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ABSTRACT With increasing realised traffic on transport networks, greenhouse gas emissions show a similar
trend. Reducing them is amodern aspiration, creating a better place to live andmoving towards sustainability.
Expanding the infrastructure is often not an appropriate solution, as the system would only be fully utilised
at peak times, while at less frequent times it would not even approach capacity and would require huge
investment costs. An alternative to further construction work is the implementation of intelligent traffic
systems, where smoother flows can achieve higher capacity by reducing the variability in the system. In a
motorway environment, a common approach is Variable Speed Limit Control, where the road is divided into
zones and individual speed limits are used to increase or decrease the load on the cells. This paper proposes a
solution in which individual cells make decisions cooperatively, in contrast to classical state machine-based
methods. Thanks to the jointly formulated goal of the agents, a predictive control method is created that leads
to a reduction in emissions due to avoided shock waves and reduced waiting times. This paper presents a
solution that provides a universal solution across multiple application lengths, illustrating the power of deep
learning. https://github.com/istvan-knab/Variable-speed-limit-control.

INDEX TERMS Variable speed limit control, multi-agent reinforcement learning, machine learning, traffic
simulation.

I. INTRODUCTION
A key guiding principle in the design of today’s cities,
including high-speed suburban areas, is to reduce noise
and greenhouse gas emissions to create a more liveable
environment. According to the report from [1], 23% of green-
house emissions come from the transport sector. In terms of
transportation, the aim is to make the traffic flow as smooth
as possible to reduce the time vehicles spend idling. When
traffic on the network exceeds the limits of the physical
infrastructure, further improvements can be achieved through
the use of traffic control solutions in the absence of physical
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expansion [2]. Static traffic controllers with adjustable values
are most commonly used in urban environments [3], such as
traffic lights and adaptive systems [4], but the need is similar
in highly congested time windows to set up dynamically
controllable systems on high-speed motorways [5]. Both
Traffic Signal Control [3] and the Variable Speed Limit
Control that appears on highways fall under the category
of Intelligent Transportation Systems, thereby implementing
event-driven control.

On highways, other types of anomalies are responsible
for the loss of capacity due to the potential for quicker
change from higher speed ranges. This can generate the
shock wave effect shown in Figure 1, a moving jam due
to the cumulative nature of the reaction times along the
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FIGURE 1. Moving jam.

vehicle column. To avoid these, it is advisable to minimise
sudden changes in traffic flows, thus aiming for a steady
and constant flow. This is the purpose of vehicle platoons in
microscopic trafficmanagement, focusing on the acceleration
and deceleration of vehicles in specific traffic situations [6].
In the macroscopic case, this can be done with Variable
Speed Limit Control(VSLC), which provides a number of
algorithms to solve the problem [7].

For traffic flows where the objective is not to plan the
trajectory of individual vehicles [8], but to achieve flow
stability, it is entirely appropriate to use a macroscopic model
that takes into account traffic characteristics such as traffic
density (ρ), average speeds (v), and flow magnitude [9].
These measures are the same as those used in fluid mechanics
to characterise the state of each medium, so the behaviour of
the traffic network can be described in physical terms as an
analogy. The most important of these laws is the continuity
theorem, which defines the flow rate at a given cross-section
in terms of velocity and density. In traffic situations, the cross-
section is represented by the number of lanes that can be
used by vehicles. The aforementioned relationship, which
establishes a connection between the various cross-sections
and the main flow indicators, can be formulated as follows:

ρ1v1A1 = ρ2v2A2, (1)

where vi denotes the average speed of the vehicles in the
considered zone. Additionally, as previously mentioned, the
density, denoted as ρi, is also an important indicator, since
Figure 3 demonstrates that after a certain point, the increase
in density negatively impacts the flow rate. As can be seen,
the successive cross-sections(Ai) are in a linear relationship
with the other two variables, so the constrictions of that value
lead to a performance drop, which motorway entrances and
urban network connections can cause, as well as lane closures
due to construction or accidents. Since the cross-sections
only change rapidly in the event of accidents, the formulated
control task focuses on influencing the other two variables.

