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Abstract
The semidirect discrete logarithm problem (SDLP) is the following analogue of the standard
discrete logarithm problem in the semidirect product semigroup G � End(G) for a finite
semigroup G. Given g ∈ G, σ ∈ End(G), and h = ∏t−1

i=0 σ i (g) for some integer t , the
SDLP(G, σ ), for g and h, asks to determine t . As Shor’s algorithm crucially depends on
commutativity, it is believed not to be applicable to the SDLP. For generic semigroups, the
best known algorithm for the SDLP is based on Kuperberg’s subexponential time quantum
algorithm. Still, the problem plays a central role in the security of certain proposed cryp-
tosystems in the family of semidirect product key exchange. This includes a recently proposed
signature protocol called SPDH-Sign. In this paper, we show that the SDLP is even easier
in some important special cases. Specifically, for a finite group G, we describe quantum
algorithms for the SDLP in G � Aut(G) for the following two classes of instances: the first
one is whenG is solvable and the second is whenG is a matrix group and a power of σ with a
polynomially small exponent is an inner automorphism ofG. We further extend the results to
groups composed of factors from these classes. A consequence is that SPDH-Sign and similar
cryptosystems whose security assumption is based on the presumed hardness of the SDLP
in the cases described above are insecure against quantum attacks. The quantum ingredients
we rely on are not new: these are Shor’s factoring and discrete logarithm algorithms and
well-known generalizations.
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1 Introduction

The presumed difficulty of computing discrete logarithm problem (DLP) in certain groups
is essential for the security of the Diffie-Hellman key exchange which is the basis for a
number of communication protocols deployed today. However, since the invention of Shor’s
algorithm [26], the problem of computing discrete logarithm can be solved efficiently in the
domain of quantum computing.

Massive efforts have been done in order to construct alternative versions of the discrete
logarithm problem that allow for the Diffie-Hellman key exchange without being vulnerable
to Shor’s algorithm. Since that algorithm takes advantage of the group structure underlying the
problem, a DLP analogue in the framework of commutative group actions has been proposed.
It is an instance of a constructive membership testing in orbits of commutative permutation
groups (on large finite sets), called vectorization problem. The framework originally appears
in [12] and it becomes a central problem of isogeny-based cryptography, CSIDH [10] for
example. Another natural approach which is worth consideration to escape from the quantum
attack is a DLP analogue in non-commutative groups. It is natural in a sense that Shor’s
algorithm crucially depends on the commutativity of the underlying groups. In this direction,
an analogue of the DLP in semidirect product groups has been proposed. The proposal firstly
appears in its full generality in [15]. Specifically, let G be a finite semigroup and End(G)

be the monoid of endomorphisms of G. Then we have the semidirect product G � End(G)

where the multiplication is defined by (g, σ )(h, φ) = (gσ(h), σφ). Moreover, we have the
formula for exponentiation

(g, σ )t =
(
t−1∏

i=0

σ i (g), σ t

)

,

where
∏�

i=k ai stands for the product ak · . . . · a� in G. This leads to an analogue of the
standard discrete logarithm problem in the semidirect product semigroup defined as follows.
Given g ∈ G, σ ∈ End(G), and h = ∏t−1

i=0 σ i (g) for some integer t , determine t .
The SDLP is interesting as it allows us to perform a Diffie-Hellman key exchange proce-

dure, known as semidirect product key exchange (SPDKE). Suppose two parties, Alice and
Bob, agree on a public group G, an element g ∈ G, and an endomorphism σ ∈ End(G).
Then they can arrive at the same G−element as follows.

1. Alice picks a random positive integer x and computes (g, σ )x = (A, σ x ). Then, Alice
sends A = ∏x−1

i=0 σ i (g) to Bob.
2. Bob also picks a random positive integer y, computes (g, σ )y = (B, σ y) and sends

B = ∏y−1
i=0 σ i (g) to Alice.

3. Alice computes its shared key KA = Aσ x (B).
4. Bob computes its shared key KB = Bσ y(A).

Note that KA = KB , as the following calculation shows.

Aσ x (B) =
x−1∏

i=0

σ i (g)
y−1∏

i=0

σ x+i (g) =
x+y−1∏

i=0

σ i (g)

=
y−1∏

i=0

σ i (g)
x−1∏

i=0

σ y+i (g)

= Bσ y(A).
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The key recovery problem of SPDKE is the problem of computing the shared key KA = KB

from the public information g, A, B ∈ G and σ ∈ End(G). Clearly, similar to the case of the
standardDLP and the correspondingDiffie-Hellman key exchange, the key recovery problem
of SPDKE and the difficulty of SDLP are heavily related. Particularly, if one can solve an
instance of the SDLP, then one is also able to break the corresponding SPDKE.

In the description of the SDLP above, an instance of the SDLP in G � End(G) is only
specified by an endomorphism σ , hence we can describe the SDLP in an alternative, more
compact way.

First, we observe some properties of semidirect product semigroups that would be useful
for our purpose. Let G and T be semigroups and let σ : t �→ σt be a homomorphism from T
to the monoid of endomorphisms of G. Then the semidirect product G �σ T is the set G×T
equipped with the multiplication (g, t)(g′, t ′) = (gσt (g′), t t ′). It is straightforward to check
that G �σ T is a semigroup. Also, if both G and T are finite groups and σ1 is the identity
map of G, then G �σ T is also a group. There is a natural representation ρ : (g, t) �→ ρ(g,t)

of G �σ T as a semigroup of transformations on G, given by ρ(g,t)(g′) = gσt (g′). This is
indeed a representation, i.e., a homomorphism to the semigroup of transformations, because
we have (g, t)(g′, t ′) = (ρ(g,t)(g′), t t ′) and

ρ(g,t)(g′,t ′) = ρ(ρ(g,t)(g′),t t ′) = ρ(g,t) ◦ ρ(g′,t ′).

IfG�σ T is a group as above then ρ gives a permutation representation of the groupG�σ T .
Note that if G is a monoid and σ is a monoid endomorphism of G (that is, σ(1G) = 1G ),

we have (g, 1)t = (ρ(g,1)t (1G), t).
This shows that, as already observed by Battarbee et al. in [5], the SDLP can be cast as

a constructive membership problem in an orbit of a transformation semigroup. Using the
above observation and notations we have the following definition for the semidirect discrete
logarithm that will be used throughout this paper.

Definition 1 Let σ be an endomorphism of the finite monoid G with identity element 1G
and consider the semigroup G �σ Z≥0 where σt = σ t for every t ∈ Z≥0. Then SDLP(G, σ )

is the following problem. Given elements g and h of G, determine the set of non-negative
integers t such that

h = ρ(g,1)t (1G).

