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Abstract

This paper considers the equilibrium-free stability and performance analysis of discrete-
time nonlinear systems. Two types of equilibrium-free notions are considered. Namely,
the universal shifted concept, which considers stability and performance w.r.t. all equi-
librium points of the system, and the incremental concept, which considers stability and
performance between trajectories of the system. This paper shows how universal shifted
stability and performance of discrete-time systems can be analysed by making use of the
time-difference dynamics. Moreover, the existing results are extended for incremental dissi-
pativity for discrete-time systems based on dissipativity analysis of the differential dynamics
to more general state-dependent storage functions for less conservative results. Finally, it is
shown how both these equilibrium-free notions can be cast as a convex analysis problem
by making use of the linear parameter-varying framework, which is also demonstrated by
means of an example.

1 INTRODUCTION

The analysis of nonlinear systems has been an important topic
of research over the last decades as systems have become more
complex due to the push for higher performance requirements.
While a large part of the existing tools for analysing stability and
performance of nonlinear systems, such as Lyapunov stability
[1] and dissipativity [2, 3], are very powerful, they only analyse
these properties w.r.t. a single (equilibrium) point of the state-
space representation, often the origin of the state-space. This
poses limitations in cases when analysis of stability and perfor-
mance of a system w.r.t. multiple equilibria or even w.r.t. multiple
trajectories, such as in reference tracking and disturbance rejec-
tion, is required. Therefore, in recent years, equilibrium-free
stability and performance methods have become increasingly
popular. These equilibrium-free methods include concepts such
as universal shifted and incremental stability and performance.
Universal shifted stability and performance, also referred to as
equilibrium independent stability and performance, considers
these notions w.r.t. all equilibrium points of the system [4–6]. A
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relating concept to universal shifted stability is parametric sta-
bility [7, 8]. For parametric stability, also stability of the system
w.r.t. various equilibrium points is investigated, specifically how
this stability changes under the influence of uncertain (physical)
parameters of the system. Another, stronger, equilibrium-free
concept is incremental stability and the connected notion of
incremental performance, which consider stability and perfor-
mance between trajectories of the system [9–13]. This means
that in case of incremental stability, trajectories of the system
converge towards each other. Often, incremental stability and
performance are analysed through so-called contraction analysis
[11, 14, 15].

While continuous-time (CT) dynamical systems are often
used for analysis and control, the recent surge of developments
on data and learning based analysis and control methods heavily
relies on discrete-time (DT) formulations. Also, controllers are
almost exclusively implemented with digital hardware, hence
analysis of the implemented discretized form of the controller
with the actuator and sampling dynamics requires DT anal-
ysis tools, which are also the first step towards reliable DT
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synthesis methods. Therefore, analysis of DT nonlinear systems
is inevitably important.

For CT nonlinear systems, it has been shown how the veloc-
ity form of the system, i.e. the time-differentiated dynamics,
imply universal shifted stability and performance [6]. In DT, the
time-difference dynamics, analogous to the time-differentiated
dynamics in CT, have primarily received attention in the con-
text of (nonlinear) model predictive control methods. In these
works, the time-difference dynamics have been mainly used
to realize offset free tracking of reference signals [16, 17].
However, to the authors’ knowledge, there are no results in
literature which connect the time-difference dynamics to sta-
bility and performance guarantees w.r.t. equilibrium points in
the nonlinear context and on how to cast the correspond-
ing analysis problem as computable tests. Therefore, in this
paper, we show how these concepts are connected and how
the universal shifted stability and performance analysis prob-
lem of DT systems can be solved as a convex optimization
problem. Moreover, while parametric stability could be used
to analyse universal shifted stability of the system by consid-
ering the input to the system as an uncertain parameter, there
are, to the authors’ knowledge, no tractable computable results
for parametric stability for general nonlinear systems. On the
other hand, in this paper, we will provide computationally
tractable general results to analyse universal shifted stability and
performance.

Similarly, w.r.t. incremental stability and performance, most
of the literature has focussed on CT systems. For CT systems,
it has been shown how the so-called differential form—
representing the dynamics of the variations along trajectories—
can be used in order to imply incremental stability, dissipativity,
and performance properties [9, 11]. There have been some
results on incremental and contraction based stability of DT
systems, see e.g. [13, 14], or focussing on Lipschitz proper-
ties [18–21]. Moreover, for DT nonlinear systems, the link to
incremental dissipativity based on the differential form has been
made in [22] for quadratic supply functions. However, the work
in [22] only considers quadratic storage functions depending
on a constant matrix. This is more conservative compared to
results available for CT systems, where the links between dis-
sipativity of the differential form and incremental dissipativity
has been made for more general storage functions. Therefore,
in this paper, we will provide a novel generalization of the
CT incremental stability and performance results for DT sys-
tems and show how these results can be cast as a convex
optimization problem.

To summarize, the main contributions of this paper are as
follows

C1: Show how stability and performance properties of the
time-difference dynamics of a DT nonlinear system imply
universal shifted stability and performance properties of
the system. (Theorems 7 and 9)

C2: Extend existing CT incremental dissipativity analysis
results for DT nonlinear systems based on the differ-
ential form, enabling the use of state-dependent storage
functions. (Theorem 13)

C3: Show that both the universal shifted and incremental anal-
ysis problems can be cast as an analysis problem of a linear
parameter-varying (LPV) representation. This allows these
problems to be solved via convex optimization in terms
of semi-definite programs (SDPs), providing computable
tests for equilibrium-free stability and performance analysis
of DT nonlinear systems. (Theorem 14)

The paper is structured as follows, in Section 2, we give an
overview of the definitions of universal shifted and incremental
stability and performance. Next, in Section 3, we will introduce
velocity based analysis for DT nonlinear systems and show how
it can be used in order to imply universal shifted stability and
performance properties. In Section 4, we will show how dissi-
pativity analysis of the differential form in DT can be used to
imply incremental dissipativity. Then, in Section 5, we discuss
the connections between the velocity and differential analysis
results and the relation between universal shifted and incremen-
tal stability and performance. Section 6 shows how the velocity
and differential analysis results can be cast as analysis problems
of an LPV representation, enabling to solve the equilibrium-free
analysis problem via convex optimization in terms of SDPs.
In Section 7, the usefulness of the developed analysis tools is
demonstrated on an example. Finally, the conclusions are drawn
in Section 8.

Notation. ℝ is the set of real numbers, while ℝ+
0 is the set of

non-negative reals. ℤ+
0 is the set of non-negative integers. We

denote by 𝕊n the set of real symmetric matrices of size n × n.
Denote the projection operation by 𝜋, s.t. for  =  × ,
a ∈ 𝜋a if and only if ∃b ∈  s.t. (a, b) ∈ . For a signal w ∶
ℤ+

0 → ℝ
n and a w∗ ∈ ℝ

n, denoted by w ≡ w∗ that w(t ) = w∗
for all t ∈ ℤ+

0 . n is the class of n-times continuously differ-
entiable functions. A function V ∶ ℝn → ℝ belongs to the
class x∗

, if it is positive definite and decrescent w.r.t. x∗ ∈ ℝ
n

(see [23, Definition 3.3]). A function Vi ∶ ℝ
n ×ℝn → ℝ+

0 is
in i, if Vi (⋅, x̃ ) ∈ x̃ for all x̃ ∈ ℝn and Vi (x, ⋅) ∈ x for
all x ∈ ℝn. ‖⋅‖ is the Euclidean (vector) norm. We use (⋆)
to denote a symmetric term in a quadratic expression, e.g.
(⋆)⊤Q(a − b) = (a − b)⊤Q(a − b) for Q ∈ 𝕊n and a, b ∈ ℝn.
The notation A ≻ 0 (A ⪰ 0) indicates that A ∈ 𝕊n is posi-
tive (semi-)definite, while A ≺ 0 (A ⪯ 0) denotes a negative
(semi-)definite A ∈ 𝕊n. Moreover, col(x1, … , xn ) denotes the
column vector [x⊤1 ⋯ x⊤n ]⊤.

2 EQUILIBRIUM-FREE STABILITY
AND PERFORMANCE

2.1 Nonlinear system

We consider DT nonlinear dynamical systems given in the form
of

x(t + 1) = f (x(t ), w(t )); (1a)

z (t ) = h(x(t ), w(t )); (1b)
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1712 KOELEWIJN ET AL.

where t ∈ ℤ+
0 is the discrete-time, x(t ) ∈ ℝnx is the state with

initial condition x(0) = x0 ∈ ℝ
nx , while w(t ) ∈ ℝnw is the input

and z (t ) ∈ ℝnz is the output of the system. Moreover, the
functions f ∶ ℝnx ×ℝnw → ℝnx and h ∶ ℝnx ×ℝnw → ℝny are
considered to be in 1. We define the set of solutions of
Equation (1) as

𝔅 ∶= {(x, w, z ) ∈ (ℝnx ×ℝnw ×ℝnz )ℤ
+
0 ∣

(x, w, z ) satisfy Equation (1)}, (2)

called the behaviour of Equation (1). For a specific input w̄ ∈

(ℝnw )ℤ
+
0 ,

𝔅w(w̄) ∶= {(x, w̄, z ) ∈ 𝔅}, (3)

denotes the compatible solution trajectories of Equation (1).
We also define the state transition map 𝜙x ∶ ℤ

+
0 ×ℤ+

0 ×
ℝnx × (ℝnw )ℤ

+
0 → ℝnx , such that x(t ) = 𝜙x(t , 0, x0, w). More-

over, we assume that all solutions are forward complete and
unique.

For Equation (1), the equilibrium points satisfy

x∗ = f (x∗, w∗ ); (4a)

z∗ = h(x∗, w∗ ); (4b)

where x∗ ∈ ℝ
nx , w∗ ∈ ℝ

nw , and z∗ ∈ ℝ
nz . The set of equilib-

rium points of the nonlinear system is then defined as

ℰ ∶= {(x∗, w∗, z∗ ) ∈ ℝnx ×ℝnw ×ℝnz ∣ (x∗, w∗, z∗ ) satisfy (4)}.

(5)

Define 𝒳 ∶= 𝜋x∗ℰ, 𝒲 ∶= 𝜋w∗ℰ, and 𝒵 ∶= 𝜋z∗ℰ. For our
results concerning universal shifted stability and performance,
we take the following assumption:

Assumption 1 (Unique equilibria). For the nonlinear system
given by Equation (1) with equilibrium points (x∗, w∗, z∗ ) ∈ ℰ,
we assume that there exists a bijective map 𝜅 ∶ 𝒲 → 𝒳 such
that x∗ = 𝜅(w∗ ), for all (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ. This means that, for
each w∗ ∈ 𝒲, there is a unique corresponding x∗ ∈ 𝒳, and
vice versa, for each x∗ ∈ 𝒳 there is a unique corresponding
w∗ ∈ 𝒲.

Note that this assumption is only taken in order to simplify
the discussion.

2.2 Equilibrium-free stability

As aforementioned, in this paper, we will consider two forms of
equilibrium-free stability. Namely, universal shifted stability and
incremental stability. In DT, we consider the same definition for
universal shifted stability as has been considered in CT in [6], i.e.
a system given by Equation (1) is universally shifted (asymptot-

ically) stable if it is (asymptotically) stable w.r.t. to all its forced
equilibrium points. More concretely:

Definition 1 (Universal shifted stability [6]). The nonlinear sys-
tem given by Equation (1) is universally shifted stable (USS), if
for each 𝜖 > 0 and x∗ ∈ 𝒳 with corresponding w∗ ∈ 𝒲, i.e.
(x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ, there exists a 𝛿(𝜖) > 0 s.t. any x ∈ 𝔅w(w ≡
w∗ ) with ‖x(0) − x∗‖ < 𝛿(𝜖) satisfies ‖x(t ) − x∗‖ < 𝜖 for all
t ∈ ℤ+

0 . The system is universally shifted asymptotically stable (USAS)
if it is USS and, for each (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ, there exists a 𝛿 > 0
such that for w ≡ w∗ we have that ‖x(0) − x∗‖ < 𝛿(𝜖) implies
limt→∞ ‖𝜙x(t , 0, x(0), w) − x∗‖ = 0.

To the authors’ knowledge, a Lyapunov based theorem to
imply US(A)S for DT systems does not yet exist in the literature.
Therefore, we provide the following novel result:

Theorem 1 (Universal shifted Lyapunov stability). The nonlin-

ear system given by Equation (1) is USS, if there exists a function

Vs ∶ ℝ
nx ×𝒲 → ℝ+

0 with Vs(⋅, w∗ ) ∈ 1 and Vs(⋅, w∗ ) ∈ x∗
for every (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ, such that

Vs(x(t + 1), w∗ ) −Vs(x(t ), w∗ ) ≤ 0, (6)

holds for every (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ and for all t ∈ ℤ+
0 and x ∈

𝜋x𝔅w(w ≡ w∗ ). If Equation (6) holds, but with strict inequality except

when x(t ) = x∗, then the system is USAS.