Due to continuity, the total demand can be given as the sum
of the traffic flows interpreted on the lanes, both at entry and
exit, as shown in the Figure 2 following the equation:

n∑
i=1

Qini =

m∑
j=1

Qoutj , (2)

indexed by the current incoming lanes with i and the outflow
of the previous sector j.

FIGURE 2. Continuity in traffic flow application [10].

As stated above, the cross-section is a static indicator of the
infrastructure, so the manipulation of the velocity and density
values can be used to determine the control as specified
in Equation 1, where, due to the macroscopic approach,
velocities are not understood as individual interventions, but
as the definition of speed limits.

As will be shown in the next section, using the fundamental
diagram (Figure 3), by looking at the relationship between
flow and density on the two axes, the aim is to target the top of
the increasing branch with density, where the flow rate is still
influenced in a positive direction for small fluctuations by the
increase in this indicator. Still keeping in mind the constraint
of satisfying the Equation 1, the objective function is the
ideal choice of density interventions through speed limits as
a driver-interpretable action.

A. RELATED WORK
Given the static nature of the cross-sections and the inability
of the infrastructure to expand spatially, an event-driven
traffic control solution must be implemented to ensure traffic
stability. As discussed in the previous section, assuming that
density is not meaningful for drivers in a traffic situation due
to human sensory limitations, the remaining variable in the
Equation 1 is the average speed, which can be approximated
by introducing ideal constraints in allowed speed, divided
by sector. The speed limits introduced in this way can
be important for both safety and flow aspects within a
network [3].

VSLC [11], [12] is a widely used macroscopic traffic
management approach for which several algorithms have
been implemented so far. This method is based on the spatial
distribution of the flow, which is achieved by dividing the
road network into segments and setting individual speed
limits for each segment, thus varying the temporal flow of
traffic.

The advantage of this system lies in its dynamic nature,
which intervenes on an event-driven basis by monitoring
traffic in specific congestion situations since the dynamics
of a column of vehicles are different during peak traffic
than during a period when it is operating at a fraction
of its capacity [13]. Among the conventional approaches,
the SPECIALIST [14], [15] and Motorway Control System
(MCS) algorithms play an important role, the latter already
in use on Swedish and Dutch motorways [7], so this will
be taken as a basis for evaluating the effectiveness of the
algorithm.
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FIGURE 3. Fundamental diagram to represent the relationship between
density and flow magnitude. [2].

MCS operates by measuring the speed of a given
cross-section and adjusting the speed limit to a slightly higher
value and also adjusting two previous limits to a ramping
speed value to achieve smoother deceleration and resolve
established schockwaves.

SPECIALIST operates via shock wave identification
by coupling time-location and flow-density diagrams.
It describes a larger set of current situations due to its
four phases and six states, thus providing a more effective
control due to better segmentation of states. In both cases,
the algorithms help to resolve emerging congestion, but the
reduction of existing congestion is still to be achieved, and
although they increase traffic efficiency, they are not an
optimal solution.

In order to fully assess these shock waves, some
look-forward response is needed. In the case of pre-estimated
interventions, model-based solutions such as Model Predic-
tive Control (MPC) can also be applied by defining physical
equations and state-space-based control, but today’s research
directions are increasingly dominated by data-based solutions
using Machine Learning (ML). Among such solutions, the
one of most dynamically developing are the algorithms
based on Neural Networks (NN) [16]. Their applicability
shows great diversity, ranging frommachine vision to various
sequential decision-making processes. For this problem,
Reinforcement Learning (RL) algorithms are mostly given
in the context of freeway onramps [17], [18], [19], [20], but
in an earlier phase of research, prior to the implementation
discussed in this paper, an emission reduction model was
developed to demonstrate that a significant improvement
over uncontrolled systems can be achieved using a Deep
Learning-based(DL) approach.