The set to be determined is either the empty set, a singleton, or {t0 + at : t ∈ Z≥0} for
certain integers t0 ≥ 0 and a > 0. To see this, we begin with some basic concepts related to
orbits of semigroups generated by a single transformation. Let S be a finite set, let ρ : S → S
be a transformation of S and let x ∈ S. The orbit {ρt (x) : t ∈ Z≥0} of ρ starting at x can
be divided into two parts as follows. There exists a smallest non-negative number i , called
the index of the orbit, such that ρi (x) = ρi+ j (x) for some positive integer j . The smallest
such j is called the period. Let i be the index. The tail is the set {ρt (x) : t < i}, while
the rest of the orbit, the set {ρt (x) : t ≥ i} is referred as the cycle. The index is the length
of the tail, while the size of the cycle is the period. The elements of the tail are visited just
once, while the members of the cycle are visited periodically. The index can be zero while
the period is positive. Assuming an oracle that evaluates the powers of ρ on elements of S,
the index as well as the period can be computed by a slight modification of Shor’s period
finding quantum algorithm, see [11]. In our case, the transformation semigroup is generated
by ρ = ρ(g,1) and our objective is the orbit of it starting at 1G . Assume that SDLP(G, σ ) for
g and h is solvable and let t0 be the smallest non-negative integer such that h = ρ(g,1)t0 (1G).
If t0 is smaller than the index of ρ(g,1), that is, when h is in the tail then the solution set is
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the singleton {t0}. Otherwise, when h is in the cycle, the solution set is {t0 + at : t ∈ Z≥0},
where a is the period. The smallest solution t0 is always less than the sum of the index and
the period as this sum is the total size of the orbit. Note that when ρ(g,1) is a permutation,
e.g., when G is a group and σ is an automorphism of G, then the tail is empty and hence
the solution set is the residue class {t0 + at : t ∈ Z≥0} modulo the period a. In that case
extending the solution set to negative integers does not make too much confusion, so we will
often use the notation {t0 + at : t ∈ Z}.

We remark that the assumptions that G is a monoid and that σ is a monoid endomorphism
of G are rather technical, though they offer some notational conveniences. In the general
semigroup case, one should solve the equation h = ρ(g,1)t−1(g).

Originally, the first proposed platform for SPDKE is the semigroup of 3×3 matrices over
the group ring Z7[A5] [15]; however, this turned out to be vulnerable to a linear algebraic
attack in [23] which is based on a reduction from discrete logarithm in matrix groups to
discrete logarithm in finite fields. Another platform used is tropical algebras [14] which was
also later shown to be insecure [17, 21]. Then, a commutative ring formed by square matrices
over a ring is proposed in the MAKE protocol [24]. However, the protocol is vulnerable to
another linear algebraic attack [9], which relies on the commutativity of the underlying ring.
Moreover, Battarbee et.al in [6] show that protocols using matrices over non-commutative
rings under some conditions are also vulnerable to this attack. The only proposed platform
groups for SPDKE that are still unaffected by all previous attacks are the so-called free nilpo-
tent p-groups [19]. Note that all previous attacks exploit the structure of the platform groups
to directly solve the corresponding key recovery problem without solving the corresponding
semidirect discrete logarithm problem. See [7] for a more detailed survey on the semidirect
product key exchange.

The most recent cryptographic protocol based on the hardness of the SDLP is proposed by
Battarbee et al. [8]. Theypropose a post-quantumsignature scheme, calledSPDH-Sign,where
the security depends on the presumed difficulty of the group case of the SDLP. Moreover,
they propose certain non-abelian groups of order p3 for some odd prime p as candidate
groups for SPDH-Sign.

In generic groups and semigroups, the best known algorithm for the SDLP is the
subexponential-time quantum procedure proposed by Battarbee et al. [5], which uses Kuper-
berg’s hidden shift algorithm. They present a subexponential quantum algorithm for the
SDLP in so-called the easy family of semigroups {Gp}p∈P for some countable set P . A
family of semigroups {Gp}p∈P is called easy if the size |Gp| grows monotonically and
polynomial in p, and the evaluation costs of gh and σ(g) is O((log p)2) for any p ∈ P ,
g, h ∈ Gp , and σ ∈ End(Gp). Indeed, the critical problem is determining the position of h
in the cycle, which is actually an instance of the vectorization problem, and hence reduces to
the abelian hidden shift problem for which Kuperberg’s subexponential time algorithm [22]
is available.

In this paper, we work over black-box groups with non-necessarily unique encoding of
elements to obtain sufficiently general results. (Together with assuming ability of evaluating
powers of σ , this corresponds to the easy families of [5].) The concept of black-box groups
was introduced by Babai and Szemerédi [4] for studying the structure of finite matrix groups.
Elements of a black-box group G are represented by binary strings of a certain length and
the group itself is given by a list of generators. The group operations are given by oracles.
Here we also assume an oracle for computing σ j (g) for g ∈ G and j ∈ Z>0. In general, it is
not required that every group element is represented by a unique code-word. Instead, there
is also an oracle for testing whether two strings represent the same group element. Here we
assume a stronger oracle, a labeling. It is a function λ defined on the code-words for the group
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elements where x and y represent the same group element if and only if λ(x) = λ(y). We use
the term black-box group with unique labeling for that sort of black-box groups. The labeling
makes it possible to compute the structure of G when G is a solvable black-box group by
the quantum algorithm of [18, Theorem 7]. (In that paper the term secondary encoding is
used for the labeling.) The notion includes black-box groups with unique encoding. We need
the generalization in order to handle certain factor groups. To illustrate how this can occur,
assume that initially wework with amatrix groupG and σ is given as conjugation by amatrix
(possibly outside G) and we have another, non-faithful matrix representation ψ of G whose
kernel is σ -invariant. (Conjugation by a matrix or a group element h is the map x �→ h−1xh.
A matrix representation ψ of a group G is a homomorphism from G to the group of non-
singular d ×d matrices over a field. The representation ψ is called faithful if it is an injective
map, or, equivalently, its kernel only contains the identity element of G.) Suppose further
that we need to solve the SDLP for ψ(g) and ψ(h) in Im(ψ)and the automorphism induced
by σ . (Recall that this is the unique map σ : Im(ψ) → Im(ψ) satisfying ψ(σ(x)) = σ(x).
It is well-defined as the kernel of ψ is required to be σ -invariant.) It turns out that we
would have difficulties with evaluating powers of the induced automorphism if we used the
natural unique encoding of the elements of Im(ψ) by matrices. (In general, this would
require finding an element of the pre-image ψ−1(x) for Im(ψ)). We get around the issue
by using the original matrices to encode the elements of Im(ψ) and to multiply them; while
considering ψ as a labeling (and possibly also as further help). This gives us a simple way
to evaluate the induced automorphism.

The SDLP(G, σ ) is called the group-base case if G is a group, and we call it the (full)
group case when G is a group and σ is an automorphism of G. In this paper we focus on
the group-base case. If, in addition, σ is an automorphism of G then one could replace the
monoid Z≥0 with an appropriate finite cyclic group Zm = Z/mZ where m is a multiple of
the order of σ and work over the finite semidirect product group of G and Zm . This justifies
the terminology.