Proof. See Section A.1 □

Similarly to how standard Lyapunov stability gives rise to
invariant sets around stable equilibrium points of a system, we
can also extend the notion of invariance for universal shifted
Lyapunov stability:

Theorem 2 (Universal shifted invariance). For a nonlinear system

given by Equation (1), for which there exists a function Vs ∶ ℝ
nx ×

𝒲 → ℝ+
0 such that it is USS in terms of Theorem 1, any level set:

𝕏w∗,𝛾 = {x ∈ ℝ
nx ∣Vs(x, w∗ ) ≤ 𝛾}, (7)

with 𝛾 ≥ 0 is invariant, meaning that

𝜙x(t , 0, x0, w ≡ w∗ ) ∈ 𝕏w∗,𝛾, (8)

for all t ∈ ℤ+
0 , x0 ∈ 𝕏w∗,𝛾 .

Proof. See Section A.2 □

Note that this notion of universal shifted invariance can be
interpreted as the existence of standard Lyapunov based invari-
ant sets around each (forced) equilibrium point (x∗, w∗ ) of the
system. A visual illustration of universal shifted invariance is
depicted in Figure 1.

Incremental stability is a stronger notion than universal
shifted stability and considers that all trajectories should be
stable w.r.t. each other, meaning that all trajectories converge
towards each other. Therefore, incremental stability also implies
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KOELEWIJN ET AL. 1713

FIGURE 1 The invariant set 𝕏w∗,𝛾 for universal shifted invariance.

universal shifted stability. For incremental stability, various def-
initions exist in the literature, such as in [13, 14]. Here, we will
consider the following slightly more general definition:

Definition 2 (Incremental stability). The nonlinear system given
by Equation (1) is incrementally stable (IS), if for each 𝜖 > 0
there exists a 𝛿(𝜖) > 0 s.t. any x, x̃ ∈ 𝔅w(w) with ‖x(0) −
x̃(0)‖ < 𝛿(𝜖) satisfies ‖x(t ) − x̃(t )‖ < 𝜖 for all t ∈ ℤ+

0 . The
system is incrementally asymptotically stable (IAS) if it is IS and
there exists a 𝛿 > 0 such that ‖x(0) − x̃(0)‖ < 𝛿(𝜖) implies that
limt→∞ ‖𝜙x(t , 0, x(0), w) − 𝜙x(t , 0, x̃(0), w)‖ = 0.

Similar as for US(A)S, a Lyapunov theorem for I(A)S can also
be formulated, which we adopt from [13, 14]:

Theorem 3 Incremental Lyapunov stability [13, 14]:. The non-

linear system given by Equation (1) is IS, if there exists an incremental

Lyapunov function Vi ∶ ℝ
nx ×ℝnx → ℝ+

0 with Vi ∈ 1 and Vi ∈i, such that

Vi (x(t + 1), x̃(t + 1)) −Vi (x(t ), x̃(t )) ≤ 0, (9)

for all t ∈ ℤ+
0 and x, x̃ ∈ 𝜋x𝔅w(w) under all measurable and bounded

w ∈ (ℝnz )ℤ
+
0 . Moreover, the nonlinear system is IAS, if Equation (9)

holds, but with strict inequality except when x(t ) = x̃(t ).

See [13, 14] for the proof. Finally, we can also define a notion
of invariance for incremental stability:

Theorem 4 (Incremental invariance). For a nonlinear system given

by Equation (1), for which there exists an incremental Lyapunov function

Vi ∶ ℝ
nx ×ℝnx → ℝ+

0 such that it is IS, and for any given trajectory

(x̃, w) ∈ 𝜋x,w ∈ 𝔅w(w) for which w is bounded and measurable, a 𝛾 ≥
0 defines a time-varying invariant set:

𝕏x̃,𝛾 (t ) =
{

x ∈ ℝnx ∣Vi (x, x̃(t )) ≤ 𝛾}, (10)

i.e. an invariant tube, such that

𝜙x(t , 0, x0, w) ∈ 𝕏x̃,𝛾 (t ), (11)

for all t ∈ ℤ+
0 and x0 ∈ 𝕏x̃,𝛾 (0).

FIGURE 2 The invariant tube𝕏x̃,𝛾 for incremental invariance.

Proof. See Section A.3 □

In the case of IAS, there exists a 𝛾 ∶ ℤ+
0 → ℝ

+
0 , which

is a monotonically decreasing function such that 𝕏x̃,𝛾 (t ) ={
x ∈ ℝnx ∣Vi (x, x̃(t )) ≤ 𝛾(t )

}
.

A visual illustration of the time-varying invariant set 𝕏x̃,𝛾

for incremental invariance is depicted in Figure 2. As it is vis-
ible in the figure, incremental invariance can be interpreted
the existence of an invariant tube around a given trajectory
x̃ ∈ 𝜋x𝔅w(w). By comparing Figure 2 to Figure 1, the differ-
ence between universal shifted stability and incremental stability
can also be clearly seen. Namely, universal shifted stability is sta-
bility w.r.t. (target) equilibrium points while incremental stability
is stability w.r.t. (target) trajectories. This makes universal shifted
stability useful in analysing stability w.r.t. holding set points,
while incremental stability is a stronger notion that is use-
ful for analysing stability w.r.t. general (time-varying) reference
tracking problems.

2.3 Equilibrium-free dissipativity

The concept of dissipativity [2] allows for simultaneous anal-
ysis of stability and performance of systems. The concept of
“classical” dissipativity can be interpreted as analysing the inter-
nal energy of the system over time. However, this analysis of
internal energy of the system is only concerned with respect
to a single “minimum” point, called the neutral storage, which
is often taken as the origin of the state-space associated with
the nonlinear representation. Nevertheless, it is often of inter-
est to analyse a set of equilibrium points/trajectories, e.g. in
the case of reference tracking or disturbance rejection, which
is cumbersome to be performed with the classical dissipativ-
ity results for nonlinear systems. Hence, there is a need for
equilibrium-free dissipativity notions such as universal shifted
dissipativity and incremental dissipativity, as they allow to han-
dle these cases efficiently without the restriction of a single point
of neutral storage.

The concept of universal shifted dissipativity (USD) [6]
allows for analysing the energy flow between trajectories and
equilibrium points of the system. More concretely, similar to the
CT USD notion in [6, Definition 2], we formulate the following
definition of DT USD:
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1714 KOELEWIJN ET AL.

Definition 3 (Universal shifted dissipativity). The nonlinear sys-
tem given by Equation (1) is universally shifted dissipative w.r.t.
the supply function ss ∶ ℝ

nw ×𝒲 ×ℝnz ×𝒵 → ℝ, if there
exists a storage function s ∶ ℝ

nx ×𝒲 → ℝ+
0 with s(⋅, w∗ ) ∈

0 and s(⋅, w∗ ) ∈ x∗
for every (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ, such that

s(x(t1 + 1), w∗ ) − s(x(t0), w∗ ) ≤
t1∑

t=t0

ss(w(t ), w∗, z (t ), z∗ ),

(12)
for all t0, t1 ∈ ℤ

+
0 with t0 ≤ t1 and (x, w, z ) ∈ 𝔅.

Incremental dissipativity, see [9], is an even stronger notion
of dissipativity which takes into account multiple trajectories of
a system and can be thought of as analysing the energy flow
between trajectories. Similar to the incremental dissipativity def-
inition for CT systems in [9], we formulate the definition of
incremental dissipativity of DT nonlinear systems as follows:

Definition 4 (Incremental dissipativity). The system given by
Equation (1) is called Incrementally Dissipative (ID) w.r.t. the sup-
ply function si ∶ ℝ

nw ×ℝnw ×ℝnz ×ℝnz → ℝ, if there exists a
storage function i ∶ ℝ

nx ×ℝnx → ℝ+
0 with i ∈ 0 and i ∈i, such that, for any two trajectories (x, w, z ), (x̃, w̃, z̃ ) ∈ 𝔅,

i
(
x(t1 + 1), x̃(t1 + 1)

)
− i

(
x(t0), x̃(t0)

)
≤

t1∑
t=t0

si
(
w(t ), w̃(t ), z (t ), z̃ (t )

)
, (13)

for all t0, t1 ∈ ℤ
+
0 with t0 ≤ t1.

For classical dissipativity, supply functions of a quadratic
form are often studied as they allow us to link dissipativity of
a system to (quadratic) performance notions such as the 𝓁2-
gain and passivity. Similarly, for this reason, we will also focus
on quadratic supply functions for USD and ID in this paper.
More concretely, we will consider quadratic supply functions of
the form

ss(w, w∗, z, z∗ ) =
[

w − w∗
z − z∗

]⊤ [
Q S

⋆ R

] [
w − w∗
z − z∗

]
, (14)

where Q ∈ 𝕊nw , R ∈ 𝕊nz , and S ∈ ℝnw×nz . In the incremen-
tal case, we choose si (w, w̃, z, z̃ ) to be defined similarly to
Equation (14), We will refer to USD and ID w.r.t. supply
functions of the form Equation (14) as (Q, S ,R)-USD and
(Q, S ,R)-ID, respectively.

Like in CT, it can easily be shown that (Q, S ,R)-USD or
(Q, S ,R)-ID of a DT nonlinear system given by Equation (1)
with (Q, S ,R) = (𝛾2, 0,−I ) implies that the system has a univer-
sal shifted or incremental 𝓁2-gain bound of 𝛾, respectively (see
[6, Definition 3] and [22]). Similarly, a DT nonlinear system is
universally shifted or incrementally passive if it is (Q, S ,R)-USD
or (Q, S ,R)-ID with (Q, S ,R) = (0, I , 0), respectively.

The definitions of USD and ID give us conditions to anal-
yse universal shifted and incremental stability and performance

properties of DT nonlinear systems. However, using these con-
ditions directly to analyse these notions is difficult, as they
require finding a storage function that satisfies the correspond-
ing conditions w.r.t. all equilibria or w.r.t. any solution pairs of
the system. Therefore, in the next two sections, we will show
how other dissipativity notions can be used to simplify the
analysis of USD and ID of DT nonlinear systems.

3 VELOCITY ANALYSIS

3.1 The DT velocity form and velocity
dissipativity

In this section, we will focus on analysing US(A)S and universal
shifted performance (USP) properties of DT nonlinear systems
using so-called velocity based analysis. In [6], it has been shown
how these properties for CT nonlinear systems could be anal-
ysed through the time-differentiated dynamics, i.e. velocity form
of the system. In DT, the counterpart to time-differentiation is
taking difference of the dynamics in time. Due to the different
nature of the difference and derivative operators, the resulting
velocity form in DT is different from the CT version. This also
results in proofs that are of different nature, than their CT coun-
terparts. As a contribution of this paper, we will show in this
section how the time-difference dynamics in DT can be used to
imply USS and USP of the original DT nonlinear system.

Let us introduce the forward increment signals xΔ(t ) ∶=
x(t + 1) − x(t ) ∈ ℝnx , wΔ(t ) ∶= w(t + 1) − w(t ) ∈ ℝnw , and
zΔ(t ) ∶= z (t + 1) − z (t ) ∈ ℝnz , which sometimes are also
called as DT velocities. Analogously, we can introduce the more
commonly used backward increment signals x∇(t ) ∶= x(t ) −
x(t − 1) ∈ ℝnx , … , z∇(t ) ∶= z (t ) − z (t − 1) ∈ ℝnz .

Based on these variables, the forward time-difference dynam-
ics of Equation (1) can be expressed as

xΔ(t + 1) = f (x(t + 1), w(t + 1)) − f (x(t ), w(t )); (15a)

zΔ(t ) = h(x(t + 1), w(t + 1)) − h(x(t ), w(t )); (15b)

while the backward time-difference dynamics of Equation (1)
are

x∇(t + 1) = f (x(t ), w(t )) − f (x(t − 1), w(t − 1)); (16a)

z∇(t ) = h(x(t ), w(t )) − h(x(t − 1), w(t − 1)). (16b)

Let us define the operator Δ for the behaviour 𝔅 of
Equation (1) such that

Δ𝔅 =
{

(xΔ, wΔ, zΔ ) ∈ (ℝnx ×ℝnw ×ℝnz )ℤ
+
0 ∣

xΔ(t ) = x(t + 1) − x(t ), wΔ(t ) = w(t + 1) − w(t ),

zΔ(t ) ∶= z (t + 1) − z (t ), ∀ t ∈ ℤ+
0 , (x, w, z ) ∈ 𝔅

}
,

(17)
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KOELEWIJN ET AL. 1715

which defines the solution set of the forward dynamics (15).
If q is the forward-time shift operator, meaning that qx(t ) =
x(t + 1), then Δ𝔅 = q∇𝔅, where ∇𝔅 is the solution set of
the backward dynamics (16). As Equation (1) is time-invariant,
this concludes that (15) and (16) are equivalent representations.
For technical convenience, we will formulate our results w.r.t.
the forward dynamics (15), but all derivations can be equiva-
lently formulated for (16) as well. Please also note that both
representations (16) and (15) are causal.