Building on this research, the need arose to test suitability
in environments with arbitrary sensor density. Roadside units
require significant investments [5], so their applicability
to already existing diverse equipment represents a major
advancement. Wider applicability implies that a trained
model can be applied to multiple lengths, so achieving

controllability of motorway sections with the same character
could lead to further improvements. If a model could do
this across multiple environments, the offline training process
could be significantly shortened, making the solution more
financially successful. This would also demonstrate that it
is not just an overfitted model, but a more generalised and
workable solution.

B. CONTRIBUTION
As presented in the literature review, RL has already been
applied to the VSLC problem. However, the proposed
RL framework has several key differences and novelties
compared to the existing solutions. These innovations are the
following:

• The paper proposes a novel state representation of
the VSLC problem that enables scalability in terms
of the size of the controlled highway section. In the
literature, the papers use two main approaches; the
first is describing the state of the currently controlled
highway zone only [20], [21], [22], or showing the
state of all the controlled zones at once [17]. Compared
to that, we propose a sliding windows-based approach
where an agent state representation is composed of the
agent’s highway zone and its neighboring zones; this
concept makes the agent invariant to the control highway
length and supports better performance since an agent
can see beyond its highway zones.

• The proposed action space is also novel compared to
the literature since all the papers use fixed discrete
speed limits [17], [20], [21], [23] or continuous speed
limits [22]. The proposed action space represents the
change amount to the currently used speed limit.
Thanks to that, the agent can not change the speed
limit drastically in one step, while it can completely
cover any speed limit interval without re-training the
model. Furthermore, the amount of change can be
altered without re-training since it can be redefined in
the configuration, making the proposed concept more
flexible than existing solutions.

• The reward functions in the literature use mostly TTS
(Total Time Spent) [24], mean speed [23], traffic density
distribution [19], and gas emission [25]. Compared
to that, the proposed reward function uses a novel
concept that gives maximum reward to the agent when
the waiting time is minimal and the average speed is
maximal in the entire network

With these three key considerations, the paper formulates a
new RL abstraction for the VSLC problem. The potential
of the proposed method is demonstrated by comparing the
performance to algorithms that are actually deployed on
highways in Europe. The results show that the presented
approach outperforms the baseline algorithms in every
emission metric and also in classic metrics such as waiting
time and queue length.

The paper is organized as follows: First, the environment
is detailed with its essential components to define the utilized
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FIGURE 4. The highway environment and agent separation used in the simulation.

state representation, action space, and reward function, and
also the SUMO simulator is introduced. Secondly, the utilized
algorithms are presented to detail the core concept of RL
and MARL. After the methodology, the results are presented
to provide a comprehensive evaluation of the performance
of the agent compared to the baseline methods. Finally, the
possible future developments and directions are discussed in
the conclusion.

II. ENVIRONMENT
By analyzing Figure 3, it can be seen that the permeability of
a highway cross-section decreases as the density increases.
This phenomenon can be caused by several factors, such as
cross-section shrinkage from road accidents, lane disappear-
ing, or by road construction. In such scenarios, shock wave
formation is inevitable if the environment is not controlled.

For simulation purposes, a highway section is built in
the SUMO simulator [26], which is shown in Figure 4.
In Figure 4 a zone is the 100m long lane pair, which is
controlled individually. A cell is a lane of a zone, and the
three consecutive zones represent the state representation
information for the agent that will control the speed limit in
the middle zone. In the modeled highway part, one of the
zones’ lanes is closed to simulate the cross-section shrinkage
that can trigger shock waves.

The highlighted zones in Figure 4 are the ones that are
encoded in the state representation and provide the only
information to an agent for decision-making, while the
chosen action is only applied to themiddle highway zone. The
neighboring zones in the highway section provide a horizon
for the agent to understand the scenario around its controlled
zone. Thanks to this concept, the state representation will
operate as a sliding window over the entire controlled
highway section.

As mentioned above, the SUMO simulator is used to create
the highway part mainly because it can measure all the
necessary traffic metrics that can characterize the quality of
the control methods, such as emissions and waiting time.
SUMO also has a great Python interface that allows any
kind of method to control the built traffic network. In the
created traffic network, the sections’ speed limit can be set
individually between the 130km/h and 10km/h interval. The
agents are allowed to change the speed limit for every 10s,

and the change can only be 10km/h at once. It is important
to mention that the generated traffic load always saturates
the network but still allows all vehicles to enter. This traffic
flow generation scheme is essential to make the evaluations
reliable because, with that, all control methods have to push
the same amount of vehicles through the network. This is also
the terminal criteria of each training episode.