We briefly recall some elementary, though perhaps not very widely known concepts from
group theory. Conjugations by elements of G are automorphism of G. These are the inner
automorphisms of G. A subgroup N ≤ G is normal in G (N �G in notation) if h−1xh ∈ N
for every x ∈ N and h ∈ G, that is, all the inner automorphisms of G leave N invariant.
The kernel kerψ of a homomorphism ψ to another group K is a normal subgroup of G.
If N is a normal subgroup of G then the left cosets of N in G are the same as the right
cosets and these cosets form a group G/N , called the factor or quotient group. The map
x �→ xN = {xh : h ∈ N } is a homomorphism of G onto G/N with kernel N . The
inner automorphisms of G form a normal subgroup Inn(G) of the full group Aut(G) of
automorphisms of G. The factor Aut(G)/Inn(G) is called the outer automorphism group of
G. A group G is commutative (or abelian, as a synonym) if xy = yx for every x, y ∈ G. In a
commutative group each subgroup is normal. Every group G has a largest normal subgroup
G ′ such that the factor group G/G ′ is commutative. As G ′ turns out to be the smallest
subgroup of G containing all the commutators, the elements of the form x−1y−1xy, G ′ is
called the commutator subgroup. A series G = G0 � G1 � . . . � Gk is called a subnormal
series. The series is called normal if eachmember is normal in the whole groupG. Subgroups
reachable by subnormal series are called subnormal. A group G is called solvable if there is
a subnormal series G = G0 �G1� . . .�Gk � {1G} such that the factor groups Gi/Gi+1 are
commutative. In fact, in a solvable groups there is normal series fromG to the trivial subgroup
{1G} with commutative factors. (The iterated commutator subgroups (that is, G, G ′, (G ′)′,
and so on) form such a normal series.) Solvable groups can be considered as generalizations
of commutative groups. Subgroups and factor groups of solvable groups are solvable.
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Contributions. In this paper, we provide an analysis of the SDLP in some interesting classes
of groups. Particularly, in Sect. 2, we first give a reduction from the group-base case to the
group case of the SDLP. Moreover, using essentially the same idea, we show that there exists
a recursion from the SDLP in a group into its quotient groups and subgroups. In Sect. 3,
we then propose efficient quantum algorithms based on Shor’s algorithm for the group case
SDLP(G, σ ) for the following cases:

1. The automorphism σ is of small order, i.e., polynomial in log |G|;
2. The group G is solvable;
3. The group G is a matrix group over a finite field, i.e., G ≤ GLd(Fq), where q is a power

of a prime and σ is an inner automorphism of G;
4. A flag 1 = M0 < M1 < . . . < Mk = G of σ -invariant normal subgroups Mi � G

is given together with homomorphisms ψi from Mi with kernel Mi−1 (i = 1, . . . , k),
where for each i , ψi maps Mi to either

4.1 a black-box group with unique labeling and where the automorphism of Im(ψi )

induced by σ has polynomially small order; or
4.2 a solvable black-box group with unique labeling; or
4.3 a matrix group over a finite field, in which case we also assume that a power of

the induced automorphism with a polynomially small exponent coincides with the
conjugation by some matrix.

As a consequence, SPDH-Sign protocol in [8] and all other SPDKE cryptographic proto-
cols whose platform groups are in the above cases do not belong to the realm of post-quantum
cryptography. The candidate groups for SPDH-Sign [8] are non-commutative groups of order
p3 for prime number p. As every group of prime power order is solvable, item 2. applies
to them as well as to the so-called free nilpotent p-groups proposed for SDPKE in [19].
See Sect 2.4 for a description of the algorithm that solves SDLP in the candidate groups
for SPDH-Sign. We remark that, a normal series together with the homomorphisms hav-
ing the properties required in item 4., can be efficiently computed for quite a wide class
of finite groups using advanced algorithms of computational group theory. These include
matrix groups over finite fields of odd characteristic making the innerness assumption of
item 3. unnecessary when q is odd, see the Appendix for a sketch of proof. We even think
that it is difficult to propose any "concrete" platform group that item 4. is not applicable to, so
a viable platform for SPDH-Sign protocol should be a semigroup quite far from any group.
In contrast to groups, semigroups may have quite dummy structure. For example, we can
make any set S a semigroup by defining multiplication xy = y. This operation is very easy
to compute. On the other hand, if σ is any permutation of S, then ρ(g,1)t−1(g) = σ t (g) and
SDLP(S, σ ) for g, h ∈ S is just solving the equation h = σ t (g). Thus testing membership
in orbits of cyclic permutations group can be cast as instances of the SDLP.

2 Reduction and recursion of SDLP

In this section, we provide the reduction of the group-base case to the group case, and we
also describe a recursion tool that passes the SDLP in a group to its quotient groups and
subgroups.
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We have the following equality

r t−1∏

i=0

σ i (g) =
t−1∏

j=0

σ r j

(
r−1∏

i=0

σ i (g)

)

. (1)

We will frequently use this to reduce an instance of the SDLP for the endomorphism σ to
an instance for σ r in place of σ with suitable choices of r .

2.1 Reduction from the group-base case to the group case

Let G be a finite group and σ be an endomorphism of G. We will describe a reduction from
SDLP(G, σ ) to SDLP(K , σ ′) where K is a subgroup of G and σ ′ is the restriction of σ to
K which forms an automorphism.

Let K = ∩∞
t=0σ

t (G) and let k0 be the smallest non-negative integer such that K = σ k0(G).
Obviously, k0 ≤ �log |G|�. Let k ≥ k0, where such a k can be "blindly" chosen by taking an
integer greater than a known upper bound for log |G|. (Such an upper bound can be �, where
binary strings of length � encode the group elements.) Then K = σ k(G) and the restriction of
σ to K is an automorphism of K . Let r be the length of the orbit {ρ(σ k (g),1)t (1G) : t ∈ Z≥0}
and put M = ker σ k = ker σ k0 . Then K ∼= G/M , K ∩ M = {1G}, and we have

r = min{t ∈ Z>0 : ρ(σ k (g),1)t (1G) = 1G} = min{t ∈ Z>0 : ρ(g,1)t (1G) ∈ M}.

Let g′ = ρ(g,1)r (1G) = ∏r−1
i=1 σ i (g). Then, by equality (1), ρ(g,1)rt (1G) = ∏t−1

j=0 σ r j (g′).
As g′ ∈ M = ker σ k , for r t ≥ k we have σ r t (g′) = 1G , and hence

ρ(g,1)r(t+1) (1G) =
t∏

i=0

σ ri

⎛

⎝
r−1∏

j=0

σ j (g)

⎞

⎠ = g′σ r (g′) · . . . · σ r(t−1)(g′)σ r t (g′)

= g′σ r (g′) · . . . · σ r(t−1)(g′) =
t−1∏

i=0

σ ri

⎛

⎝
r−1∏

j=1

σ j (g)

⎞

⎠

= ρ(g,1)rt (1G).

It follows that

ρ(g,1)r(t+1)+s (1G) = ρ(g,1)rt+s (1G), (2)

By equation (2), if the solution set of the SDLP in K for σ k(g) and σ k(h) is {s + r t : t ∈
Z≥0} for some 0 ≤ s < r , then the set of solutions of the SDLP in G for g and h is either the
empty set, a singleton {s + r t0}, or {s + r t : t ∈ Z≥t0}, for some t0 ≤ �k0/r� ≤ �log |G|�.
Therefore, one can solve the SDLP(G, σ ) for g and h by solving SDLP(K , σ |K ) for σ k(g)
and σ k(h), followed by an exhaustive search. This gives the following theorem.

Theorem 1 Let G be a group and let σ be an endomorphism of G. Then there is a classical
polynomial time reduction from an instance of SDLP(G, σ ) to an instance of SDLP(K , τ ),
where K = ∩∞

t=0σ
t (G) and τ , the restriction of a power of σ to the subgroup K , is an

automorphism of K .
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2.2 An easy reduction

In the group case, we have the following simple reduction based on brute force. This will
be useful when a power of the automorphism σ with polynomially small exponent has some
desired property.

Proposition 2 Assume that σ is an automorphism of the group G. Then, for every positive
integer k, SDLP(G, σ ) can be reduced to k instances of SDLP(G, σ k).