By the (second) fundamental theorem of calculus, we can
equivalently write Equation (15) in an alternative form, which
we will refer to as the DT velocity form:

Definition 5 (Discrete-time velocity form). The velocity form
of a nonlinear system, given by Equation (1) with f , h ∈ 1, is

xΔ(t + 1) = Āv

(
𝜉(t + 1), 𝜉(t )

)
xΔ(t ) + B̄v

(
𝜉(t + 1), 𝜉(t )

)
wΔ(t );

(18a)

zΔ(t ) = C̄v
(
𝜉(t + 1), 𝜉(t )

)
xΔ(t ) + D̄v

(
𝜉(t + 1), 𝜉(t )

)
wΔ(t );

(18b)

where (x, w, z ) ∈ 𝔅, 𝜉 = col(x, w), and

Āv(x+, w+, x, w) = ∫
1

0

𝜕 f

𝜕x
(x̄(𝜆), w̄(𝜆)) d𝜆, (19a)

B̄v(x+, w+, x, w) = ∫
1

0

𝜕 f

𝜕w
(x̄(𝜆), w̄(𝜆)) d𝜆, (19b)

C̄v(x+, w+, x, w) = ∫
1

0

𝜕h

𝜕x
(x̄(𝜆), w̄(𝜆)) d𝜆, (19c)

D̄v(x+, w+, x, w) = ∫
1

0

𝜕h

𝜕w
(x̄(𝜆), w̄(𝜆)) d𝜆, (19d)

with x̄(𝜆) = x + 𝜆(x+ − x ), w̄(𝜆) = w + 𝜆(w+ − w).

Note that by the fundamental theorem of calculus [24], (15)
and (18) are equivalent. To distinguish the velocity form of
Equation (1) from the original nonlinear system, we will call
Equation (1) to be the primal form.

Based on Equation (17), the solution set of Equation (18)
is given by 𝔅v ∶= Δ𝔅, and we can also define 𝔅v,w(w) ∶=
Δ𝔅w(w) for a w ∈ℤ+

0 . The resulting DT velocity form
represents the dynamics of the change between consecutive
time-instances of the original dynamics. This is analogous to
the CT velocity form introduced in [6], which represents the
dynamics of the instantaneous change in time (i.e. time deriva-
tive) of the original dynamics. Next, we will show that the DT
velocity form has a direct relation to USS and USP. Before pre-
senting this connection, we will first show some analysis results
on the DT velocity form.

Definition 6 (Velocity stability). The nonlinear system given
by Equation (1) with velocity form Equation (18) is velocity

(asymptotically) stable (V(A)S), if the velocity form is (asymp-
totically) stable in the Lyapunov sense w.r.t. the origin (see also
Definition 1), i.e. the velocity state xΔ is (asymptotically) stable
w.r.t. 0.

As V(A)S is nothing more than (asymptotic) stability of veloc-
ity form, we can easily formulate the following Lyapunov based
theorem in order to verify it:

Theorem 5 (Velocity Lyapunov stability). The nonlinear system

given by Equation (1) is VS, if there exists a function Vv ∶ ℝ
nx → ℝ+

0
with Vv ∈ 0 and Vv ∈ 0, such that

Vv(xΔ(t + 1)) −Vv(xΔ(t )) ≤ 0, (20)

for all t ∈ ℤ+
0 and xΔ ∈ 𝜋xΔ𝔅v,𝒲 . If Equation (20) holds, but with

strict inequality except when xΔ(t ) = 0, then the system is VAS.

The proof of Theorem 5 simply follows from standard Lya-
punov stability theory, see e.g. [1, 25]. Next, we formulate
a notion of dissipativity regarding the velocity form, which
enables the analysis of stability and performance of nonlinear
systems in the velocity sense:

Definition 7 (Velocity dissipativity). The nonlinear system given
by Equation (1) is velocity dissipative (VD) w.r.t. the supply
function sv ∶ ℝ

nw ×ℝnz → ℝ, if there exists a storage function
v ∶ ℝ

nx → ℝ+
0 with v ∈ 0 and v ∈ 0, such that, for all

t0, t1 ∈ ℤ
+
0 with t0 ≤ t1,

v(xΔ(t1 + 1)) − v(xΔ(t0)) ≤
t1∑

t=t0

sv(wΔ(t ), zΔ(t )), (21)

for all (xΔ, wΔ, zΔ ) ∈ 𝔅v.

Note that VD can be seen as ‘classical’ dissipativity of the
velocity form of the system Equation (18). Next, let us consider
quadratic (Q, S ,R) supply functions for VD of the form

sv(wΔ, zΔ ) =
[

wΔ
zΔ

]⊤ [
Q S

⋆ R

] [
wΔ
zΔ

]
, (22)

where again Q ∈ 𝕊nw , S ∈ ℝnw×nz , and R ∈ 𝕊nz . Moreover, we
also consider the storage function v to be quadratic:

v(xΔ ) = x⊤ΔMxΔ, (23)

where M ∈ 𝕊nx with M ≻ 0. Under these considerations, we
can derive the following (infinite dimensional) linear matrix
inequality (LMI) feasibility condition for VD:

Theorem 6 (DT (Q, S ,R)-VD condition). The system given by

Equation (1) is (Q, S ,R)-VD on the convex set  × ⊆ ℝnx⋅nw ,

where R ⪯ 0, if there exists an M ∈ 𝕊nx with M ≻ 0, such that for all
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1716 KOELEWIJN ET AL.

(x, w) ∈  × , it holds that

(⋆)⊤
[
−M 0
⋆ M

] [
I 0

Av(x, w) Bv(x, w)

]
− (⋆)⊤

[
Q S

⋆ R

] [
0 I

Cv(x, w) Dv(x, w)

]
⪯ 0, (24)

where Av = 𝜕 f

𝜕x
, Bv = 𝜕 f

𝜕w
, Cv = 𝜕h

𝜕x
, Dv = 𝜕h

𝜕w
.

Proof. See Section A.4. □

Remark 1. When we talk about a system being stable or dis-
sipative on (a set)  × , we mean the system is stable or
dissipative under all trajectories of the system for which holds
that (x(t ), w(t )) ∈  × for all t ∈ ℤ+

0 .

Later, in Section 4, we will also show how, for performance in
terms of the 𝓁2-gain and passivity, the results of Theorem 6 can
be turned into LMIs. With the result of Theorem 6, we have a
novel condition to analyse velocity dissipativity of DT nonlinear
systems. This is enabled by the fact that, in the proof, it is shown
that the condition for (Q, S ,R)-VD in DT can be expressed in
terms of the matrix functions Av, … ,Dv instead of the matrix
functions Āv, … , D̄v of the DT velocity form Equation (18).
Expressing the condition for VD in terms of Av, … ,Dv instead
of Āv, … , D̄v simplifies it. Namely, Av, … ,Dv only depend on
two arguments, which results in the condition needing to be
verified at all (x, w) ∈  × . On the other hand, a condition
using Āv, … , D̄v takes four arguments and would need to be
verified at all (x, w) ∈  × and all (x+, w+ ) ∈  × .

Moreover, note that the condition in Theorem 6 corresponds
to a feasibility check of an infinite dimensional set of LMIs, as
for a fixed (x, w) ∈  × , Equation (24) becomes an LMI.
Later, in Section 6, we will see how we can reduce this infi-
nite dimensional set of LMIs to a finite dimensional set, which
can computationally efficiently be verified. This will then give us
efficient tools to analyse (Q, S ,R)-VD of a system.

3.2 Induced universal shifted stability

In the literature, see [6, 26, 27], it has been shown how the
velocity form in CT can be used to formulate a condition to
imply US(A)S of CT systems. Likewise, we will show that also in
DT, we can formulate a condition for US(A)S of a system using
the DT velocity form that we have introduced in Definition 5.
Before doing so, let us first introduce the behaviour 𝔅v,𝒲 ∶=⋃

w∗∈𝒲
𝔅v,w(w ≡ w∗ ), i.e. the behaviour of the velocity form

for which the input is w(t ) = w∗ ∈ 𝒲, hence wΔ(t ) = 0, for all
t ∈ ℤ+

0 .

Theorem 7 (Implied universal shifted stability). The nonlinear sys-

tem given by Equation (1) is USS, if there exists a function Vv ∶ ℝ
nx →

ℝ+
0 with Vv ∈ 0 and Vv ∈ 0, such that Equation (20) holds for all

t ∈ ℤ+
0 and xΔ ∈ 𝜋xΔ𝔅v,𝒲 , i.e. the system is velocity stable. If Equa-

tion (20) holds, but with strict inequality except when xΔ(t ) = 0, meaning

it is velocity asymptotically stable, then the system is USAS.

Proof. See Section A.5. □

The proof for Theorem 7 relies on the construction of the
universally shifted Lyapunov function based on Vv. In CT,
a similar construction is often referred to as the Krasovskii
method [1, 6, 27]. However, the novel result and construction
that we present in Theorem 7 for DT nonlinear systems are, to
the authors’ knowledge, not available in literature. Moreover, to
the authors’ knowledge, this is also the first time that properties
of the time-difference dynamics have been connected to US(A)S
of the system. Note that condition Equation (20) means that
(asymptotic) stability of the velocity form (5) implies US(A)S of
system Equation (1). Which implies that by analysing (asymp-
totic) stability of the velocity form Equation (18), we can infer
US(A)S of the primal form.

Using Theorem 7, we can also connect velocity dissipativity
to US(A)S of the nonlinear system:

Theorem 8 (USS from VD). Assume the nonlinear system given by

Equation (1) is VD under a storage function v ∈ 1 w.r.t. a supply

function sv that satisfies

sv(0, zv) ≤ 0, (25)

for all zv ∈ ℝ
nz , then, the nonlinear system is USS. If the supply function

satisfies Equation (25), but with strict inequality when xΔ ≠ 0, then the

nonlinear system is USAS.

Proof. See Section A.6. □

Corollary 1 (VD-condition induced universal shifted stability).
For the nonlinear system given by Equation (1), let Equation (24) hold on

the convex set  × ⊆ ℝnx⋅nw w.r.t. a supply function sv that satisfies

Equation (25), i.e. the system is VD and V(A)S on  × . Then, for

any input w ≡ w∗ ∈ , the system is US(A)S and invariant on 𝕏w∗,𝛾

given by Equation (7) with Vs(x(t ), w∗ ) = v( f (x(t ), w∗ ) − x(t )),
if 𝛾 ≥ 0 satisfies 𝕏w∗,𝛾 ⊆  .

The proof simply follows from the fact that the system is
US(A)S by Lemma 8, which by Theorem 7 implies the sys-
tem is US(A)S w.r.t. the (universal shifted) Lyapunov function
Vs(x(t ), w∗ ) = v( f (x(t ), w∗ ) − x(t )). By Theorem 2, this then
implies universal shifted invariance for any input w ≡ w∗ ∈ .
Note that Corollary 1 means that verification of Equation (24)
on a convex set  × ⊆ ℝnx⋅nw only implies universal shifted
stability on the maximum invariant set𝕏w∗,𝛾 , constructed based
on the function Vs assembled from v, which is still contained
in  . This is due to the fact that we can only give guarantees for
(x(t ), w(t )) ∈  × for all t ∈ ℤ+

0 , as also stated in Remark 1.
For initial conditions in  ⧵ 𝕏w∗,𝛾 , there is no guarantee that
the state trajectory will not leave  momentarily and take val-
ues where Equation (24) has not been verified. Increasing the
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KOELEWIJN ET AL. 1717

sets  × ⊆ ℝnx⋅nw allows one to conclude US(A)S on larger
regions of the state space.

With these results, we have shown so far that velocity stability
and dissipativity imply universal shifted stability and invariance
of nonlinear systems.

3.3 Induced universal shifted dissipativity

Next, we are interested if (Q, S ,R)-VD also implies (Q, S ,R)-
USD. In [6], this is also investigated for CT nonlinear systems.
However, a full proof for the implication that (Q, S ,R)-VD
implies (Q, S ,R)-USD is not presented and to the authors’
knowledge does not exist in the literature for either CT or
DT. In this section, we will present novel dual DT conditions
that link (Q, S ,R) velocity dissipativity and (Q, S ,R) universal
shifted dissipativity.