A. STATE REPRESENTATION
The goal of the agent is to produce an appropriate decision
based on the sensor data that enables the maximization of the
cumulated reward during the episode. Typically, the task of
state representation involves organizing relevant sensor data,
thereby providing input for decision-making at a given step.
The proposed state representation consists of macroscopic
traffic indicators, such as density and the average vehicle
speed in a given section. The reason for this can be seen in
Equation 1; these metrics can characterize the magnitude of
the traffic flow. For clarification, the state representation of an
agent that controls a highway zone consists of the cells of it is
own zone and the cells of the neighboring zones as depicted
in Figure 4.
A primary consideration in this formulation is to ensure

generalizability. The length of the controlled highway section
can be increased, and the agents’ performance will last
since an agent is provided with information from the
neighboring zones along with the controlled one, thanks
to the state representation. The implementation is based
on an analogy of a sliding window, wherein, at each time
step, all agents within the VSLC zone are afforded the
opportunity to make decisions. Although the agents do not
know about the decisions of other agents. Nevertheless, they
can indirectly understand the decisions of others through
the sliding window-based state representation, thanks to the
horizon.

From a differentiation standpoint, it is advantageous
to incorporate into the state representation not only the
attributes of the focal segment but also those of its imme-
diate surroundings. This enables the algorithm to discern
differences between the active cell and its neighboring cells,
thereby facilitating decision-making regarding the load of the
respective cell. Taking into account the neighboring cells to
ensure continuous monitoring of those in front, behind, and
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beside, the state vector for zone i is presented as follows:

statei = {vx,y, ρx,y | x ∈ (i− 1, i, i+ 1), y ∈ (0, 1)} (3)

where vx,y and ρx,y are the velocity and density values of the
cells for lane y of zone x, as indexed in Figure 4, and i ∈

(1..n), where n is the number of controlled zones. The reason
for the state vector consisting of 5 cells is that the neighboring
cell alternates between being in front and behind at different
time steps.

With this description, the cells before the bottleneck
are provided with intervention opportunities, as there is
no need for further speed reduction after the decrease in
cross-section in terms of continuity. Moreover, the very first
cells do not receive intervention opportunities since their state
representation cannot be generated. However, in real-world
scenarios, this does not pose an issue; it merely signifies the
simulated environment’s boundary at the first cell.

In summary, the main advantage of this custom-designed
state representation is its independence from the position of
the segment, describing the relevant environment, and its
scalability.

B. ACTION SPACE
Due to the nature of the problem, discrete actions are
implemented, as only certain values can be taken by the
individual speed-limiting signs. The aspirations are similar to
those in creating the state representation, seeking a universal
solution that covers as much ground as possible to provide the
agent with opportunities to help maintain traffic continuity.
In addition to the discrete action space, another factor is the
density of interventions, as discussed during the examination
of environmental constraints. For this, a 10-second value is
specified, both during the testing of the proposed algorithm
and as a reference for the MCS serving as a comparative
baseline. The action space contains three discrete choices: the
first is increasing the speed limit in the given highway zone
by 10km/h, the second is not changing the speed limit in the
given zone, and the last one is decreasing the speed limit by
10km/h. For clarity, the actions can be seen in Equation 4.

action =

+10 km/h
0

−10 km/h

 (4)

The main advantage of this concept is that any real speed
limit can be created by the agent over time, and it enables
faster convergence because the output dimensionality of the
neural network is small. The incremental implementation has
an additional benefit. Notably, by only allowing slow changes
in the system, the likelihood of developing moving traffic
waves is further reduced, as this speed adjustment better
accommodates drivers’ capabilities.