Proof We compute the length r of {ρ(g,1)t (1G) : t ∈ Z} and also the length of the orbit
{ρ(g,1)t (h) : t ∈ Z} starting at h using Shor’s period finding algorithm. If the lengths differ,
there is no solution of the SDLP so we can stop. Otherwise we look for the smallest non-
negative solution of the SDLP in the form s + tk for s = 0, . . . , k − 1. We have

ρ(g,1)s+tk (1G) =
s+tk−1∏

i=0

σ i (g)

=
s−1∏

j=0

σ j (g)σ s

(
tk−1∏

i=0

σ i (g)

)

= ρ(g,1)s

(
tk−1∏

i=0

σ i (g)

)

= ρ(g,1)s

⎛

⎝
t−1∏

i=0

σ ik

⎛

⎝
k−1∏

j=0

σ j (g)

⎞

⎠

⎞

⎠ ,

whence h = ρ(g,1)s+tk (1G) if and only if ρ(g,1)−s (h) = ∏t−1
i=0 σ ik(

∏k−1
j=0 σ j (g)). Let g′ =

ρ(g,1)k (1G)= ∏k−1
j=0 σ j (g) and h′ = ρ(g,1)−s (h)= ρ(g,1)r−s (h) = (

∏r−s−1
j=0 σ j (g))σ r−s(h).

Then, we need to solve the SDLP for g′ and h′, where we replace σ by σ k . ��

2.3 Recursion into quotient groups and subgroups

We will show that one can solve the SDLP(G, σ ), for a group G and σ ∈ Aut(G), by
recursively solving an instance of the SDLP in a quotient group and a subgroup of G. The
main idea of recursion is essentially the same as those used in the preceding subsections.

Theorem 3 Let G and G be black-box groups with unique labeling and let an automorphism
σ of G be given by a black box for evaluating the powers σ i on codewords for group
elements. Assume that we are given a σ -invariant normal subgroup M of G and a group
homomorphism ψ : G → G with kernel M. We assume that ψ can be evaluated efficiently
and we have a black box for evaluating powers of the automorphism σ of Im(ψ) induced by
σ . Then SDLP(G, σ ) can be reduced to an instance of SDLP(Im(ψ), σ ) and an instance of
SDLP(M, σ

n0|M ) for some integer n0.

Proof Webeginwith computing the lengths of the orbits {ρt
(g,1)(1G) : t ∈ Z} and {ρ(g,1)t (h) :

t ∈ Z} using Shor’s period finding algorithm. If the lengths differ, then h cannot be in the
orbit starting at 1G . Otherwise let r be the common orbit length. Since ψ ◦ σ = σ ◦ ψ , we
have ρ(ψ(g),1)t−1(1G) = ∏t−1

i=0 σ i (ψ(g)) = ψ(
∏t

i=0 σ i (g)) = ψ(ρ(g,1)t (1G)). Therefore,
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every solution of SDLP(G, σ ) for g and h is a solution of the SDLP(Im(ψ), σ ) for ψ(g)
and ψ(h). Assume that we can find the set of solutions for the problem in Im(ψ). If this set
is empty, then there is no solution for the problem in G either.
Otherwise, the set of solutions in Im(ψ) is the residue class {t0 + n0t : t ∈ Z} for some
0 ≤ t0 < n0, where n0 = |{ρ(ψ(g),1)t (1G) : t ∈ Z}|, Note that n0 is the smallest positive
integer such that ρ(ψ(g),1)n0 (1G) = 1G , or, equivalently, ρ(g,1)n0 (M) = M . The solutions for
the original problem is a – possibly empty – subset of this residue class. Accordingly, we
look for the solutions in the form t0 + n0t . Like in the proof of Proposition 2, we have

ρ(g,1)t0+n0 t (1G) =
t0+tn0−1∏

i=0

σ i (g)

=
t0−1∏

j=0

σ j (g)σ s

(
tn0−1∏

i=0

σ i (g)

)

= ρ(g,1)t0

(
tn0−1∏

i=0

σ i (g)

)

= ρ(g,1)t0

(
t−1∏

i=0

σ in0(g′)
)

,

where g′ = ∏n0−1
j=0 σ j (g) = ρ(g,1)n0 (1G)). Thus h = ρ(g,1)t0+n0 t (1G) if and only if

ρ(g,1)−t0 (h) = ∏t−1
i=0 σ in0(g′). This shows that the problem we need to solve is the

SDLP for g′ and h′ = ρ(g,1)−t0 (h) = ρ(g,1)r−t0 (h) with automorphism σ n0 . We have
g′ = ρ(g,1)n0 (1G)) ∈ M and by ψ(h) = ρ(ψ(g),1)t0 (1G) we have ψ(h′) = ψ(ρ(g,1)−t0 (h)) =
ρ(ψ(g),1)−t0 (ψ(h)) = 1G , thus h

′ ∈ M aswell. Therefore the final problemwe need to solve is
and instance of the SDLP(M, σ n0). We find the solution set T of this problem by a recursion
into M . If T is the empty set then the original problem has no solutions either. Otherwise
T is the residue class {t1 + n1t : t ∈ Z} and then we conclude that our problem in G has
solution set t0 + n0T = {t0 + n0t1 + n0n1 : t ∈ Z}. ��

By considering the equivalent "backward" version of the SDLP, that is, solving 1G =
ρ(g,1)t (h), the recursion suggested by the proof of the theorem can be interpreted as bringing
h first into M by solving the SDLP in Im(ψ) ∼= G/M and then, inside M , bringing it further
to the identity element.

A general straightforward way to evaluate the induced automorphism (and its powers) is
based on computing an arbitrary element of the pre-image ψ−1(x) for each x ∈ Im(ψ). This
can be facilitated by replacing G with the black-box group H encoded by pairs (x, ψ(x)),
where x is a code-word for an element of G. For multiplication we use the oracle for G and
re-evaluate ψ on the product. For labeling, we use the labeling of G. Of course, there are
many cases when this trick can be replaced by a simple direct method for evaluating σ . This
holds in particular whenG = Z

d
p with the standard representation by column vectors modulo

p.

2.4 Example: the candidate groups for SPDH-Sign

We show below how the reduction presented Sect. 2.3 works on the example of the candidate
groups for the protocol SPDH-Sign proposed in [8].
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Let p be a prime and assume that we have to solve the SDLP(G, σ ) for elements g, h ∈ G,
where G is the group of matrices over the ring Zp2 = Z/p2Z of the form

(
pa + 1 b

0 1

)

.

The group G has order p3, its commutator subgroup G ′ consists of the matrices of the form
(
1 pb
0 1

)

,

while the elements of order 1 and p are exactly the elements of the subgroup consisting of
the matrices of the form

(
pa + 1 pb

0 1

)

.

We denote the latter subgroup by M2 and also define M1 as G ′. Since G ′, as well as the set of
elements of order p are invariant under any automorphism, we have that M1 = G ′ and M2

are σ -invariant normal subgroups of G (independently of the choice of σ ). We work along
the sequence G � M2 � M1 � {1G}. We define the maps ψ1 : M1 �→ Zp , ψ2 : M2 �→ Zp

and ψ3 : G �→ Zp as

ψ1

(
1 pb
0 1

)

= b, ψ2

(
pa + 1 pb

0 1

)

= a and ψ3

(
pa + 1 b

0 1

)

= b,

respectively, where we reduce the right hand sides modulo p. It is straightforward to check
that ψ1 is an isomorphism between M1 and the additive group Zp , while ψ2 and ψ3 are
homomorphism with kernel M1 resp. M2 onto the same group.

Every automorphism τ of the additive group Zp is equivalent to multiplication by a
nonzero residue modulo p: τ(x) = cx for some c ∈ Zp \ {0}. Then for g ∈ Zp and t ∈ Z

we have

g + τ(g) + . . . + τ t−1(g) = g(1 + c + . . . + ct−1) =
{
tg if c = 1,
ct−1
c−1 g otherwise.