Instead of considering nonlinear systems that can be repre-
sented in the form of Equation (1), in this section, for technical
reasons, we will restrict ourselves to nonlinear systems that can
be represented as

x(t + 1) = f (x(t )) + Bw(t ); (26a)

y(t ) = Cx(t ). (26b)

For a system represented by Equation (1), we can transform
Equation (1) to the form Equation (26) at the cost of increasing
the state dimension, e.g. by using appropriate input and out-
put filters (see e.g. [6, Appendix II]). For Equation (26), we will
also assume in this section that x(t ) ∈  , with  being convex
and compact.

For a nonlinear system given by Equation (26), the equilib-
rium points (x∗, w∗, z∗ ) ∈ ℰ satisfy

x∗ = f (x∗ ) + Bw∗; (27a)

y∗ = Cx∗; (27b)

and the velocity form of Equation (26) is given by

xΔ(t ) = Āv(x(t + 1), x(t ))xΔ(t ) + BwΔ(t ); (28a)

zΔ(t ) = CxΔ(t ); (28b)

for which Āv(x+, x ) = ∫ 1

0
𝜕 f

𝜕x
(x + 𝜆(x+ − x )) d𝜆.

We will next connect (Q, S ,R)-VD for (Q, S ,R) tuples with
S = 0, Q ⪰ 0, and R ⪯ 0 to USP notions that can be character-
ized by a similar (Q, S ,R) universal shifted supply function. We
take the following assumptions:

Assumption 2. For the nonlinear system given by Equa-
tion (26), assume that CB = 0.

While Assumption 2 may seem restrictive, it can relatively eas-
ily be satisfied by interconnecting low pass filters to the inputs

and outputs of the system, e.g. see [6, Appendix II]. Further-
more, we take the following commonly used assumption in
literature [28, 29], namely that the (generalized) disturbances are
generated by a stable exosystem:

Assumption 3. For a given (x∗, w∗, z∗ ) ∈ ℰ and 𝛽 ∈ ℝ+
0 ,

assume that w is generated by the exosystem

w(t + 1) = Aw(w(t ) − w∗ ) + w∗, (29)

where Aw ∈ ℝ
nw×nw is Schur and ‖Aw − I‖ ≤ 𝛽. The corre-

sponding signal behaviour is

𝔚(w∗,𝛽) ∶=
{

w ∈ℤ+
0 ∣ w satisfies Equation (29)

}
. (30)

Before presenting our results, we first give the following
technical proposition:

Proposition 1. Given a matrix R ∈ 𝕊nz with R ⪯ 0, then there

exists an 𝛼 ∈ ℝ+, such that for all x∗ ∈ 𝒳 and x ∈ 
(⋆)⊤RC

(
Āv(x, x∗ ) − I

)
(x − x∗ ) ≤ 𝛼−1(⋆)⊤RC (x − x∗ ).

(31)

In case that Āv is bounded, there always exists an 𝛼 for a
given R such that the condition in Proposition 1 holds, as 
is compact.

Under Assumptions 2 and 3, we can show the following
result:

Theorem 9 (USP from VD). If a nonlinear system given by Equa-

tion (26) is (Q, S ,R)-VD with S = 0, Q ⪰ 0, R ⪯ 0, and R satisfies

the condition in Proposition 1, then under Assumptions 2 and 3, for every

(x∗, w∗, z∗ ) ∈ ℰ, it holds that

T∑
t=0

𝛽2(⋆)⊤Q(w(t ) − w∗ ) + 𝛼−1(⋆)⊤R(z (t ) − z∗ ) ≥ 0, (32)

for all T ≥ 0 and (w, z ) ∈ 𝜋w,z𝔅 with w ∈ 𝔚(w∗,𝛽) and1 xΔ(0) =
0.

Proof. See Section A.7. □

Applying the result of Theorem 9 to the (Q, S ,R) tuple
(Q, S ,R) = (𝛾2I , 0,−I ), corresponding to (universal shifted)
𝓁2-gain, we obtain the following corollary:

Corollary 2 (Bounded 𝓁s2-gain from velocity dissipativity). If a

nonlinear system given by Equation (26) is velocity (Q, S ,R) dissipative

for (Q, S ,R) = (𝛾2I , 0,−I ), where R = −I satisfies Proposition 1,

then under Assumptions 2 and 3, the system has an 𝓁s2-gain bound of

�̃� =
√
𝛼𝛽2𝛾2.

1 The results can also be extended to xΔ (0) ≠ 0, which will introduce an additional constant
positive term on the left-hand side of Equation (32).
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1718 KOELEWIJN ET AL.

Note that this result follows from Theorem 9 by mul-
tiplying Equation (32) by 𝛼. The resulting inequality then
corresponds to a (Q, S ,R) US supply function with (Q, S ,R) =
(𝛼𝛽2𝛾2I , 0,−I ), which corresponds to an 𝓁s2-gain of �̃� =√
𝛼𝛽2𝛾2.
Combining these results with the result of Theorem 6 gives

us a condition to analyse universal shifted performance of DT
nonlinear systems in terms of an infinite dimensional set of
LMIs given by Equation (24) on a chosen convex set  × ⊆
ℝnx⋅nw . Through Corollary 1, we can clearly characterize for any
generalized disturbance w(t ) ∈ the region of the state space
 where universal shifted stability and performance are guar-
anteed. As aforementioned, in Section 6, we will discuss how
can we turn the infinite dimensional set of LMIs into a finite
dimensional set in order to cast the analysis problem as convex
optimization problem.

The results that we have presented in this section on the con-
nection between universal shifted stability and performance and
velocity analysis for DT systems can be seen as the dual of the
CT results that have been presented in [6]. While the results in
DT that we have presented in this paper are analogous to the CT
results in [6], the proofs of the underlying results are very much
different due to different nature of the time operators and the
velocity forms in CT and DT.

Next, we will show how a different, but similar, dissipa-
tivity notion can be used to analyse incremental stability and
performance of DT nonlinear systems.

4 DIFFERENTIAL ANALYSIS

4.1 The differential form

For CT systems, it has been show in [9] how dissipativity
of the differential form implies incremental dissipativity. Sim-
ilarly, in [22], preliminary results have also shown this for DT
systems, however, under a restricted form of the storage func-
tion. In this section, we provide a novel generalization of these
results to show how differential dissipativity implies incremental
dissipativity under a state-dependent storage function.

Let us first introduce the following notation: Γ(𝜑, �̃�) denotes
the set of (smooth) paths between points 𝜑, �̃� ∈ ℝn, i.e.

Γ(𝜑, �̃�) ∶= {�̄� ∈ (ℝn )[0, 1] ∣ �̄� ∈ 1, �̄�(0) = �̃�, �̄�(1) = 𝜑}.
(33)

Next, consider two arbitrary trajectories of the system Equa-
tion (1): (x, w, z ), (x̃, w̃, z̃ ) ∈ 𝔅. We parameterize any two
trajectories between these in terms of a path connecting their
initial conditions: x̄0 ∈ Γ(x0, x̃0) and a path connecting their
input trajectories: w̄(t ) ∈ Γ(w(t ), w̃(t )), resulting in the state
transition map x̄(t , 𝜆) = 𝜙x(t , t0, x̄0(𝜆), w̄(𝜆)) ∈ ℝnx . This gives
that for any 𝜆 ∈ [0, 1] and all (x, w, z ), (x̃, w̃, z̃ ) ∈ 𝔅, it holds
that

x̄(t + 1, 𝜆) = f (x̄(t , 𝜆), w̄(t , 𝜆)); (34a)

z̄ (t , 𝜆) = h(x̄(t , 𝜆), w̄(t , 𝜆)); (34b)

where (x̄(𝜆), w̄(𝜆), z̄ (𝜆)) ∈ 𝔅. Note that for 𝜆 = 0, we obtain
(x̄(0), w̄(0), z̄ (0)) = (x̃, w̃, z̃ ) ∈ 𝔅, while for 𝜆 = 1, we get
(x̄(1), w̄(1), z̄ (1)) = (x, w, z ) ∈ 𝔅. Differentiating the parame-
terized dynamics w.r.t. 𝜆, results in the so-called differential
form of Equation (1), given by

x𝛿 (t + 1) = A𝛿 (x̄(t ), w̄(t ))x𝛿 (t ) + B𝛿 (x̄(t ), w̄(t ))w𝛿 (t ); (35a)

z𝛿 (t ) = C𝛿 (x̄(t ), w̄(t ))x𝛿 (t ) + D𝛿 (x̄(t ), w̄(t ))w𝛿 (t ); (35b)

where we omitted dependency on 𝜆 for the sake of read-

ability. In Equation (35), x𝛿 (t , 𝜆) = 𝜕x̄

𝜕𝜆
(t , 𝜆) ∈ ℝnx , w𝛿 (t , 𝜆) =

𝜕w̄

𝜕𝜆
(t , 𝜆) ∈ ℝnw , z𝛿 (t , 𝜆) = 𝜕z̄

𝜕𝜆
(t , 𝜆) ∈ ℝnz , and

A𝛿 =
𝜕 f

𝜕x
, B𝛿 =

𝜕 f

𝜕w
, C𝛿 =

𝜕h

𝜕x
, D𝛿 =

𝜕h

𝜕w
, (36)

where (x̄(𝜆), w̄(𝜆)) ∈ 𝜋x,w𝔅 for all 𝜆 ∈ [0, 1]. The differen-
tial form represents the dynamics of the variations along the
trajectories of the system represented by Equation (1).

The differential form allows us to define differential stability:

Definition 8 (Differential stability). The nonlinear system given
by Equation (1) with differential form Equation (35) is dif-
ferentially (asymptotically) stable (D(A)S), if the differential
form is (asymptotically) stable in the Lyapunov sense w.r.t. the
origin (see also Definition 1), i.e. the differential state x𝛿 is
(asymptotically) stable w.r.t. 0.

Similar to the definition of velocity stability in Definition 6,
differential stability considers standard stability of the differen-
tial form. Results for this have been discussed in [13, 14], which
we will briefly recap:

Theorem 10 Differential Lyapunov stability [13, 14]. The non-

linear system given by Equation (1) is DS, if there exists a function

V𝛿 ∶ ℝ
nx ×ℝnx → ℝ+

0 with Vv ∈ 0 and V𝛿 (x̄, ⋅) ∈ 0, ∀x̄ ∈
ℝnx , such that

V𝛿 (x̄(t + 1), x𝛿 (t + 1)) −V𝛿 (x̄(t ), x𝛿 (t )) ≤ 0, (37)

for all t ∈ ℤ+
0 and for all x̄ ∈ 𝜋x𝔅w(w) under all measurable and

bounded w ∈ (ℝnw )ℤ
+
0 . If Equation (37) holds, but with strict inequality

except when x𝛿 (t ) = 0, then the system is DAS.

See also [13, 14] for the proof. Similarly, using the differen-
tial form, we formulate the definition of differential dissipativity,
which so far has received little attention in literature in the DT
setting:

Definition 9 (Differential dissipativity). Consider the system
given by Equation (1) and its differential form Equation (35).
The system is Differentially Dissipative (DD) w.r.t. a sup-
ply function s𝛿 ∶ ℝ

nw ×ℝnz → ℝ, if there exists a storage
function 𝛿 ∶ ℝnx ×ℝnx → ℝ+

0 with 𝛿 ∈ 0 and 𝛿 (x̄, ⋅) ∈
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KOELEWIJN ET AL. 1719

0, ∀ x̄ ∈ ℝnx , such that

𝛿(x̄(t1 + 1), x𝛿 (t1 + 1)
)
− 𝛿(x̄(t0), x𝛿 (t0)

)
≤

t1∑
t=t0

s𝛿
(
w𝛿 (t ), z𝛿 (t )

)
, (38)

for all (x̄, w̄) ∈ 𝜋x,u𝔅 and for all t0, t1 ∈ ℤ
+
0 , with t0 ≤ t1.

As in Section 3, we consider quadratic supply functions of the
form

s𝛿 (w𝛿, z𝛿 ) =
[

w𝛿
z𝛿

]⊤ [
Q S

⋆ R

] [
w𝛿
z𝛿

]
. (39)

Differential dissipativity w.r.t. supply functions of this form will
be referred to as (Q, S ,R)-DD.

Note that checking (Q, S ,R)-DD of the (primal form of the)
system Equation (1) can be seen as checking “classical (Q, S ,R)
dissipativity” of the differential form of the system.