C. REWARD DESIGN
The main concept utilized in subsequent methodologies is to
evaluate the quality of decisions made by an agent through
feedback in the form of a scalar value provided by the

environment. Indeed, the reward signal serves this purpose
perfectly. It is derived from the state of the traffic, generating
a value that indicates how good a decision is made by the
agent.

Several approaches have been considered in the devel-
opment of this. Initially, simply using the average speed
of the network is proposed. However, a problem arose
as the network could achieve higher values by sacrificing
certain road segments. To address this issue, waiting time
is incorporated into the system, with the aim of decreasing
it to align with the desired behavior expected from the
agent. Since its increase is particularly detrimental to the
environment, it is represented not as a linear but as a quadratic
term in the reward function, thereby penalizing its growth
more heavily. The final reward function for the training
process looks as follows:

R =
vavg

(1 + w)2
, (5)

• vavg represents the average speed across the entire
network.

• w denotes the sum of waiting times across the entire
network.

Consequently, the formulated objective function serves the
advancement of two tasks. On one hand, increasing the
average speed enhances the throughput capacity. On the other
hand, reducing waiting times aims to ensure that greenhouse
gases are emitted into the air only when actual progress is
made.

III. METHODOLOGY
A. REINFORCEMENT LEARNING
In certain scenarios, conventional algorithms and physical
models may fail to accurately approximate reality to the
desired degree. Furthermore, often the required computa-
tional capacity completely precludes real-time usage. The
models generated by learning algorithms, however, often pro-
vide solutions to such problems. Due to the aforementioned
characteristics, Reinforcement Learning [27] is a particularly
favored research area for sequential decision-making tasks.

The basic idea behind RL is the communication between
an agent and its environment (Figure 5), where the agent
takes action at each time step and, in response, receives its
next state and a reward that quantifies the quality of the
decision by a scalar. In an MDP (S,A,R, S ′,T ) [28], there
is a tight connection between the initial states, actions taken,
resulting states, and the obtained rewards. From these, so-
called state transitions can be formed, which unambiguously
define the quality of a decision in a given situation. The
agent’s objective is to acquire a behavioral strategy that
maximizes the cumulative reward attained across successive
episodes. In order to make good decisions not only for
a given situation but also in the long term, one must
take into account the potential rewards available during
the subsequent steps. The calculation for this is done as
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FIGURE 5. The interactions between agents and the environment in case
of MARL.

follows:

Gt =

T∑
t=0

γ t · rt , (6)

where the γ discount factor is responsible for reducing the
influence of states further in the future on the agent’s current
decision.

In the initial phase, the agent is not aware of the
rewards associated with each state transition; thus, it needs
to gather experiences to enable later conscious decision-
making. Over time, based on acquired experiences, it can
distinguish between successful and less successful decisions
by assessing the resulting rewards. In order to explore the
environment while striving to learn, two types of decisions
can be made: exploratory ones and decisions based on current
knowledge, aiming for optimal actions. Due to the initial lack
of knowledge, the maximum number of exploratory decisions
gradually transforms into fully consciously made decisions
over time.

B. DEEP Q NETWORK
The fundamental model of value-based algorithms is pro-
vided by Deep Q-Network (DQN) [29], which evaluates state
transitions not only based on rewards but also on the predicted
Q-values associated with state-action pairs. Learning here is
accomplished with the help of the Bellman equation, which
looks as follows:

Q(s, a; θ ) = Q(s, a; θ) + α(r + γmaxa′Q(s′, a′
; θ−)

−Q(s, a; θ )). (7)

Here, it can be observed that the reward value directly
influences the resultant value, while γ modulates the future
Q-values attainable. Additionally, there’s another parameter
observed alongside, known as α, which influences the
learning rate, determining the extent of learning.

C. MULTI AGENT REINFORCEMENT LEARNING
Single-Agent Reinforcement Learning can provide solutions
only to a fraction of the control problems since, in real life,
multiple entities can interact through cooperation [30] or

competition [30] to achieve some goal [31]. The interaction
means that every agent can change the environment’s state,
influencing individual agents’ state representations. In such
cases, Multi-Agent Reinforcement Learning is used to tackle
the control problem. MARL can be distinguished from
RL in many ways, such as the mathematical framework,
which is Markov Games [30] instead of a simple MDP. The
utilized MARL approach in this paper is the independent
learner concept [32]. This concept means that a single neural
network is used during training, and this model is trained to
understand every agent’s situation and make decisions from
their perspective. The approach has several benefits:

• The first one is that employing one neural network
and training from the data of every agent perspective
can gather more diverse training data that extensively
supports the success of the training.