We discuss the SDLP in Zp for g, h with automorphism τ = c·. If g = 0 or c = 0 the period
(the orbit length) is 1 and then there is no solution unless h = g. When g �= 0 and c = 1 the
period is p and the smallest solution can be obtained by a simple division modulo p. Finally,
for g �= 0 the period equals the the multiplicative order of c and the smallest solution can
be computed by calculating the base-c discrete logarithm of (c− 1)hg−1 + 1. Therefore this
case can be generally treated by Shor’s quantum algorithm. Of course, the set of solutions is
either empty or a complete residue class modulo the period.

We attempt to so solve the SDLP in Zp for ψ3(g) and ψ3(h) with the automorphism
of Zp induced by σ . We stop if there is no solution to this problem. If the solution set is

the residue class {t3 + n3t : t ∈ Z} then we put g2 = ρ(g,1)n3 (1G) = ∏t3−1
i=0 σ i (g) and

h2 = ρ(g,1)−t3 (1G) = (
∏n3−t3−1

i=0 σ i (g))σ n3−t3(h). Actually, g2 and h2 can be efficiently
computed by calculating (g, 1)n3 and (g, 1)n3−t3 in the semidirect product group G �σ Z

using fast exponentiation (repeated squaring), and then applying the ρ-actions of these on
1G and on h, respectively. We have g2 = ρ(g,1)n3 (1G) ∈ M2 and h2 = ρ(g,1)−t3 (h) ∈ M2.

We continuewithworking inM2. Therewe need to solve the SDLP for g2 and h2 with auto-
morphismσ n3 . Like above,we solve the SDLP inZp forψ2(g2) andψ2(h2)with the automor-
phism induced by σ n3 .We stop if there is no solution, otherwise assume that the solution set is
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the residue class {t2 + n2t : t ∈ Z}. We compute g1 = ∏n2−1
i=0 σ n3i (g2) = ∏n2n3−1

j=0 σ j (g) =
ρ(g,1)n2n3 (1G) and h1 = (

∏n2−t2−1
i=0 σ n3i (g2))σ n3n2−n3t2(h2) = ρ(g,1)−t2n3−t3 (h). We have

g1, h1 ∈ M1.
In M1 we solve the SDLP for g1 and h1 with automorphism σ n2n3 by working with the

images ψ1(g1) and ψ1(h1) in Zp . If the solution set is empty then so is the solution set of
the original SDLP in G. Otherwise, if the solutions are the members of the residue class
{t1 + n1t : t ∈ Z}, the original SDLP in G has solution set {t1n2n3 + t2n3 + t3 + tn1n2n3 :
t ∈ Z}.

3 Quantum algorithms for the group case SDLP

In this section, we will prove the following main result of the paper.

Theorem 4 Let G be a group and σ ∈ Aut(G). We assume that G is a black-box group
with a unique labeling of elements and we also have a black box for computing σ i (g)
(i ∈ Z≥ 0, g ∈ G). Suppose that we are given a series 1 = M0 < M1 < . . . Mk = G
of σ -invariant normal subgroups Mi � G together with homomorphisms ψi : Mi → Gi

(i = 1, . . . , k) with kernel Mi−1 (i = 1, . . . , k). Let σ i denote the automorphism of Im(ψi )

induced by σ|Mi . Assume further that, for each i , either

(0) Im(ψi ) is of polynomial size; or
(1) σ i has polynomial order; or
(2) Im(ψi ) is solvable;
(3) Gi ≤ GLdi (Fqi ) for some positive integer di and for some prime power qi , moreover,

there exists a polynomially bounded integer ni and a matrix ai ∈ GLdi (Fqi ) such that
σ
ni
i (x) = a−1

i xai for every x ∈ Im(ψi ).

For items (0), (1) and (2), we assume that Gi is a black-box group with unique labeling. For
item (4), neither ni nor ai are assumed to be given, their mere existence is sufficient. (By
"polynomial" we mean polynomial in the maximum of the lengths of the bit strings used for
encoding and labeling the elements of the groups G andGi (i = 1, . . . , k). Then SDLP(G, σ )

can be solved in quantum polynomial time.

When k = 1, condition of type (0) means that G itself is of polynomial size, that of
type (1) means that σ itself has polynomially small order, that of type (2) means that G is
solvable. The standard descriptions of simple groups of Lie type define them as factors of
certain matrix groups over finite fields. The quotient is taken to be the center of the matrix
group, so the simple group has a representation as a matrix group by the conjugation action
on the matrix algebra spanned by the covering matrix group. Also, the outer automorphism
group of a finite simple group is of polynomial size. Therefore, these groups are covered by
conditions of type (3).

The algorithm for polynomially small groups is the straightforward trial and error. In the
first three subsections of this section we give efficient algorithms for groups/automorphisms
satisfying conditions (1), (2), or (3). In the fourth subsection we show how to use these
ingredients and Theorem 3 to prove Theorem 4.

Note that the order of σ can be computed in quantum polynomial time using Shor’s period
finding method applied to the functions t �→ σ t (xi ) for the generators xi of the group G and
taking the least common multiple of these periods. The order can be factorized using Shor’s
factoring algorithm. The length of the orbit {ρ(g,1)t (1G) : t ∈ Z} can be determined and
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factorized in a similar way. Based on these observations, in the algorithms below we assume
that these numbers are already computed and factorized. The solution set is either empty or
the residue class of an arbitrary solution modulo the period. So it is sufficient to find any
solution, e.g., the smallest non-negative one.

3.1 The SDLP for small order automorphisms

In this subsection we prove the following result.

Proposition 5 Let G be a black-box group with unique labeling. Then SDLP(G, σ ) can be
solved by a quantum algorithm in time polynomial in the order of σ and the length of the
code-words together with the labels of the group elements.

Proof By Proposition 2, it is sufficient to prove the case when σ is trivial. Then ρ(g,1)(x) =
gx , whence ρ(g,1)t (1G) = gt for every integer t . Thus, solving the SDLP for g and h is the
same as computing the base-g discrete logarithm of h, which can be accomplished by a
standard generalization of Shor’s algorithm, see e.g., the survey paper [1] for a description.

��
We remark that Shor’s method can be further extended to the discrete logarithm problem

in semigroups, see [11]. The special case of the problem in the multiplicative semigroup
of d × d matrices, that is solving At = B for matrices A and B over a field, is called the
Matrix Power Problem in [20]. We will make use of the fact that this problem can be solved
in quantum polynomial time for matrices over finite fields.

3.2 The SDLP in solvable groups

In this part, we first present a quantum algorithm for the SDLP on elementary abelian groups.
We then show how Theorem 3 can be used to reduce the general solvable case to instances
of the elementary abelian case.

Theorem 6 Let G = Z
d
p, the (additive) group of column vectors of length d over the integers

modulo p, where p is a prime number and let σ be an automorphism of G, given as a
d×d non-singular matrix. Then SDLP(G, σ ) can be solved by a quantum algorithm in time
polynomial in log p and d.