For CT systems in [9], it has been show how (Q, S ,R)-
DD can be analysed through feasibility check of a(n) (infinite
dimensional) set of LMIs. In DT, this has also been shown
in [22]. However, the work in [22] only considers a quadratic
(differential) storage function with a constant matrix. As a
contribution of this paper, we will show that how to formu-
late a similar result using a quadratic storage function with a
state-dependent matrix, and importantly how this condition will
imply incremental dissipativity of the nonlinear system. Due to
the state-dependent nature of the (differential) storage function,
showing this implication is more involved. As mentioned, to
obtain the results, we consider storage functions of a quadratic
form:

𝛿 (x̄, x𝛿 ) = x⊤
𝛿

M (x̄ )x𝛿, (40)

with M satisfying the following condition:

Condition 1. The matrix function M ∶ ℝnx → 𝕊nx with
M ∈ 1 is real, symmetric, bounded and positive definite, i.e.
∃𝛼1, 𝛼2 ∈ ℝ

+, such that for all x̄ ∈ ℝnx , 𝛼1I ⪯ M (x̄ ) ⪯ 𝛼2I .

Moreover, for the system Equation (1), let us also consider
the set , which is the smallest convex set such that (x(t + 1) −
x(t )) ∈  for all t ∈ ℤ+

0 corresponding to a given set × ⊆
ℝnx⋅nw . This allows us to obtain the following result to analyse
differential dissipativity in DT:

Theorem 11 ((Q, S ,R)-DD condition). A nonlinear system given

by Equation (1) is (Q, S ,R)-DD on  × ⊆ ℝnx⋅nw , if there exists

a storage function Equation (40) with M satisfying Condition 1, such that

(⋆)⊤
[
−M (x̄ ) 0

0 M (x̄ + x̄v)

] [
I 0

A𝛿 (x̄, w̄) B𝛿 (x̄, w̄)

]
− (⋆)⊤

[
Q S

⋆ R

] [
0 I

C𝛿 (x̄, w̄) D𝛿 (x̄, w̄)

]
⪯ 0, (41)

for all (x̄, w̄) ∈  × and x̄v ∈ .

Proof. See Section A.8. □

Note that Equation (41) is similar to the check for (Q, S ,R)-
VD in Equation (24) in Theorem 6. We will discuss the
connections and similarities between differential and velocity
dissipativity in more detail in Section 5.

Later, in Section 6, we will discuss how we can formu-
late computable tests for checking feasibility of this infinite
dimensional set of LMIs.

4.2 Induced incremental stability

Before showing how (Q, S ,R) differential dissipativity implies
(Q, S ,R) incremental dissipativity, we will first briefly discuss
how it connects to I(A)S.

In literature, the connections between differential dynamics
and incremental stability have extensively been discussed, also
for DT nonlinear systems [13, 14]. For completeness, we will
briefly recap these results:

Lemma 1 (Implied incremental stability). The nonlinear system

given by Equation (1) is incrementally stable, if there exists a quadratic

storage Lyapunov function V𝛿 of the form Equation (40) with M satisfying

Condition 1, such that

V𝛿 (x̄(t + 1), x𝛿 (t + 1)) −V𝛿 (x̄(t ), x𝛿 (t )) ≤ 0 (42)

for all x̄ ∈ 𝜋x𝔅w(w) under all measurable and bounded w ∈ (ℝnw )ℤ
+
0 .

If Equation (42) holds, but with strict inequality except when x(t ) =
x̃(t ), corresponding to x𝛿 (t ) = 0, then the system is incrementally

asymptotically stable.

Similar to the implication of US(A)S from velocity dissi-
pativity, see Lemma 8, we also have that I(A)S is implied
form differential dissipativity under restrictions of the supply
function, see also [9, Remark 11] for these results in CT.

Theorem 12 (IS from DD). Assume the nonlinear system given by

Equation (1) is DD under a storage function 𝛿 of the form Equa-

tion (40) with M satisfying Condition 1 w.r.t. a supply function s𝛿 that

satisfies

s𝛿 (0, z𝛿 ) ≤ 0, (43)

for all z𝛿 ∈ ℝ
nz , then, the nonlinear system is IS. If the supply function

satisfies Equation (43), but with strict inequality when x(t ) ≠ x̃(t ), then

the nonlinear system is IAS.

Proof. See Section A.9. □

Furthermore, we can also connect this result directly to the
DD condition:

Corollary 3 (Induced incremental stability and invariance). For

the nonlinear system given by Equation (1), let Equation (41) holds on

the convex set  × ⊆ ℝnx⋅nw w.r.t. a supply function s𝛿 that satis-

fies Equation (43), i.e. the system is DD and D(A)S on  × . Then,
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1720 KOELEWIJN ET AL.

for any input w ∈ ( )ℤ
+
0 , there exists a 𝛾 ≥ 0, such that the system

is I(A)S and invariant in the tube 𝕏x,𝛾 (t ) ⊆  , ∀t ∈ ℤ+
0 given by

Equation (10) around the trajectory (x, w) with x ∈ 𝜋x𝔅w(w) and

x(t ) ∈  , ∀t ∈ ℤ+
0 .

The proof simply follows from the fact that the system
is I(A)S by Lemma 12, which by Lemma 1 implies I(A)S
under the (incremental) Lyapunov function Vi (x, x̃ ) = i (x, x̃ )
with i given by2 Equation (A.35). By Theorem 4, this then

implies incremental invariance for any w ∈ ( )ℤ
+
0 around x ∈

𝜋x𝔅w(w) with x(t ) ∈  . The implications are very similar to
the velocity case, meaning that verifying Equation (41) on a
bounded set  × ⊆ ℝnx⋅nw only allows one to conclude
I(A)S w.r.t an appropriate set of initial conditions 𝕏x,𝛾 (0) in  ,
ensuring invariance (convergence) of all solutions along the sig-
nal (x, w). Increasing the sets  × ⊆ ℝnx⋅nw , allows one to
conclude I(A)S on larger regions of the state space.

4.3 Induced incremental dissipativity

Next, we will present how we can use (Q, S ,R) differential dis-
sipativity in order to analyse (Q, S ,R) incremental dissipativity
of DT nonlinear systems under mild restrictions of the supply
function.

Theorem 13 (Induced incremental dissipativity). If the nonlin-

ear system given by Equation (1) is (Q, S ,R)-DD with R ⪯ 0 under

a storage function 𝛿 of the form Equation (40), then the system is

(Q, S ,R)-ID for the same tuple (Q, S ,R).

Proof. See Section A.10. □

We can then combine the results of Theorems 11 and 13 and
Corollary 3 to arrive at the following corollary:

Corollary 4 (Incremental dissipativity condition). If for a given

(Q, S ,R) with R ⪯ 0 Equation (41) holds for all (x̄, w̄ ) ∈  ×
and xv ∈  with M satisfying Condition 1, then the nonlinear system

given by Equation (1) is (Q, S ,R)-ID on  × ⊆ ℝnx⋅nw in the

following sense. For any inputs w, w̃ ∈ ( )ℤ
+
0 and the corresponding

invariant tubes 𝕏x,𝛾 (t ), 𝕏x̃,𝛾 (t ) in terms of Corollary 3, all trajectories

(x, w, z ), (x̃, w̃, z̃ ) ∈ 𝔅 with x(0) ∈ 𝕏x,𝛾 (0) and x̃(0) ∈ 𝕏x̃,𝛾 (0)
satisfy Equation (13) with the (Q, S ,R) quadratic supply function.

With these results, we have a powerful tool, through the
matrix inequality condition in Theorem 11, to check (Q, S ,R)-
ID of DT systems. In [22], specifically Theorems 10 and 12, it
has been shown how in DT, an infinite dimensional set of LMIs
can be formulated in order to analyse the incremental 𝓁2-gain
and incremental passivity of a nonlinear system for a quadratic
storage function of the form Equation (40) where M is con-
stant. Using the results of Theorems 13 and Corollary 4, we can

2 This will be derived in the proof of Theorem 13.

now also extend those results to the case with a state-dependent
matrix M :

Corollary 5 (Incremental 𝓁2-gain analysis). A nonlinear system

given by Equation (1) has a finite incremental 𝓁2-gain of 𝛾 on  × ⊆
ℝnx⋅nw , if there exists a matrix function M satisfying Condition 1 such

that for all (x̄, w̄) ∈  × and x̄v ∈ 
⎡⎢⎢⎢⎣
M (x̄ + x̄v) A𝛿 (x̄, w̄)M (x̄ ) B𝛿 (x̄, w̄) 0
⋆ M (x̄ ) 0 M (x̄ )C𝛿 (x̄, w̄)⊤

⋆ ⋆ 𝛾I D𝛿 (x̄, w̄)⊤

⋆ ⋆ ⋆ 𝛾I

⎤⎥⎥⎥⎦ ⪰ 0.

(44)

Corollary 6 (DT incremental passivity analysis). A nonlinear sys-

tem given by Equation (1) is incrementally passive on  × ⊆ ℝnx⋅nw ,

if there exists a matrix function M satisfying Condition 1, such that for all

(x̄, w̄) ∈  × and x̄v ∈ 
⎡⎢⎢⎣
M (x̄ + x̄v) A𝛿 (x̄, w̄ )M (x̄ ) B𝛿 (x̄, w̄)
⋆ M (x̄ ) M (x̄ )C𝛿 (x̄, w̄)⊤

⋆ ⋆ D𝛿 (x̄, w̄) + (⋆)

⎤⎥⎥⎦ ⪰ 0. (45)

The results of Theorems 5 and 6 give us conditions for
a bounded incremental 𝓁2-gain and incremental passivity of
nonlinear systems represented by Equation (1). These con-
ditions are both given in terms of feasibility checks of an
infinite dimensional set of LMIs. As mentioned, in Section 6,
we will discuss how we can formulate computable tests to check
these conditions.

5 THE RELATION BETWEEN
VELOCITY AND DIFFERENTIAL
DISSIPATIVITY

In Section 3, we have shown how (dissipativity) properties of the
velocity form Equation (18) imply universal shifted properties
of the primal form Equation (1) of the nonlinear system. Sim-
ilarly, in Section 4, we have shown how dissipativity properties
of the differential form Equation (35) imply incremental proper-
ties of the primal form. In both these cases, we use an alternative
form of the system, the velocity and differential form, to imply
equilibrium-free properties of the corresponding primal form
of the nonlinear system.

Based on their definitions, it is clear that incremental prop-
erties imply universal shifted properties of the system, as
incremental properties are properties between all the trajec-
tories, while universal shifted properties are only between
trajectories and equilibrium points. Similarly, we also have that
(Q, S ,R)-DD implies (Q, S ,R)-VD. Namely, when we compare
Equation (41) in Theorem 11 to Equation (24) in Theorem 6, it
is evident that these conditions become equivalent in case M in
Equation (41) is a constant matrix. This means that with condi-
tion Equation (24) for (Q, S ,R)-VD in Theorem 6, we actually
imply the stronger notion of (Q, S ,R)-DD. This is because in
Theorem 6, we do not explicitly exploit the fact that xΔ, wΔ,
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KOELEWIJN ET AL. 1721

and zΔ represent actual time differences in the state, input, and
output, respectively. This leads to conservativeness of the actual
result, making it in this case equivalent to checking (Q, S ,R)-
DD of the system. Quantifying how conservative these results
are is however difficult, as this will also highly depend on the
dynamical system that is considered in the analysis. For exam-
ple, for LTI systems, there is no conservativeness whatsoever,
as incremental dissipativity is equivalent to universal shifted
dissipativity as well as to “classical” dissipativity.

This does not mean that (Q, S ,R)-VD in this form does not
have any use. Namely, similarly in the CT case in [6], it has been
shown how properties of velocity form can still be exploited for
controller synthesis in order to achieve closed-loop US stability
and performance. Therefore, the velocity based analysis results
presented in this paper can serve as a similar stepping stone
for developing controller synthesis algorithms for DT nonlinear
systems with such stability and performance guarantees.

6 CONVEX EQUILIBRIUM-FREE
ANALYSIS

In the previous sections, we have shown how the DT velocity
and differential forms can be used to imply universal shifted
and incremental stability and performance properties of the
nonlinear system, respectively. In these sections, we have also
discussed how through the (infinite dimensional set of) LMIs in
Equations (24) and (41), (Q, S ,R)-VD and (Q, S ,R)-DD can be
analysed. In the analysis of LPV systems, similar problems are
encountered due to the variation of the scheduling-variable for
which various tools have been developed to make these prob-
lems computationally tractable. Hence, as for the CT case in [6,
9, 22], we can use the analysis results of the LPV framework to
turn the proposed checks for universal shifted and incremental
stability and performance analysis to convex finite dimen-
sional optimization problems which can be efficiently solved
as SDPs.

