs. 10 [s]

PTomin Minimum time of train presence within the 
range of the detection point. 20 [s]

PTomax Maximum time of train presence within the 
range of the detection point. 50 [s]

PTomaxE Existence of upper limit Tomax. true

PTr Release preparation time. 10 [s]

Fig. 5 Automaton for handling of output (OutputHandling)
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means that there is no such state that has no subsequent 
state(s). In the corresponding CTL formula F1, si represents 
the states belonging to the state space S (S:{si}), and next 
(si ) represents the set of consecutive states from the state si .

F next1 0: AG si� �� � �
In UPPAAL, we can check the deadlock freedom with 
query where deadlock is a reserved keyword in the tool: 
A[] not deadlock. After executing this query on the 
model of the DP case study, model checking confirmed 
that the property is satisfied.

The reachability of particular states of the model can 
be checked using the CTL formula F2, where statei is the 
particular state being checked.

F state2 : EF i

The interpretation of formula F2 is that there exists a path 
in the state space graph where a reachable state has the 
identifier statei. In other words, formula F2 asserts the 
existence of an executable path within the system where 
statei is included at some point along the path. If no such 
path can be found, then the proposition is false, indicating 
that statei is not reachable. As an example, checking the 
reachability of the "free" state of the PresenceHandling 
automaton of the DP case study can be done with formula 
E<> presencehandling.free in UPPAAL. After 
executing this query on the DP model, the result of the 
model checking showed that the property is satisfied.

Using formula F2, we checked the reachability of all 
states of the DP. In summary, this meant checking the 
reachability of 20 states of the DP case study (based on 
functional specification) and checking the reachability of 
the states of the supplementary automata (runtime envi-
ronment, see Section 4), an additional 11 states. In total, 
this meant executing 31 queries on the model.

4.2 Verification of the functional requirements
The informal functional requirements for the detection 
point were described in Paragraph 1 of Section 4 in italics. 
These are high-level system requirements. In other words:

1. When the detection point detects a rail vehicle within 
its range, it emits an "occupied" signal at its output.

2. If the detection point does not detect a rail vehicle 
within its range, it emits a "free" signal at its output.

To perform the model checking in UPPAAL, we need 
to transform the above requirements. There is a detailed 
description of the transformation steps in the paper 

(Lukács and Bartha, 2022b). The UPPAAL textual form 
of the CTL requirements are:

• Q1: A[] (in _ presence _ p == true || 
   in _ presence _ n == true) imply 
   out _ occupancy == true
• Q2: A[] (in _ presence _ p == false && 
   in _ presence _ n == false) imply 
   out _ occupancy == false.

In the following, we will first present the results of the 
model checking of property Q1 and then property Q2 and 
the lessons learned.

The result of checking property Q1 was that the pro-
perty is not satisfied. The reason is that, due to the struc-
ture of the model (multilevel/hierarchical processing), the 
expected result does not appear on the output immediately 
- more precisely, in the next step. At the beginning of a 
given step, the InputGenerator automaton (see Section 4, 
input function (C)) of the model sets the inputs, but the 
result can be emitted to the outputs (out_occupancy) only 
after the OutputHandling automaton (see Fig. 3) has run 
(at the end of the given cycle). Therefore, the "running 
time"of the cycle must also be included in the CTL expres-
sion to obtain the expected result during model checking. 
More precisely, the condition ISRUN == true (ISRUN is 
a global variable) must be included in the property to be 
checked. Note that the paper (Lukács and Bartha, 2022a) 
describes the structure of the model in detail.

The lesson from this is that the requirements must 
be adapted to the model, since the model usually also 
reflects some kind of implementation. However, even at 
this stage of the system design, we do not necessarily have 
all the information about the system architecture and the 
planned implementation solutions (only the requirements 
are known). Considering what has been described, prop-
erty Q1 needs to be completed before model checking. 
The result of property modification will be according to 
UPPAAL formula:
Q3: A[] ((in_presence_p == true || 
 in_presence_n == true) && ISRUN == 
 true) imply out_occupancy == true.

When model checking is performed on property Q3, the 
result will be as expected: the property is satisfied.

In the case of model checking based on property Q2, 
the UPPAAL framework also provided us with a coun-
terexample. We analyzed the counterexample in detail by 
tracking states, variables, and clock variables during each 
step (more precisely in each cycle). The counterexample 
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occurred when the 12 cycles were executed. At the begin-
ning of the 12th cycle, the free state was simulated at the 
inputs of the detection point, but the occupied output was 
still observable at its outputs, i.e., the input change did not 
take effect immediately. In the counterexample, the set-
ting of the free state on the inputs was represented by the 
following lines:

• Pre: (run, step1, generation, config_ok, non_
antagonism, free, non_ faulty, release_allowed, 
non_ failure_ free),

• Tr: ALLOWEDRUN: runcontrol → inputgenerator[15],
• Res: (run, step2, generation, config_ok, non_

antagonism, free, non_ faulty, release_allowed, 
non_ failure_ free).

In the list above you can see the preceding state (Pre), 
the state resulting due to the transition (Res) and the state 
transition (Tr) that led to the counterexample. For the 
states Pre and Res, each list represents the current state of 
each automaton in the DP model (see Fig. 3 or in detail in 
(Lukács and Bartha, 2021)).