Proof We consider G as a vector space of dimension d over the finite field Zp . We take
a minimal nontrivial σ -invariant subspace M of G. This can be done, e.g., by a classical
randomized method based on computing the rational Jordan normal form of σ , see [13].
Then the factor space M has no proper nontrivial σ -invariant subspace. Iterating this in
G/M , we eventually obtain a flag of subspaces (0) = M0 < M1 < . . . < Mk = G such
that there is no σ -invariant subspace strictly between Mi−1 and Mi . Then, by Theorem 3,
the problem is reduced to the case when G has no proper nontrivial σ -invariant subspace.
Suppose that we have an instance of that case.
If 1 is an eigenvalue of σ then d = 1 and σ is trivial. It follows that ρ(g,1)t (1G) = gt . Using
the additive notation for Z/pZ, we need to solve h = t · g. If g = 0 and h = 0 then every
integer is a solution, while if g = 0 and h �= 0 then there is no solution. If g �= 0 let g′ stand
for the multiplicative inverse of g in the fieldZ/pZ. Then the solutions are {hg′+ tp : t ∈ Z}.
(Actually, the case when σ is trivial is a special case of the broader case already discussed
in Subsection 3.1.)
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If 1 is not an eigenvalue then we do the following. We compute the matrix B of σ in the
standard basis of (Z/pZ)d . Then, using again the additive notation, we can write ρ(g,1)t (1G)

as
∑t−1

j=0 B
j g. We have to solve

t−1∑

j=0

B j g = h. (3)

We adopt an idea from [20] to reduce this task to an instance of the Matrix Power Problem.
Multiplying the equation by B, B2, . . . , Bd−1 gives

t−1∑

j=0

Bi+ j g = Bih ( i = 0, 1, . . . , d − 1) (4)

We claim that the vectors g, Bg, . . . , Bd−1g are linearly independent. This is trivial if d = 1.
If d > 1, assume that Bkg is linearly dependent of the vectors g, . . . , Bk−1g for some
k < d: Bkg = ∑k−1

i=0 Bi g. Then Bkg is contained in the subspace U spanned by the vectors
g, Bg, . . . , Bk−1g. Then, by induction, B�g ∈ U for every � ≥ 0. Thus U is B-invariant
subspace of dimension 1 ≤ k < d . In terms of G, U is a σ -invariant proper subgroup,
contrary to our assumption. Let C be the matrix with column vectors g, Bg, . . . , Bd−1g and
let D be the matrix with column vectors h, Bh, . . . , Bd−1h. Then C is an invertible matrix
and, by equation (4) we obtain that equation (3) is equivalent to

t−1∑

j=0

B jC = D,

which is further equivalent to

t−1∑

j=0

B j = DC−1. (5)

As 1 is not an eigenvalue of B, we have that the matrix B − I is invertible (here I stands for
the d × d identity matrix) and we have

t−1∑

j=0

B j = (Bt − I )(B − I )−1. (6)

By substituting this into the left hand side of equation (5), then multiplying B − I both sides
and adding and adding the identity matrix, we obtain that the equation to solve becomes

Bt = DC−1(B − I ) + I . (7)

This is an instance of theMatrix Power Problem, which can be solved in quantum polynomial
time as discussed in Sect. 3.1. ��

The method for the elementary abelian case, in combination with the recursion tool (The-
orem 3), gives an efficient quantum algorithm for solving the SDLP in solvable groups. More
precisely, we obtain the following result.

Theorem 7 Assume that G is a solvable black-box group with unique labeling. Then
SDLP(G, σ ) can be solved by a quantum algorithm in time polynomial in the order of
σ and the length of the code-words together with the labels of the group elements.
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Proof Using the labeling, by [18, Theorem 7] which is based on the Beals-Babai algorithm
[3], we can compute a composition series of G with explicit isomorphisms between the
composition factors and additive groups Zp for various primes p. In particular, we obtain a
maximal normal subgroup N of G together with a homomorphism φ : G �→ Zp . For any

positive integer j , let N j = ∩ j−1
i=0 σ i (N ). Note that N j+1 = N j ∩ σ j (N ) and if N j+1 = N j

then N j ′ = N j for any integer j ′ > j and N j is σ -invariant. This equality happens for an
integer j bounded by the length � of code-words for the group elements.We compute themap
ψ : G �→ Z

�
p defined as x �→ (φ(x), φσ (x), . . . , φσ�−1

(x))T . Based on the above discussion,

the kernel M of ψ is σ -invariant. The image Im(ψ) is a subspace V of Z
�
p . Compute a basis

for V by taking a maximal linearly independent set of the images of the generators for G
under the map ψ and using them replace ψ with the composition of ψ with the transpose
of the matrix whose columns are the bases elements for V . This new map, denoted again by
ψ , is a surjective homomorphism from G to Z

d
p with kernel M . Then, by Theorem 3, after

solving the SDLP in the ψ-image Z
d
p , SDLP(G, σ ) gets reduced to SDLP(M, σ ′) where σ ′

is the restriction of a power of σ to M . As subgroups of solvable groups are solvable, M is a
solvable group of order at most |G|/2, so we can recurs into M to solve the SDLP there. The
total depth of the recursion is bounded by log |G|, which is polynomial in the length of the
codewords for the elements of G. Alternatively, the recursion can be rewritten as an iteration
with at most log |G| rounds. ��

3.3 The SDLP inmatrix groups with an inner automorphism

This part is is devoted to prove the part of Theorem 4 regarding matrix groups, the factors
with property (3).

In the proof we will encounter an instance of the well known Orbit Problem introduced
by Harrison in [16]. It is the following orbit membership problem. Given vectors a, b of a
finite dimensional vector space V over the field F and a linear transformation 	 ∈ EndF(V ),
find t ∈ Z≥0, if there exists, such that b = 	t a.

Kannan and Lipton in [20] gave a polynomial time solution of the Orbit Problem for the
case when F is the field of rationals. Here we need to solve the finite field case. The method
of Kannan and Lipton is based on a construction to reduce the Orbit Problem to the Matrix
Power Problem. For completeness we briefly recall (a version of) their reduction. Actually,
we used essentially the same idea in the proof of Theorem 6. We compute the subspace W
spanned by	t a (t = 0, 1, . . .). This can be done by computing the vectors a,	a, . . . , 	 j−1a
until 	 j a becomes linearly dependent of the previous vectors. Then W is the subspace with
basis a,	a, . . . , 	 j−1a. If b /∈ W , then the problem has no solution. Otherwise 	t b ∈ W
for every t . Write the vectors 	i a and 	i b (i = 0, . . . , j − 1) as column vectors in terms of
a basis of W . Let A be the matrix of the restriction of 	 to W in the same basis and let C
resp. D be the j × j matrices whose columns are a,	a, . . . , 	 j−1a and b,	b, . . . , 	 j−1b,
respectively. Then b = 	t a if and only if D = 	tC . Note that C is invertible as its columns
are linearly independent. Let B = DC−1. Then we need to solve B = At . This is an instance
of theMatrix Power Problem and can be solved over finite fields in quantum polynomial time
as mentioned in Sect. 3.1.

Equipped with an efficient quantum solution of the finite case of the Orbit Problem, we
are ready to prove the following result.

Theorem 8 Let G be a subgroup ofGLd(Fq)where d is a positive integer and q is a power of a
prime. Assume that G is given by a list of matrices that generate G and that the automorphism
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σ is given on the generators. Suppose that σ coincides with the conjugation action of a matrix
a ∈ GLd(Fq). Then SDLP(G, σ ) can be solved by a quantum algorithm in time polynomial
in d and log q.

Thematrix a that implements the automorphism σ does not need to be given, such amatrix
is computed by the algorithm. (It is unique up to the centralizer of G.) Note that conjugation
by a is an inner automorphism of the full matrix group GLd(Fq) (or just of the matrix group
generated by G and a), justifying the title of the subsection.