• The second one is about agent communication. Thanks
to the novel problem formulation, the agents that have
to share information have a shared part in their state
representation, and all of them have a shared reward
as well. This attribute allows them to understand each
other’s decisions without dedicated communication. The
avoidance of dedicated communication significantly
mitigates the complexity of the training, which has a
positive effect on convergence and performance.

D. INTERPRETATION OF MARL TO VSLC
MARL is utilized in the formalized VSLC problem
since every highway zone requires individual simultaneous
decision-making regarding the applied speed limits. The time
steps in the environment are discretized, and in every time
step, all agents decide the speed limit of their highway zone.
Consequently, every controlled highway zone has an agent
that can control the speed limit of the zone. Thanks to the
novel state representation, a zone agent can understand the
highway’s local traffic load; hence, direct communication
between agents can be avoided, which makes the training
process more stable and faster. Even though an individual
agent controls every highway zone, one neural network is
trained, which is the independent learner MARL concept
itself. The state representation of every agent is created at
the end of every time step, and then a single neural network
predicts the created states, which means that it decides the
speed limit in every zone as if it controls the zone. Then, the
new speed limits are applied to the controlled highway section
for a fixed amount of time, and the process repeats itself as
displayed in Figure 6.

E. TRAINING PROCESS
The conditions of the training are crucial from the aspect of
the final performance. The agents are trained on 1km long
highway part, where each controlled zone is 100m long.
The traffic load is randomly generated for every episode,
and the traffic flow always saturates the network, but every
vehicle can enter the network; hence, there isn’t a jam at
the beginning of the highway part. An episode terminates
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FIGURE 6. Multi-agent decision making.

if the last vehicle leaves the network. During training, the
immediate reward concept is utilized. Consequently, after
each step, the agents get a reward from the environment
to characterize the consequences of their actions. It is also
important to mention that the episodes are discretized in
time, and the agents can change another speed limit for
every 10s.

IV. RESULTS
A. DATA FOR EVALUATION
The evaluation of competing methods is crucial to make the
process reliable. This attribute is ensured through seeding
the test simulations, where every competing method has to
solve the same scenario. Furthermore, an additional aspect
to the evaluation is added that can strongly demonstrate
the scalability of the proposed method. Notably, the agents
trained on a 1km long highway part are evaluated on a 3km and
a 10km long highway part to articulate that the novel problem
formulation makes the agents invariant to the length of the
controlled highway section. It is also important to mention
that the same criteria are applied to the test simulations
regarding the training phase in terms of time discretization,
terminal events, etc.

As discussed in the introduction, a crucial aspect of
the sustainable development of modern cities and their
environments is the implementation of intelligent traffic
management systems. The main goal of ITS is to make
transportation more efficient, and this endeavor can be
characterized by sustainability metrics and classic metrics
such as waiting time. The computation of these metrics
is done by SUMO. The carbon emissions are not realized
through specific sensors measuring individual vehicles but
rather through various approximate models available within

the discussed simulator. Among these, the default HBEFA
v2.1 [33] model is utilized in SUMO, which is calculated as
follows:

E = c0 + c1va+ c2va2 + c3v+ c4v2 + c5v3, (8)

where the ci constants take different values for certain
emissions. These values can be obtained on a per-lane basis,
akin to waiting times, and can be aggregated across all sectors
to accumulate the total waiting times.

The reduction of these indicators unequivocally defines the
energy efficiency of the control method. As a result, these are
compared across scenarios, including uncontrolled environ-
ments, motorway networks managed by MCS, and scenarios
representing the research topic, namely MARL-based solu-
tions deployment.