As discussed in Section 5, for a constant matrix M , the matrix
inequalities in Equations (24) and (41) are equivalent. There-
fore, we will only discuss the (Q, S ,R)-DD case Equation (41),
as the (Q, S ,R)-VD case trivially follows from it. Furthermore,
we discussed in Section 4 that the (Q, S ,R)-DD condition can
be interpreted as analysing classical (Q, S ,R) dissipativity of the
differential form Equation (35). Therefore, to cast the (Q, S ,R)-
DD analysis problem to an LPV analysis problem, we embed
the differential form of the nonlinear system in an LPV repre-
sentation, which we call a differential parameter-varying (DPV)
embedding of the nonlinear system Equation (1):

Definition 10 (DPV embedding). Given a nonlinear system
in the form of Equation (1) with differential form given by
Equation (35). Then, the LPV representation given by

x𝛿 (t + 1) = A(p(t ))x𝛿 (t ) + B(p(t ))w𝛿 (t ), (46a)

z𝛿 (t ) = C (p(t ))x𝛿 (t ) + D(p(t ))w𝛿 (t ), (46b)

where p(t ) ∈  ⊂ ℝnp is the scheduling-variable, is a DPV
embedding of Equation (1) on the compact convex region
X × W ⊆ ℝnx ×ℝnw , if there exists a function 𝜂 ∶ X ×
W→  , called the scheduling-map, such that under a given
choice of function class for A, … , D, e.g. affine, polynomial
etc., A(𝜂(x̄, w̄)) = A𝛿 (x̄, w̄), … , D(𝜂(x̄, w̄)) = D𝛿 (x̄, w̄) for all
(x̄, w̄) ∈ X × W and 𝜂(X,W) ⊆  .

Let us denote by v(t ) = p(t + 1) − p(t ) ∈ Π. We assume
that the set Π is considered such that it includes (x(t + 1) −
x(t )) ∈ . Through the DPV embedding, we can then cast
the (Q, S ,R)-DD (and (Q, S ,R)-VD) check as an LPV analysis
problem:

Theorem 14 (LPV based (Q, S ,R)-DD condition). A nonlinear

system given by Equation (1) with a corresponding DPV embedding given

by Equation (46) on X × W ⊆ ℝnx ×ℝnw is (Q, S ,R)-DD on X ×
W, if there exists a matrix function M ∶  → 𝕊nx satisfying Condition

1, such that

(⋆)⊤
[
−M (p) 0

0 M (p + v)

] [
I 0

A(p) B(p)

]
− (⋆)⊤

[
Q S

⋆ R

] [
0 I

C (p) D(p)

]
⪯ 0, (47)

for all p ∈  and v ∈ Π.

Proof. See Section A.11. □

Note that the proposed analysis condition Equation (47) can
be seen as a classical (Q, S ,R) dissipativity analysis condition of
an LPV representation. Therefore, all the techniques from the
LPV framework can be used to reduce the infinite dimensional
set of LMIs to a finite set. The most common techniques for
this are polytopic techniques [30, 31], grid-based techniques [32,
33], and multiplier-based techniques [34, 35], see also [36] for
an overview. For the polytopic and multiplier-based techniques,
A, … , D are needed to be restricted to an affine or rational
function in the embedding Equation (46), respectively. With the
results of Theorem 14, combined with Theorem 13, we have
a convex analysis condition in order to analyse (Q, S ,R)-ID of
DT nonlinear systems. Similarly, connecting to Theorem 6, we
then also have convex analysis tools for universal shifted stabil-
ity, through Theorem 7, and performance, through Theorem 9.
Note that in these cases, it is important that we also induce an
invariant set in X × W through the result of Corollaries 1 and 3.
As this invariant set describes the region where the implied sta-
bility and performance conditions hold, we can also maximize
its volume. For example, for a constant matrix M , the invariant
set will correspond to an ellipsoidal region. There exist various
result on casting the maximization of the volume of an ellipsoid
as a convex problem, e.g. see [37]. However, this is outside the
scope of this paper.

Also note that although the same tools from the LPV frame-
work can be used for checking (Q, S ,R)-DD, (Q, S ,R)-VD
and classical (Q, S ,R) dissipativity of nonlinear systems, we
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1722 KOELEWIJN ET AL.

FIGURE 3 Overview of the results and their connections.

would like to emphasize that the underlying dissipativity and
stability concepts and the matrix functions on which these
sets are applied are very different. Namely, the (Q, S ,R)-DD
and (Q, S ,R)-VD concepts connect to the equilibrium-free
concepts of incremental and universal shifted stability and
performance. This means that these analysis results are not
dependent on a particular trajectory or equilibrium point,
respectively. On the other hand, the standard LPV analysis
results applied on a direct LPV embedding of a nonlinear system
use classical dissipativity and can only provide performance and
stability analysis with respect to single equilibrium point, often
the origin of the state-space representation of the nonlinear
system, which make them equilibrium-dependent.

An overview of all the results and their connections presented
in this paper is given in Figure 3.

7 EXAMPLE

In this section, we apply the results of the previous sections in
order to analyse equilibrium-free stability and performance of a
discrete-time nonlinear system.

We consider the following CT state-space representation of
an actuated Duffing oscillator:[

ẋ1
ẋ2

]
=
[

x2

−8x1 − 10x3
1 − 4x2 + w

]
; (48a)

z = x1, (48b)

where x1 represents the position of the spring, x2 its veloc-
ity, and w is an input force. We discretize this model using
a fourth order Runge–Kutta (RK4) method with a sampling
time of 0.01 s, where we assume the input w to be con-
stant in between samples. The resulting model is of the form
Equation (1) and is not given due to its complexity. For our anal-
ysis, we consider the operating region x1(t ) ∈ [−1 1], x2(t ) ∈
[−1 1], w(t ) ∈ [−1 1] for all t ∈ ℤ+

0 , i.e. we perform dissipa-
tivity analysis on the set  × with  = [−1 1] × [−1 1] and
 = [−1 1]. Based on these sets, we compute the correspond-
ing set , which is given by:  = [−0.011 0.011] × [−0.23 0.23]
such that x(t + 1) − x(t ) ∈ . Consequently, we construct
a DPV embedding of the nonlinear model on X × W =
[−1 1] × [−1 1] × [−1 1]. If we do a direct DPV embedding,
we obtain as scheduling-map 𝜂(x, w) = col(x1, x2, w), therefore
p(t ) = col(x1(t ), x2(t ), w(t )) ∈  where  = [−1 1] × [−1 1] ×
[−1 1]. Moreover, we consider Π =  ×ℝ, such that v(t ) =
p(t + 1) − p(t ) ∈ Π.

Under these considerations, we minimize 𝛾 in Theorem 14
with (Q, S ,R) = (𝛾2, 0,−I ), corresponding to an incremental
and universal shifted 𝓁2-gain bound of 𝛾. We use a grid-based
LPV approach and consider our quadratic storage matrix M to
be of the form:3

M (p) = M0 + M1 p2
1 (49)

where Mi ∈ ℝ
2×2 for i = 1, … , 2. Our problem then corre-

sponds to grid-based 𝓁2-gain analysis of an LPV representation,
which has been implemented in the LPVcore Toolbox [38].
Using the LPVcore Toolbox, the resulting 𝛾 that we obtain is
0.13, which is then our upperbound for the incremental and
universal shifted 𝓁2-gain bound of the discretized version of
Equation (48) on the region [−1 1] × [−1 1] × [−1 1].

Computing 𝛾 for a constant quadratic storage matrix M

only results in a upperbound for the incremental and univer-
sal shifted 𝓁2-gain of 0.42. Therefore, this shows that for this
example, the approach using a constant matrix M in the storage
function presented in [22] is much more conservative than the
approach using a state-dependent storage function presented in
this paper for analysing the incremental and universal shifted
𝓁2-gain of DT systems.

We also simulate the system for two different inputs to
additionally verify the equilibrium-free properties:

w(t ) = 0.7e−t sin(2t ) + 0.3 sin(0.2t ), (50)

w̃(t ) = 0.3e−t cos(t ) + 0.3 sin(0.2t ), (51)

and initial conditions x0 = col(−0.08, 0.22) and x̃0 =
col(−0.50,−0.20), respectively. Note that these two input
trajectories converge as t →∞. Therefore, as the system
is incrementally stable, the state and output trajecto-
ries will also converge, as is visible in Figure 4. The
cumulative incremental supply plus the initial storage

3 Note that M only depends on the scheduling-variable p1 which corresponds to the state
x1, consistent with Equation (41).
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FIGURE 4 State trajectories for input w with initial condition x0 (—) and
for input w̃ with initial condition x̃0 (—).

FIGURE 5 The cumulative incremental supply plus the initial storage∑t

𝜏=0 si (w(𝜏), w̃(𝜏), z (𝜏), z̃ (𝜏)) + i (x(0), x̃(0)) (—) and the incremental
storage i (x(t + 1), x̃(t + 1)) (—) for the trajectories generated by the inputs w

and w̃.

∑t

𝜏=0 si
(
w(𝜏), w̃(𝜏), z (𝜏), z̃ (𝜏)

)
+ i

(
x(0), x̃(0)

)
and the

incremental storage i
(
x(t + 1), x̃(t + 1)

)
are also plotted in

Figure 5. The incremental storage i is obtained by solving
Equation (A.34) and using it in Equation (A.35). To simplify
this computation, the integrals are approximated by summa-
tions and the smooth path 𝜒(x,x̃ ) is approximated as a piecewise
linear function. We then solve problem Equation (A.34) using
fmincon in MATLAB. From Figure 5, it can be seen that the
incremental storage is always smaller than or equal to the cumu-
lative incremental supply plus the initial storage. Therefore,
this also verifies that the system satisfies the ID inequality, see
Equation (13), for these trajectories.

8 CONCLUSIONS

In this paper, we have developed convex conditions for
equilibrium-free analysis of discrete-time nonlinear systems. We
have shown how time-difference dynamics can be used in
order to analyse universal shifted stability and performance of
discrete-time nonlinear systems. Similarly, we have shown how
dissipativity of the differential form can be used in order to
analyse incremental dissipativity using a state-dependent stor-
age function. Finally, we have shown how both these analysis
results can be cast as an analysis problem of an LPV represen-
tation. These results give us convex tools for equilibrium-free
stability and performance analysis of discrete-time nonlinear
systems. For future research, we aim to use these results in
order to develop equilibrium-free controller synthesis methods
for discrete-time nonlinear systems.
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APPENDIX A: PROOFS

A.1 Proof of Theorem 1

Consider the function V ∶ x ↦Vs(x, w∗ ), which for every
(x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ satisfies the conditions for a Lyapunov
function for the equilibrium point x∗. Namely, given a
(x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ, we have that V = (x ↦Vs(x, w∗ )) ∈ x∗

.
Therefore, for a given (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ, by Equation (6), it
holds that

V (x(t + 1)) −V (x(t )) ≤ 0, (A.1)

for all t ∈ ℤ+
0 and x ∈ 𝜋x𝔅w(w ≡ w∗ ). Due to the properties of

Vs and construction of V , Equation (A.1) then also holds for
each (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ. Consequently, each equilibrium point
(x∗, w∗, z∗ ) ∈ ℰ is stable, under w ≡ w∗, for the whole state-
space by the Lyapunov theory, see e.g. [1, 25]. Therefore, by
Definition 1, it is USS. In a similar manner, if Equation (6) holds,
but with a strict inequality except when x(t ) = x∗, this implies
that Equation (A.1) holds. This then implies asymptotic stability
of each equilibrium point, meaning that the system is USAS.

A.2 Proof of Theorem 2

Given w∗ ∈ 𝒲 and a 𝛾 > 0, define the set Equation (7). We
have that Equation (6) holds for every (x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ and
for all t ∈ ℤ+

0 and x ∈ 𝜋x𝔅w(w ≡ w∗ ). Therefore, for x(0) ∈
𝕏w∗,𝛾 , it holds that

Vs(x(t ), w∗ ) ≤⋯ ≤ Vs(x(1), w∗ ) ≤ Vs(x(0), w∗ ) ≤ 𝛾, (A.2)

for t ≥ 1. Consequently, for the nonlinear system given by
Equation (1) with initial condition x(0) = x0 and input w ≡ w∗,
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we have by Equation (A.2) that x(t ) = 𝜙x(t , 0, x0, w ≡ w∗ ) ∈
𝕏w∗,𝛾 for all t ∈ ℤ+

0 .