Proof We assume that q ≥ 2d . (If not, we consider G as a matrix group over an extension
field of Fq having at least 2d elements.) To find a matrix a with the desired property, we take
the linear space of matrices y such that xi y = yσ(xi ) for the generators xi of G. A basis
a1, . . . , ar of the space can be computed by solving a system of linear equations expressing
the matrix equations above. Let t1, . . . , tr be variables. The entries of the formal linear
combination a(t1, . . . , tr ) = ∑r

i=1 ti ai are homogeneous linear polynomials in the variables
t1, . . . , tr . Its determinant is either identically zero or a homogeneous polynomial of degree
d over Fq . As the space contains a non-singular matrix by the assumption of the theorem,
det(a(t1, . . . , tr )) is not identically zero. Therefore, by the Schwartz-Zippel lemma [25, 27],
a uniformly random substitution (λ1, . . . , λr )

T ∈ F
r
q will give a matrix a = a(λ1, . . . , λr )

with nonzero determinant with probability at least 1
2 because q ≥ 2d . If a has determinant

0 we choose other random linear combinations until we get one with nonzero determinant.
Assume that det(a) �= 0. Then a, being a linear combination of the matrices a1, . . . , ar ,
satisfies xi a = aσ(xi ), or, equivalently, a−1xia = σ(xi ).
Since the matrices xi generate G, and since σ as well as the map x �→ a−1xa are
automorphisms of G, we have that a−1xa = σ(x) for very x ∈ G. It follows that
ρ(g,1)(x) = gσ(x) = ga−1xa. We consider the full matrix algebra B = Md(Fq) of the
d × d matrices and the map 	 : B → B defined as 	(x) = ga−1xa. Obviously, 	 is a
linear extension of ρ(g,1) to B. Furthermore, as both g and a are invertible matrices, it is an
invertible linear transformation of B, considered as a vector space. Solving h = ρt

(g,1)(1G)

is equivalent to solving h = 	t Id . This is an instance of the orbit problem in B, considered
as a vector space. Therefore it can be solved in quantum polynomial time as discussed above.

��
We remark that, using the Jordan blocks of A, one could classically reduce the problem

to the instances of the discrete logarithm problem in the multiplicative group of extensions
of F. Also, in practice it might be worth replacing B with the matrix algebra spanned by the
elements of G.

Proposition 2 gives the following extension.

Corollary 9 Let G be as in Theorem 8. Let σ be an automorphism of G. Let K be a positive
integer. We assume that for the divisors k ≤ K of the order of σ , the action of σ k on
the generators for G is also given and that among those divisors k, σ k coincides with the
conjugation action of a matrix. Then SDLP(G, σ ) can be solved by a quantum algorithm in
time polynomial in K , d and log q.

3.4 Putting things together

Our recursion tool (Theorem 3) can assemble the results proved in the preceding subsections
for various special cases of the SDLP to obtain Theorem 4.
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Proof of Theorem 4 Assume that we have the chain of subgroups Mi and homomorphisms
ψi (i = 0, . . . , k) with properties as in the statement of the theorem. For i = k to 1, using
Theorem 3, by solving the SDLP in the φi -image of Mi we reduce the problem to an instance
in Mi−1. In the small size case (0), we use brute force. When σ i is of small order (case (1))
or when Im(ψi ) is solvable (case (2)), we use Proposition 5 or Theorem 7, respectively. In
order to facilitate using the oracle for evaluating the powers of σ to evaluate those of σ i ,
we use the pairs (x, ψi (x)) to encode the elements of Im(ψi ), while as labeling we use the
labeling for Gi . In the matrix group case (4), we use the natural encoding by matrices for the
image. We compute the order oi of σ i using the factorization of the order of σ and compute
σ t for the smallest few divisors of oi and apply the method of Corollary 9. ��

Appendix: thematrix group case in odd characteristic

This part is devoted to a sketch of a proof of the following.

Corollary 10 Let ψ : K → Md(Fq) be a representation of the black-box group K with or
without a labeling. Assume that the automorphism σ is given by a black box to evaluate its
powers on elements of K and that the kernel of ψ is σ -invariant (e.g., when ψ is faithful).
Then, SDLP(Im(ψ), σ ) can be solved in quantum polynomial time.

Proof (sketch) We encode the elements of G = Im(ψ) by pairs (x, ψ(x)) and labeling ψ(x)
so that we can evaluate powers of σ on elements of the matrix group G. We use the notation
σ for σ . Below we outline how the result of the polynomial time algorithm of Babai, Beals
and Seress [2] for computing the structure of matrix groups over finite fields can be used
to obtain a series of normal subgroups together with representations of the factors making
Theorem 4 applicable to these matrix groups.

Every finite group G has a unique largest solvable normal subgroup, called the solvable
radical of G. It is denoted by Rad(G). The factor group G = G/Rad(G) is trivial if G itself
is solvable. Even ifG is a non-trivial group, it has no nontrivial abelian subnormal subgroups.
(Normal subgroups of a group are subnormal, and, recursively, normal subgroups of subnor-
mal subgroups are also subnormal.) It follows that the minimal subnormal subgroups of G
are non-commutative simple groups. They pairwise commute and the subgroup Soc(G) gen-
erated by them (called the socle of G) is the direct product of these simple groups. (It follows
that there are at most logG simple constituents of Soc(G).) The full pre-image of Soc(G)

at the projection G → G is denoted by Soc∗(G). The subgroups Rad(G) and Soc∗(G) are
characteristic subgroups of G. The group G, by conjugation, acts as a permutation group
on the minimal subnormal subgroups of G. The kernel Pker(G) of this permutation repre-
sentation, called the permutation kernel, is a further characteristic subgroup. There are the
following inclusions between the subgroups introduced above.

1 ≤ Rad(G) ≤ Soc∗(G) ≤ Pker(G) ≤ G.

Pker(G) acts by conjugation as an automorphismgroupon each simple component of Soc(G).
As the outer automorphism group of any finite simple group is solvable, the factor group
Pker(G)/Soc∗(G) is solvable. The algorithm of Babai, Beals and Seress [2] computes in
classical randomized polynomial time (generators for) the three subgroups above. They also
compute a permutation representation of G with kernel Pker(G) (this is actually the con-
jugation action of G on the simple components of Soc(G)); a (usually highly intransitive)
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permutation representation of Pker(G)with kernel Soc∗(G); and, most importantly, for each
of the simple components of Soc(G), a sequence of elements of G that generate the compo-
nent modulo Rad(G) together with the images of these under an isomorphismwith a standard
version of a simple group. (The generators for each component S are actually generators for a
perfect subgroup S∗ of Soc∗(G) such that (S∗/RadG) is the pre-image of S by the projection
map G → G/Rad(G).)