B. MODEL EVALUATION
During the evaluation, every sustainability metric cannot be
examined, yet it is also unnecessary since in emission models
only the constants vary thus, there is no magnitude difference
in their trends. The same model is used for evaluating CO,
CO2, NOx , PMx and HC as well [33]. Among these, CO2
emissions, as a major contributor to greenhouse gas effect,
are one of the significant emissions under scrutiny, along with
NOx . Additionally, illustrating the minimization of idle time
spent in shock waves, both the number of vehicles forced to
stop and the resulting accumulated waiting times are part of
the comparison among the evaluations.

C. EVALUATION BASED ON SUSTAINABILITY METRICS
As a baseline, the MCS algorithm and the control-free
scenario are used. As Tables 1-3 demonstrates, the pro-
posed MARL-based solution significantly outperforms both
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FIGURE 7. NOx emission in different segment lengths.

FIGURE 8. Number of halting vehicles.

FIGURE 9. CO2 emission in different segment lengths.

baseline methods in terms of all measured sustainability
metrics, which meansCOx andNOx . The tendencies between
the different highway lengths in the sustainability metrics
are shown in Figures 7 and 9. The tendencies suggest
that there is a great necessity for methods that can adapt
to different traffic volumes since the MCS algorithm only
slightly defeats the control-free scenario. At the same time,
the MARL-based approach holds its 7% reduction in the
sustainability measures.

D. EVALUATION BASED ON CLASSIC METRICS
In this evaluation, the same baselines are used as in the
sustainability metrics, and the accumulated waiting time

FIGURE 10. Waiting time on the whole system.

TABLE 1. Results compared in a 1 km long highway section.

TABLE 2. Results compared in a 3 km long highway section.

TABLE 3. Results compared in a 10 km long highway section.

is measured during the simulations for all three highway
lengths. The results are shown in Tables1-3. The results
suggest that the proposed MARL-based solution outper-
formed the control-free scenario and the MCS algorithm.
These results demonstrate that trained agents can jointly
decrease greenhouse gas emissions and the accumulated
waiting time in the network, which means that with the
liberty of changing the speed limits in the individual
highway zones, the harmful effect of shock waves can be
mitigated.

Another evaluation is conducted, which focuses on the
characteristics of a single test simulation. The results can be
seen in 8 and 10. These Figures articulate that the MARL
agent effectively mitigates the effect of the shock waves.
The number of halting vehicles can be decreased along with
the cumulated waiting time in the traffic network, which
significantly benefits road users and the environment.

Based on the results, it can be seen that the MARL-based
solution reaches superior performance, compared to already
deployed solutions both in terms of greenhouse gas emmi-
sions and classic metrics such as waiting time and halting
vehicles.
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V. CONCLUSION
Recently, deep learning solutions in ITS have become
attractive since they can provide real-time solutions to
complex control problems with excellent performance.
The disadvantages of black-box-based operations can be
neglected since some cases are not safety-critical.

This paper presented a novel approach for the VSLC
problem through MARL, which can significantly outper-
form solutions already deployed on European highways.
A thorough evaluation demonstrated that the proposed
method:

• Invariant to the length of the controlled highway section;
hence, it is enough to train the agents only once.

• Utilizes a control strategy that mitigates greenhouse gas
emissions compared to baseline algorithms.

• Utilizes a control strategy that decreases waiting time
and the number of halting vehicles that tremendously
impact driver experience and the efficiency of the
transportation network.

In our future endeavors, some relevant scenarios must be
included in the environment to make the simulation as close
to the real world as possible. These modifications would be
the following:

• Creating highway section that have more or varying lane
counts.

• Creating a highway section that has a ramping lane.
• Creating highway section, where the cross-section
shrinkage position is randomly chosen from episode to
episode.

• Creating highway sections that are imported from the
OpenStreet map to show that real environments can also
be controlled.

With these modifications, a real-world environment can be
built to evaluate the proposed method’s potential fully. It is
also worth mentioning that in such a real-world comparison,
the portfolio of baseline algorithms should also be made
more prosperous, which means using different classic control
theory-based methods to see how MARL can outperform
these solutions.
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