A.3 Proof of Theorem 4

The proof follows similarly as the proof for Theorem 2. Given a
trajectory (x̃, w) ∈ 𝜋x,w ∈ 𝔅w(w) and a 𝛾 > 0 define the time-
varying set Equation (10). We have that Equation (9) holds
for all t ∈ ℤ+

0 and x, x̃ ∈ 𝜋x𝔅w(w) under all measurable and

bounded w ∈ (ℝnz )ℤ
+
0 . Therefore, for x(0) ∈ 𝕏x̃,𝛾 (0), it holds

that

Vi (x(t ), x̃(t )) ≤⋯ ≤ Vi (x(1), x̃(1)) ≤ Vi (x(0), x̃(0)) ≤ 𝛾,
(A.3)

for t ≥ 1. Consequently, for the nonlinear system given by
Equation (1) with initial condition x(0) = x0 and input w, we
have by Equation (A.3) that x(t ) = 𝜙x(t , 0, x0, w) ∈ 𝕏x̃,𝛾 (t ) for
all t ∈ ℤ+

0 .

A.4 Proof of Theorem 6

If Equation (24) holds for all (x, w) ∈  × , we have by pre-
and post multiplication of Equation (24) with col(xΔ, wΔ )⊤ and
col(xΔ, wΔ ), respectively, that

(⋆)⊤M (Av(x, w)xΔ + Bv(x, w)wΔ ) − x⊤ΔMxΔ

− w⊤ΔQwΔ − 2w⊤Δ S
(
Cv(x, w)xΔ + Dv(x, w)wΔ

)
− (⋆)⊤R

(
Cv(x, w)xΔ + Dv(x, w)wΔ

) ≤ 0, (A.4)

for all xΔ ∈ ℝ
nx , wΔ ∈ ℝ

nw , and (x, w) ∈  × . As  and
 are assumed to be convex, we can represent any x̄ ∈
 and w̄ ∈ by a 𝜆 ∈ [0, 1], x+, x ∈  , and w+, w ∈ ,
such that x̄(𝜆) = x + 𝜆(x+ − x ) and w̄(𝜆) = w + 𝜆(w+ − w).
Consequently, if Equation (A.4) holds, it also holds that

(⋆)⊤M (Av(x̄(𝜆), w̄(𝜆))xΔ + Bv(x̄(𝜆), w̄(𝜆))wΔ )

− x⊤ΔMxΔ − w⊤ΔQwΔ

− 2w⊤Δ S
(
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ

)
− (⋆)⊤R

(
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ

) ≤ 0,

(A.5)

for any 𝜆 ∈ [0, 1], x+, x ∈  , w+, w ∈ , xΔ ∈ ℝ
nx and wΔ ∈

ℝnw . Hence, we also have by integration over 𝜆 that

∫
1

0
(⋆)⊤M (Av(x̄(𝜆), w̄(𝜆))xΔ + Bv(x̄(𝜆), w̄(𝜆))wΔ )

− x⊤ΔMxΔ − w⊤ΔQwΔ

− 2w⊤Δ S
(
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ

)
− (⋆)⊤R

(
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ

)
d𝜆 ≤ 0,

(A.6)

for any x+, x ∈  , w+, w ∈ , xΔ ∈ ℝ
nx and wΔ ∈ ℝ

nw . By
[22, Lemma 16], as M ≻ 0, we have that

(⋆)⊤M

(
∫

1

0
Av(x̄(𝜆), w̄(𝜆))xΔ + Bv(x̄(𝜆), w̄(𝜆))wΔ d𝜆

)

≤ ∫
1

0
(⋆)⊤M (Av(x̄(𝜆), w̄(𝜆))xΔ + Bv(x̄(𝜆), w̄(𝜆))wΔ ) d𝜆,

(A.7)

and similarly, as R ⪯ 0, we have that

(⋆)⊤(-R)

(
∫

1

0
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ d𝜆

)

≤ ∫
1

0
(⋆)⊤(-R)

(
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ

)
d𝜆.

(A.8)

Note that Av = 𝜕 f

𝜕x
, Bv = 𝜕 f

𝜕w
, Cv = 𝜕h

𝜕x
, Dv = 𝜕h

𝜕w
. Hence, using

the definition of Āv, … , D̄v in Equation (19), we have

∫
1

0
Av(x̄(𝜆), w̄(𝜆))xΔ + Bv(x̄(𝜆), w̄(𝜆))wΔ d𝜆

= Āv(x+, x, w+, w)xΔ + B̄v(x+, x, w+, w)wΔ, (A.9)

∫
1

0
Cv(x̄(𝜆), w̄(𝜆))xΔ + Dv(x̄(𝜆), w̄(𝜆))wΔ d𝜆

= C̄v(x+, x, w+, w)xΔ + D̄v(x+, x, w+, w)wΔ. (A.10)

Combining Equations (A.7)–(A.10) with Equation (A.6), we
obtain that

(⋆)⊤M
(
Āv(x+, x, w+, w)xΔ + B̄v(x+, x, w+, w)wΔ

)
− x⊤ΔMxΔ − w⊤ΔQwΔ

− 2w⊤Δ S
(
C̄v(x+, x, w+, w)xΔ + D̄v(x+, x, w+, w)wΔ

)
− (⋆)⊤R

(
C̄v(x+, x, w+, w)xΔ + D̄v(x+, x, w+, w)wΔ

) ≤ 0,

(A.11)

for any x+, x ∈  , w+, w ∈ , xΔ ∈ ℝ
nx , and wΔ ∈ ℝ

nw . Sub-
stituting x+ = x(t + 1), x = x(t ), xΔ = x(t + 1) − x(t ), w =
w(t ), wΔ = w(t + 1) − w(t ) in Equation (A.11) and summing
over time from t0 to t1 where t0 ≤ t1, we obtain Equa-
tion (21) where v is given by Equation (23) and sv is given by
Equation (22).

A.5 Proof of Theorem 7

For each equilibrium point (x∗, w∗, z∗ ) ∈ ℰ, consider

Vs(x(t ), w∗ ) ∶= Vv( f (x(t ), w∗ ) − x(t )) = Vv(xΔ(t )). (A.12)
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For each (x∗, w∗, z∗ ) ∈ ℰ, this choice implies that s(⋅, w∗ ) ∈
x∗

, as v ∈ 0. Note that this requires uniqueness of the
equilibrium points (see Assumption 1), as otherwise there exists
multiple x∗ for which Vs(x∗, w∗ ) = 0. By this choice of Vs, we
have that for each (x∗, w∗, z∗ ) ∈ ℰ,

Vs(x(t + 1), w∗ ) −Vs(x(t ), w∗ )

= Vv(xΔ(t + 1)) −Vv(xΔ(t )) ≤ 0, (A.13)

for all t ∈ ℤ+
0 and xΔ ∈ 𝜋xΔ𝔅v,w(w ≡ w∗ ) and correspond-

ingly for all x ∈ 𝜋x𝔅w(w ≡ w∗ ). This implies that Equation (6)
holds for all x ∈ 𝜋x𝔅w(w ≡ w∗ ) and for all equilibrium points
(x∗, w∗ ) ∈ 𝜋x∗,w∗ℰ. Hence, by Theorem 1, Equation (1) is
USS. USAS follows similarly by changing Equation (A.13) to
a strict inequality.

A.6 Proof of Theorem 8

Let the system given by Equation (1) be velocity dissipative w.r.t.
a supply function sv. For this supply function, Equation (25)
holds for all zv ∈ ℝ

nz . Therefore, it holds that

v(xΔ(t1 + 1)) − v(xΔ(t0)) ≤
t1∑

t=t0

sv(wΔ(t ), zΔ(t )) ≤ 0

(A.14)
for all t0, t1 ∈ ℤ

+
0 with t0 ≤ t1 and (xΔ, wΔ, zΔ ) ∈ 𝔅v. This gives

that

v(xΔ(t + 1)) − v(xΔ(t )) ≤ 0, (A.15)

for all t ∈ ℤ+
0 and xΔ ∈ 𝜋xΔ𝔅v,𝒲 . Moreover, the storage

function v satisfies the conditions for the function Vv in The-
orem 7. Hence, by Theorem 7, Equation (A.15) implies that the
system is USS.

In case of USAS, the supply function satisfies Equation (25),
but with strict inequality for all zv ∈ ℝ

nz , except when xΔ =
0. Therefore, Equation (A.15) holds, but with strict inequality
except when xΔ(t ) = 0, which by Theorem 7 implies USAS.

A.7 Proof of Theorem 9

If the nonlinear system given by Equation (26) is velocity dissi-
pative w.r.t. the supply function sv(wΔ, zΔ ) = w⊤ΔQwΔ + z⊤ΔRzΔ,
then there exists a function v, such that for all t0, t1 ∈ ℤ

+
0 with

t0 ≤ t1

v(xΔ(t1 + 1)) − v(xΔ(t0))

≤
t1∑

t=t0

wΔ(t )⊤QwΔ(t ) + zΔ(t )⊤RzΔ(t ), (A.16)

for all (xΔ, wΔ, zΔ ) ∈ 𝔅v, corresponding to (x, w, z ) ∈ 𝔅. Note
that by consideration of the theorem, xΔ(0) = 0. Hence,
as v(xΔ(0)) = v(0) = 0 and v(xv) ≥ 0, ∀ xv ∈ ℝ

nx , this
implies that

0 ≤
T∑

t=0

wΔ(t )⊤QwΔ(t ) + zΔ(t )⊤RzΔ(t ), (A.17)

for all T ≥ 0 and (xΔ, wΔ, zΔ ) ∈ 𝔅v. Defining Q̃ ∶= 1‖Q‖Q

and R̃ ∶= 1‖Q‖R, it also holds that

0 ≤
T∑

t=0

wΔ(t )⊤Q̃wΔ(t ) + zΔ(t )⊤R̃zΔ(t ), (A.18)

Next, using Equations (26)–(28) and as xΔ(t ) = x(t + 1) − x(t ),
we have that, omitting dependence on time for brevity,

z⊤Δ R̃zΔ = x⊤ΔC⊤R̃ CxΔ,

= (⋆)⊤R̃ C ( f (x ) + Bw − x ),

= (⋆)⊤R̃ C ( f (x ) + Bw − x +

=0
⏞⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏞
x∗ − ( f (x∗ ) + Bw∗ )),

= (⋆)⊤R̃ C ( f (x ) − f (x∗ ) − (x − x∗ ) + B(w − w∗ )).

(A.19)

Through the fundamental theorem of calculus [24], we have that

f (x ) − f (x∗ ) =

(
∫

1

0

𝜕 f

𝜕x
(x∗ + 𝜆(x − x∗ )) d𝜆

)
(x − x∗ ),

=

(
∫

1

0
Av(x∗ + 𝜆(x − x∗ )) d𝜆

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

Āv(x,x∗ )

(x − x∗ ),

(A.20)

hence,

f (x ) − f (x∗ ) − (x − x∗ ) = (Āv(x, x∗ ) − I )(x − x∗ ). (A.21)

Combining this with Assumption 2, we can write (A.19) as

z⊤Δ R̃zΔ = (⋆)⊤R̃ C (Āv(x, x∗ ) − I )(x − x∗ ). (A.22)

Next, by satisfying Proposition 1 for T = R̃ ⪯ 0, we have that,
for every x∗ ∈ 𝒳,

z⊤Δ R̃zΔ = (⋆)⊤R̃C (Āv(x, x∗ ) − I )(x − x∗ )

≤ 𝛼−1(⋆)⊤R̃C (x − x∗ ) = 𝛼−1(⋆)⊤R̃(z − z∗ ). (A.23)

Moreover, by Assumption 3 and using that wΔ(t ) = w(t + 1) −
w(t ), we have that, for a given (x∗, w∗, z∗ ) ∈ ℰ,

w(t + 1) = Aw(w(t ) − w∗ ) + w∗,

w(t + 1) − w(t ) + w(t ) = Aw(w(t ) − w∗ ) + w∗,

w(t + 1) − w(t ) = Aw(w(t ) − w∗ ) − (w(t ) − w∗ ),

wΔ(t ) = (Aw − I )(w(t ) − w∗ ), (A.24)
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KOELEWIJN ET AL. 1727

and hence,

wΔ(t )⊤Q̃wΔ(t ) = (⋆)⊤Q̃(Aw − I )(w(t ) − w∗ )

≤ 𝛽2(⋆)⊤Q̃(w(t ) − w∗ ), (A.25)

where w ∈ 𝔚(w∗,𝛽) and 0 ⪯ Q̃ ⪯ I . Combining Equa-
tions (A.18), (A.23) and (A.25), we obtain that, for every
(x∗, w∗, z∗ ) ∈ ℰ,

T∑
t=0

𝛽2(⋆)⊤Q̃(w(t ) − w∗ ) + 𝛼−1(⋆)⊤R̃(z (t ) − z∗ ) ≥ 0,

(A.26)
for all T ≥ 0 and (w, z ) ∈ 𝜋w,z𝔅with w ∈ 𝔚(w∗,𝛽). Hence, also

T∑
t=0

𝛽2(⋆)⊤Q(w(t ) − w∗ ) + 𝛼−1(⋆)⊤R(z (t ) − z∗ ) ≥ 0,

(A.27)
for all T ≥ 0 and (w, z ) ∈ 𝜋w,z𝔅 with w ∈ 𝔚(w∗,𝛽).