We compute a refinement of the sequence 1 ≤ Rad(G) ≤ Soc∗(G) ≤ Pker(G) ≤
G between Rad(G) and Soc∗(G). To this end we notice that σ also permutes the simple
components of SocG. We take a σ -orbit of a single simple component S and we compute
S∗∗ = ∏

T T ∗ Rad(G), where the product is taken over the σ -orbit of S. Let r be the length
of the orbit. Then σ r acts as an automorphism on each member of the orbit. As the outer
automorphism group of a finite simple group is of size bounded by a polynomial of the
logarithm of the group size, we obtain that a polynomially small power of σ acts as an inner
automorphism of S∗∗/Rad(G). If S is an alternating group, we use its natural permutation
representation, while if S is sporadic, we use the regular representation of S. If S is of
Lie type, we take the isomorphism between S and the standard copy of it computed by the
algorithm of [2]. It realizes S as the quotient group of a matrix group by its center. We obtain
a matrix representation of S by taking the conjugation action on the matrix algebra spanned
by the elements of this covering group. We do the same for each T from the orbit (actually,
these are isomorphic to S, so the construction made for S can be re-used.) Finally we obtain a
matrix representation of S∗∗ with kernel Rad(G) on the direct sum of these representations.
Then we proceed with another orbit, construct the representation of the product of the orbit
members and add to S∗∗. Thiswayweobtain a chain ofσ -invariant normal subgroups between
Rad(G) and Soc∗(G) together with the matrix representations of the factors so that case (4)
of Theorem 4 is applicable to them. For G/Pker(G), we use the permutation representation
which can be naturally extended to a matrix representation. As σ also permutes the simple
components, the induced automorphism will be conjugation by a permutation, so case (4) is
again applicable. For Pker(G)/Soc∗ G, we use the matrix representation as a labeling and,
by solvability, case (3) is applicable. Finally, in Rad(G), again case (3) applies. ��

Acknowledgements The research of the second authorwas supported by theHungarianMinistry of Innovation
and TechnologyNRDIOfficewithin the framework of theArtificial IntelligenceNational Laboratory Program.
The authors are grateful to the anonymous referees for their helpful remarks and suggestions.

Author Contributions These authors contributed equally to this work.

Funding Open access funding provided by Budapest University of Technology and Economics.

Data availability Data sharing not applicable to this article as no datasets were generated or analyzed during
the current study.

Declarations

Conflict of interest The authors have no Conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

123



2842 M. Imran, G. Ivanyos

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. AndrewM., van DamW.: Quantum algorithms for algebraic problems. Rev. Mod. Phys. 82, 1–52 (2008).
2. Babai L., Beals R., Seress Á.: Polynomial-time theory of matrix groups. In: Proceedings of the Forty-First

Annual ACM Symposium on Theory of Computing, STOC ’09, pp. 55-64, New York, NY, USA (2009).
Association for Computing Machinery.

3. Babai L., Beals R.: A polynomial-time theory of black box groups i. London Mathematical Society
Lecture Note Series, pp. 30–64 (1999).

4. Babai L., Szemerédi E.: On the complexity of matrix group problems i. In: 25th Annual Symposium
onFoundations of Computer Science, pp. 229–240. IEEE (1984).

5. Battarbee C., Kahrobaei D., Perret L., Shahandashti S.F.: A subexponential quantum algorithm for the
semidirect discrete logarithm problem. In: NIST Fourth PQC Standardization Conference (2022).

6. Battarbee C., Kahrobaei D., Shahandashti S.F.: Cryptanalysis of semidirect product key exchange using
matrices over non-commutative rings. arXiv preprint arXiv:2105.07692 (2021)

7. Battarbee C., Kahrobaei D., Shahandashti S.F.: Semidirect product key exchange: the state of play. arXiv
preprintarXiv:2202.05178 (2022).

8. Battarbee C., Kahrobaei D., Perret L., Shahandashti S.F.: Spdh-sign: towards efficient, post-quantum
group-based signatures. In: JohanssonT., Smith-ToneD. (eds.) Post-QuantumCryptography, pp. 113–138.
Springer, Cham (2023).

9. BrownD.R.L., Koblitz N., LeGrow J.T.: Cryptanalysis of “make”. J.Math. Cryptol. 16(1), 98–102 (2022).
10. Castryck W., Lange T., Martindale C., Panny L., Renes J.: Csidh: an efficient post-quantum commutative

group action. In: Advances in Cryptology–ASIACRYPT 2018: 24th International Conference on the
Theory and Application of Cryptology and Information Security, Brisbane, QLD, Australia, December
2–6, 2018, Proceedings, Part III 24, pp. 395–427. Springer (2018).

11. Childs A., Ivanyos G.: Quantum computation of discrete logarithms in semigroups. J. Math. Cryptol.
8(4), 405–416 (2014).

12. Couveignes J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive (2006).
13. Giesbrecht M.: Nearly optimal algorithms for canonical matrix forms. SIAM J. Comput. 24(5), 948–969

(1995).
14. Grigoriev D., Shpilrain V.: Tropical cryptography. Commun. Algebra 42(6), 2624–2632 (2014).
15. Habeeb M., Kahrobaei D., Koupparis C., Shpilrain V.: Public key exchange using semidirect product of

(semi) groups. In: Applied Cryptography and Network Security: 11th International Conference, ACNS
2013, Banff, AB, Canada, June 25–28, 2013. Proceedings 11, pp. 475–486. Springer (2013).

16. Harrison M.A.: Lectures on Linear Sequential Machines. Academic Press, New York (1969).
17. Isaac S., Kahrobaei D.: A closer look at the tropical cryptography. Int. J. Comput. Math. Comput. Syst.

Theory 6(2), 137–142 (2021).
18. Ivanyos G., Magniez F., Santha M.: Efficient quantum algorithms for some instances of the non-abelian

hidden subgroup problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 263–270 (2001).

19. Kahrobaei D., Shpilrain V.: Using semidirect product of (semi) groups in public key cryptography. In:
Pursuit of the Universal: 12th Conference on Computability in Europe, CiE 2016, Paris, France, June
27–July 1, 2016, Proceedings, pp. 132–141. Springer (2016).

20. Kannan R., Lipton R.J.: Polynomial-time algorithm for the orbit problem. J. ACM 33(4), 808–821 (1986).
21. Kotov M., Ushakov A.: Analysis of a key exchange protocol based on tropical matrix algebra. J. Math.

Cryptol. 12(3), 137–141 (2018).
22. Kuperberg G.: A subexponential-time quantum algorithm for the dihedral hidden subgroup problem.

SIAM J. Comput. 35(1), 170–188 (2005).
23. Myasnikov A., Roman’kov V.: A linear decomposition attack. Groups Complex. Cryptol. 7(1), 81–94

(2015).
24. Rahman N., Shpilrain V.: Make: a matrix action key exchange. J. Math. Cryptol. 16(1), 64–72 (2022).
25. Schwartz J.T.: Probabilistic algorithms for verification of polynomial identities. In: Ng Edward W. (ed.)

Symbolic andAlgebraicComputation, vol. 72, pp. 200–215.LectureNotes inComputer Science. Springer,
Berlin Heidelberg (1979).

26. Shor P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th
Annual Symposium on Foundations of Computer Science, pp.124–134. IEEE (1994).

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2105.07692


Efficient quantum algorithms 2843

27. Zippel R.: Probabilistic algorithms for sparse polynomials. In: Ng E.W. (ed.) Symbolic and Algebraic
Computation, Volume 72 of LNCS, pp. 216–226. Springer, New York (1979).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Efficient quantum algorithms for some instances of the semidirect discrete logarithm problem
	Abstract
	1 Introduction
	2 Reduction and recursion of SDLP
	2.1 Reduction from the group-base case to the group case
	2.2 An easy reduction
	2.3 Recursion into quotient groups and subgroups
	2.4 Example: the candidate groups for SPDH-Sign

	3 Quantum algorithms for the group case SDLP
	3.1 The SDLP for small order automorphisms
	3.2 The SDLP in solvable groups
	3.3 The SDLP in matrix groups with an inner automorphism
	3.4 Putting things together

	Appendix: the matrix group case in odd characteristic
	Acknowledgements
	References