We can see the states of the automata implemented in the 
UPPAAL framework listed in parentheses (see Pre and Res), 
and that the execution control automaton has given the instruc-
tion to the input generator automaton to simulate the occu-
pancy at the input of the detection point (for this the input gen-
erator automaton has randomly chosen the input combination 
[15]). The next line of the counterexample reflects that the 
input setting has not yet happened (i.e., the effect of changing 
the input did not immediately take effect in the modeled sys-
tem, the output of the detection point remained 'free').

The result of the model checking of property Q2 was 
that the property is not satisfied. Analyzing the counter-
example, we found that besides the addition of the prop-
erty presented in the previous example ('ISRUN == true'), 
other additions were also needed in this case. The reasons 
for this are described below.

The detailed design, specification, and modeling were 
the result of an iterative process of changing the functional 
requirements of the component (requirements analysis). 
Because of this, the "fault" inputs also appeared in the speci-
fication, and the specification was also supplemented with the 
release preparation time. As a result, even if the occupancy and 
error inputs are appropriate, the occupancy output of the evalu-
ation element cannot be free until the release time has expired. 
In this case, these have influenced the state of the occupancy 
outputs of the detection point. Therefore, these new conditions 

must also be included in the original requirement. In addition, 
changes to the requirements must also be negotiated with the 
customer. The formula produced by the analysis of the require-
ments can be given in UPPAAL as follows:
Q4: A[] ((in_presence_p == false && 
 in_presence_n == false && 
 in_fault_p == false && in_fault_n 
 == false) && ISRUN == true && 
 releasepermission.release_allowed) 
 imply out_occupancy == false.

When model checking is performed on property Q4, 
the result is as expected: the property is satisfied.

5 Discussion
The purpose of this section is to summarize our experience 
in model checking the case study described in Section 4.

In practice, the design, specification, and development 
of models usually follow an iterative development process 
(there may be exceptions for trivially simple systems). 
To achieve efficient model checking, it is advisable to 
ensure that, in addition to the artifacts mentioned above, 
the requirements specification is also properly maintained.

For model checking (and simulation), it is not enough 
to model the functional requirements, the model must also 
embody a possible implementation solution. At this level 
of system design, in most cases only the requirements are 
known, so it is advisable to choose simple mechanisms 
for this purpose. Also, the choice of the future implemen-
tation solution and its modeling will typically not coin-
cide with the implemented system. It is always necessary 
to consider that the chosen implementation solution may 
affect the results of the model checking.

We have identified two basic cases:
3. the modeled implementation solution can automati-

cally (by itself) ensure that certain properties are met,
4. the modeled implementation solution may also con-

tain solutions that need to be known and understood 
in order to correctly complement the functional 
requirements with these elements incorporated into 
the model that reflect the future implementation 
(the requirements need to be adapted to the model).

In addition to the above conditions, there may also be lim-
itations due to the applied framework (in this case: UPPAAL). 
For UPPAAL, one such limitation is that the 'next' (next-state/
next-time) or 'X' CTL operator has not been implemented. 
The output of model checking can also be affected by the 
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parameters of the component or system being modeled – 
e.g., because there may be a set of parameters for which 
a part of the state space is inaccessible. Fortunately, there 
are widely known techniques (e.g., equivalence partitioning 
and boundary value analysis) for dealing with large param-
eter spaces, which can also be used during model checking.

If the investigated property is not satisfied during model 
checking, some frameworks (e.g., UPPAAL) can provide 
counterexamples in various forms. Examining and inter-
preting counterexamples is not trivial in most cases, and 
their interpretation requires, among other things, taking 
into account all of the clauses mentioned above.

Another lesson is that neither the UPPAAL tool (nor 
any other tool) can determine the expected result of model 
checking, it has to be defined by the user. Also, the inter-
pretation of any counterexample is left to the user.

In summary, railway engineers should expect the appli-
cation conditions described in this section when using 
model checking in the FMBRSE framework.

Finally, we have found that in many cases the informal 
requirements look good, but they are not precise enough, 
and this only becomes apparent during modeling/model 
checking. Therefore, even if we try to hide the formal 
details from the domain engineer, it is in vain. In our view, 
it is essential to use formal methods and formal descrip-
tions at least in the requirements analysis phase, because 
this is where the most difficult and costly mistakes can be 
made, which will later be deeply embedded in the system 
design. As long as the requirements are not formally ver-
ified, the FMBRSE methodology cannot be used to effec-
tively help the design process.

6 Conclusion
In this paper, we have presented the verification part of a 
formal model–based methodology that facilitates the con-
struction of correct, complete, consistent, and verifiable 
functional specifications during development. The process 
we propose provides a specification/verification environ-
ment for railway engineers. Using this framework, they 
can achieve a higher quality functional specification com-
pared to traditional development. The main advantage of 
the described approach is that it hides the formal method–
related details from the railway engineers, so that they can 
acquire a formal verification result without learning the 
necessary mathematical background.

Our experience during the development of the case 
study is that the application of model checking is only 
possible under several restrictions that the domain engi-
neers have to consider. These limitations may also depend 
on the method itself, the tool used, and the system being 
modeled, as well as the possible implementation solutions.

We have found that the main difficulty for railway engi-
neers is the preparation of the requirements specification. 
The problem is that they do not (want to) deal with the 
formalization of the requirements during the prepara-
tion of specifications. To solve this problem, we started to 
develop an intermediate domain-specific restricted textual 
language for the railway field.

Considering the experiences described in this paper, 
the proposed methodology proved to be suitable for the 
design of electronic railway control systems. A high-qual-
ity functional specification, written by railway engineers 
at the system development level, can be achieved using 
formal models and model checking.
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