A.8 Proof of Theorem 11

The system given by Equation (1) is differentially dissipative
w.r.t. a supply function s𝛿 and for a storage function 𝛿 , if Equa-
tion (38) holds for all (x̄, w̄) ∈ 𝜋x,u𝔅 and for all t0, t1 ∈ ℤ

+
0 with

t0 ≤ t1. This condition is equivalent to

𝛿(x̄(t + 1), x𝛿 (t + 1)
)
− 𝛿(x̄(t ), x𝛿 (t )

) ≤ s𝛿
(
w𝛿 (t ), z𝛿 (t )

)
,

(A.28)
holding for all (x̄, w̄) ∈ 𝜋x,u𝔅 and for all t ∈ ℤ+

0 . Substituting
the differential dynamics Equation (35), the considered supply
function Equation (39), and storage function Equation (40) in
Equation (A.28) results in

(⋆)⊤M (x̄(t + 1))
(
A𝛿 (x̄(t ), w̄(t ))x𝛿 (t ) + B𝛿 (x̄(t ), w̄(t ))w𝛿 (t )

)
− x𝛿 (t )⊤M (x̄(t ))x𝛿 (t ) ≤ w𝛿 (t )⊤Qw𝛿 (t )

+ 2w𝛿 (t )⊤S
(
C𝛿 (x̄(t ), w̄(t ))x𝛿 (t ) + D𝛿 (x̄(t ), w̄(t ))w𝛿 (t )

)
+ (⋆)⊤R

(
C𝛿 (x̄(t ), w̄(t ))x𝛿 (t ) + D𝛿 (x̄(t ), w̄(t ))w𝛿 (t )

)
,

(A.29)

holding for all (x̄, w̄) ∈ 𝜋x,u𝔅 and for all t ∈ ℤ+
0 . If it holds for

all (x̄, w̄ ) ∈  × , xv ∈ , x𝛿 ∈ ℝ
nx , and w𝛿 ∈ ℝ

nw that

(⋆)⊤M (x̄ + x̄v)
(
A𝛿 (x̄, w̄ )x𝛿 + B𝛿 (x̄, w̄)w𝛿

)
− x⊤
𝛿

M (x̄ )x𝛿 ≤ w⊤
𝛿

Qw𝛿 + 2w⊤
𝛿

S
(
C𝛿 (x̄, w̄)x𝛿

+ D𝛿 (x̄, w̄ )w𝛿
)
+ (⋆)⊤R

(
C𝛿 (x̄, w̄)x𝛿 + D𝛿 (x̄, w̄)w𝛿

)
,

(A.30)

then, Equation (A.29) holds. Finally, Equation (41) is equiv-
alent to Equation (A.30) by pre- and post multiplication of
Equation (41) with col(x𝛿, w𝛿 )⊤ and col(x𝛿, w𝛿 ), respectively.

A.9 Proof of Theorem 12

The proof follows in a similar manner as Lemma 8. Namely,
let the system given by Equation (1) be differentially dissi-
pative w.r.t. a supply function s𝛿 . For this supply function,
Equation (43) holds for all z𝛿 ∈ ℝ

nz . Therefore, it holds that

𝛿 (x̄(t1 + 1), x𝛿 (t1 + 1)) − 𝛿 (x̄(t0), x𝛿 (t0))

≤
t1∑

t=t0

s𝛿 (w𝛿 (t ), z𝛿 (t )) ≤ 0 (A.31)

for all t0, t1 ∈ ℤ
+
0 with t0 ≤ t1 and (xΔ, wΔ, zΔ ) ∈ 𝔅v. This gives

that

𝛿 (x̄(t + 1), x𝛿 (t + 1)) − 𝛿 (x̄(t + 1), x𝛿 (t + 1)) ≤ 0,
(A.32)

for all t ∈ ℤ+
0 and x̄ ∈ 𝜋x𝔅w(w) under all measurable and

bounded w ∈ (ℝnw )ℤ
+
0 . Moreover, the storage function 𝛿 sat-

isfies the conditions for the function V𝛿 in Lemma 1. Hence, by
Lemma 1, Equation (A.32) implies that the system is IS.

In case of IAS, the supply function satisfies Equation (43),
but with strict inequality for all z𝛿 ∈ ℝ

nz when x(t ) ≠ x̃(t ).
Therefore, Equation (A.15) holds, but with strict inequality
when x(t ) ≠ x̃(t ), which by Lemma 1 implies USAS.

A.10 Proof of Theorem 13

To prove our result, we will make use of the results in the proof
of [9, Theorem 6]. As the system is differentially dissipative, it
implies that by writing out the 𝜆-dependence and integrating
over 𝜆,

∫
1

0

[
𝛿(x̄(t1 + 1, 𝜆), x𝛿 (t1 + 1, 𝜆)

)
− 𝛿(x̄(t0, 𝜆), x𝛿 (t0, 𝜆)

)
−

t1∑
t=t0

s𝛿
(
w𝛿 (t , 𝜆), z𝛿 (t , 𝜆)

)]
d𝜆 ≤ 0, (A.33)

holds for all (x̄, w̄) ∈ 𝜋x,u𝔅, 𝜆 ∈ [0, 1], and for all t0, t1 ∈ ℤ
+
0

with t0 ≤ t1. Let us first consider the storage function part of
this inequality. Let us define a minimum energy path between x

and x̃:

𝜒(x,x̃ )(𝜆) ∶= arg inf
x̂∈Γ(x,x̃ )∫

1

0
𝛿

(
x̂(𝜆),

𝜕x̂(𝜆)

𝜕𝜆

)
d𝜆. (A.34)

As V𝛿 (x̄, x𝛿 ) = x⊤
𝛿

M (x̄ )x𝛿 , the path 𝜒(x,x̃ ) corresponds to the
geodesic connecting x and x̄ under the Riemannian metric
M (x̄ ), see also [40, 41]. By the Hopf–Rinow theorem, this
implies, for any x, x̄ ∈ ℝnx , that 𝜒(x,x̃ ) is a unique, smooth func-
tion [40, 42]. Based on this minimum energy path, we define the
incremental storage function as:

i (x, x̃ ) ∶= ∫
1

0
𝛿

(
𝜒(x,x̃ )(𝜆),

𝜕𝜒(x,x̃ )(𝜆)

𝜕𝜆

)
d𝜆. (A.35)

 17518652, 2024, 13, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/cth2.12719 by M

T
A

 Institute for C
om

puter, W
iley O

nline L
ibrary on [03/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1728 KOELEWIJN ET AL.

Note that 𝛿 (x̄, ⋅) ∈ 0, ∀ x̄ ∈ ℝnx . Therefore, i (x, x ) = 0

for all x ∈ ℝnx as 𝜒(x,x )(𝜆) = x, hence,
𝜕𝜒(x,x̃ ) (𝜆)

𝜕𝜆
= 0 and by

definition 𝛿 (⋅, 0) = 0. Moreover, for all x, x̃ ∈ ℝnx for which
x ≠ x̃, we have that i (x, x̃ ) > 0, as in that case there exists a

set of 𝜆 ∈ [0, 1] for which
𝜕𝜒(x,x̃ ) (𝜆)

𝜕𝜆
∈ ℝ∖{0} (as it can only be

zero for all 𝜆 if x = x̃) and by definition 𝛿 (x̄, x𝛿 ) > 0, ∀x𝛿 ∈
ℝnx∖{0}. Consequently, we have that i ∈ i.

Based on the definition of the incremental storage function,
it follows that

i (x(t1 + 1), x̃(t1 + 1)) ≤ ∫
1

0
𝛿(x̄(t1 + 1, 𝜆), x𝛿 (t1 + 1, 𝜆)

)
d𝜆,

(A.36)

for any (𝜆 ↦ x̄(t1 + 1, 𝜆)) ∈ Γ(x(t1 + 1), x̃(t1 + 1)) with x(t1 +
1), x̃(t1 + 1) ∈ ℝnx , t1 ∈ ℤ

+
0 , and (t ↦ x̄(t , 𝜆)) ∈ 𝜋x𝔅 for

any 𝜆 ∈ [0, 1]. Moreover, we parameterize the initial condi-
tion as x̄(t0, 𝜆) = x̄0(𝜆) = 𝜒(x0,x̃0 )(𝜆), from which it follows
that

−i (x(t0), x̃(t0)) = −∫
1

0
𝛿(x̄(t0, 𝜆), x𝛿 (t0, 𝜆)

)
d𝜆. (A.37)

Combining Equations (A.36) and (A.37) gives that

i
(
x(t1 + 1), x̃(t1 + 1)

)
− i

(
x(t0), x̃(t0)

)
≤ ∫

1

0
𝛿(x̄(t1 + 1, 𝜆), x𝛿 (t1 + 1, 𝜆)

)
−𝛿(x̄(t0, 𝜆), x𝛿 (t0, 𝜆)

)
d𝜆. (A.38)

Subsequently, we consider the supply function part of Equa-
tion (A.33). This follows in the same manner as in [9, 22], which
we will briefly repeat. By changing summation and integration
operations, the supply function part of Equation (A.33) is given
by

t1∑
t=t0

∫
1

0
(⋆)⊤

[
Q S

⋆ R

] [
w𝛿 (t , 𝜆)
z𝛿 (t , 𝜆)

]
d𝜆. (A.39)

Parameterizing our input as w̄(t , 𝜆) = w̃(t ) + 𝜆(w(t ) − w̃(t )), it

follows that w𝛿 (t ) = 𝜕w̄(t ,𝜆)

𝜕𝜆
= w(t ) − w̃(t ). Therefore, we have

that ∫ 1

0
(⋆)⊤Q w𝛿 (t , 𝜆)d𝜆 = (⋆)⊤Q(w(t ) − w̃(t )) and

∫
1

0
2 w𝛿 (t , 𝜆)⊤S z𝛿 (t , 𝜆)d𝜆 = 2(w(t ) − w̃(t ))⊤S∫

1

0

𝜕z̄ (t , 𝜆)

𝜕𝜆
d𝜆,

= 2(w(t ) − w̃(t ))⊤S (z̄ (t , 1) − z̄ (t , 0)),

= 2(w(t ) − w̃(t ))⊤S (z (t ) − z̃ (t )).
(A.40)

As we consider R ⪯ 0, i.e. −R ⪰ 0, we have by [22, Lemma 16]

∫
1

0
(⋆)⊤R z𝛿 (t , 𝜆)d𝜆 = ∫

1

0
(⋆)⊤R

𝜕z̄ (t , 𝜆)

𝜕𝜆
d𝜆

≤ (⋆)⊤R

(
∫

1

0

𝜕z̄ (t , 𝜆)

𝜕𝜆
d𝜆

)
= (⋆)⊤R (z (t ) − z̃ (t )).

(A.41)

Combining this, results in the following inequality to hold

t1∑
t=t0

∫
1

0
(⋆)⊤

[
Q S

⋆ R

] [
w𝛿 (t , 𝜆)
z𝛿 (t , 𝜆)

]
d𝜆

≤
t1∑

t=t0

(⋆)⊤
[

Q S

⋆ R

] [
w(t ) − w̃(t )
z (t ) − z̃ (t )

]
. (A.42)

Combining Equations (A.38) and (A.42) with Equation (A.33)
results in

i
(
x(t1 + 1), x̃(t1 + 1)

)
− i

(
x(t0), x̃(t0)

)
≤

t1∑
t=t0

si
(
w(t ), w̃(t ), z (t ), z̃ (t )

)
, (A.43)

for all t0, t1 ∈ ℤ
+
0 with t0 ≤ t1 and any two trajectories

(x, w, z ), (x̃, w̃, z̃ ) ∈ 𝔅 where i is given by Equation (A.35),
which is the condition for incremental dissipativity in Defini-
tion 4.

A.11 Proof of Theorem 14

We have that Equation (46) is a DPV embedding of Equation (1)
on the region X × W ⊆ ℝnx ×ℝnw . Therefore, A(𝜂(x̄, w̄)) =
A𝛿 (x̄, w̄), … , D(𝜂(x̄, w̄)) = D𝛿 (x̄, w̄) for all (x̄, w̄) ∈ X × W ⊆
ℝnx ×ℝnw . Moreover, we have Equation (47) holds for all
p ∈  and v ∈ Π. Hence, it straightforwardly follows that
Equation (41) holds for all (x̄, w̄ ) ∈  × and x̄v ∈ .
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