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ABSTRACT Even though reinforcement-learning-based algorithms achieved superhuman performance in
many domains, the field of robotics poses significant challenges as the state and action spaces are continuous,
and the reward function is predominantly sparse. Furthermore, on many occasions, the agent is devoid of
access to any form of demonstration. Inspired by human learning, in this work, we propose a method named
highlight experience replay (HiER) that creates a secondary highlight replay buffer for the most relevant
experiences. For the weights update, the transitions are sampled from both the standard and the highlight
experience replay buffer. It can be applied with or without the techniques of hindsight experience replay
(HER) and prioritized experience replay (PER). Our method significantly improves the performance of the
state-of-the-art, validated on 8 tasks of three robotic benchmarks. Furthermore, to exploit the full potential of
HiER, we propose HiER+ in which HiER is enhanced with an arbitrary data collection curriculum learning
method. Our implementation, the qualitative results, and a video presentation are available on the project
site: http://www.danielhorvath.eu/hier/.

INDEX TERMS Curriculum learning, experience replay, reinforcement learning, robotics.

I. INTRODUCTION
A high degree of transferability is essential to create universal
robotic solutions. While transferring knowledge [1], [2]
between domains [3], [4], [5], [6], robotic systems [7],
or tasks [8] is fundamental, it is essential to create and
apply universal methods such as reinforcement-learning-
based algorithms (RL) [9], [10], [11] which are inspired by
the profoundly universal trial-and-error-based human/animal
learning.

RL methods, especially combined with neural networks
(deep reinforcement learning), were proven to be superior
in many fields such as achieving superhuman performance
in chess [12], Go [13], or Atari games [14]. Nevertheless,
in the field of robotics, there are significant challenges
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yet to overcome. Most importantly, the state and action
spaces are continuous which intensifies the challenge
of exploration. Oftentimes, discretization is not feasible
due to loss of information or accuracy, preventing the
application of tabular RL methods with high stability.
Furthermore, the reward functions of robotic tasks are
predominantly sparse which escalates the difficulty of
exploration.

Introducing prior knowledge in the form of reward
shaping could facilitate the exploration by guiding the agent
toward the desired solution. However, 1) constructing a
sophisticated reward function requires expert knowledge,
2) the reward function is task-specific, and 3) the agent
might learn undesired behaviors. Another source of prior
knowledge could be in the form of expert demonstra-
tions. However, collecting demonstrations is oftentimes
expensive (time and resources) or even not feasible.
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Furthermore, it constrains transferability as demonstrations
are task-specific.

In parallel to constructing more efficient RL algorithms
such as state-of-the-art actor-critic models
(DDPG [15], [16], TD3 [17], and SAC [18]), another line
of research focuses on improving existing RL algorithms by
controlling the data collection [19], [20], [21], [22], [23],
[24], [25], [26], [27] or the data exploitation [28], [29], [30],
[31], [32], [33] process. Following [34], in this work, we con-
sider both the data collection and the data exploitation meth-
ods as curriculum learning (CL) methods [34], [35], [36]. The
former is oftentimes referred to as ‘traditional’ and the latter
as ‘implicit’ CL.

Our aim is to improve the training of off-policy rein-
forcement learning agents, particularly in scenarios with
continuous state and action spaces, sparse rewards, and the
absence of demonstrations. These conditions pose significant
challenges for state-of-the-art RL algorithms, due to the
challenging problem of exploration. Our main contributions
are the following:

1) HiER: The highlight experience replay creates a
secondary experience replay buffer to store the most
relevant transitions. At training, the transitions are
sampled from both the standard experience replay
buffer and the highlight experience replay buffer. It can
be added to any off-policy RL agent and applied
with or without the techniques of hindsight experience
replay (HER) [32] and prioritized experience replay
(PER) [28]. If only positive experiences are stored in
its buffer, HiER can be viewed as a special, automatic
demonstration generator as well. Following [34],
HiER is classified as a data exploitation or implicit
curriculum learning method.

2) HiER+: The enhancement of HiER with an arbi-
trary data collection (traditional) curriculum learn-
ing method. The overview of HiER+ is depicted
in Fig.1. Furthermore, as an example of the data
collection CL method, we propose E2H-ISE, a uni-
versal, easy-to-implement easy2hard data collection
CL method that requires minimal prior knowledge
and controls the entropy of the initial state-goal
distribution H(µ0) which indirectly controls the task
difficulty.1

To demonstrate the universality of our methods, HiER
is validated on 8 tasks of three different robotic bench-
marks [37], [38], [39] based on two different simulators [40],
[41], while HiER+ is evaluated on the push, slide, and pick-
and-place tasks of the Panda-Gym [37] robotic benchmark.
Our methods significantly improve the performance of the
state-of-the-art algorithms for each task.

The paper is structured as follows: in Section II and III, the
essentials of RL and CL are described followed by a literature
review. In Section IV and V, HiER, E2H-ISE, and HiER+ are

1ISE stands for initial state entropy.

presented with the experimental results. Finally, the summary
of our findings is provided in Section VI.

II. BACKGROUND
A. REINFORCEMENT LEARNING
In reinforcement learning, an agent attempts to learn the
optimal policy for a task through interactions with an
environment. It can be formalized with a Markov decision
process represented by the state space S, the action space
A, the transition probability p(st+1|st , at ), where s ∈ S
and a ∈ A, the reward function r : S × A →

R, the discount factor γ ∈ [0, 1], and the initial state
distribution µ0 [9].

Every episode starts by sampling from the initial state
distribution µ0. In every timestep t ∈ N, the agent performs
an action according to its policy π (a|s) and receives a
reward, a new state,2 and a done flag3 d ∈ {0, 1} from
the environment. In the case of off-policy algorithms, the
(st , at , st+1, rt , dt ) tuples called transitions are stored in the
so-called experience replay buffer Ber which is a circular
buffer and the batches for the weight updates are sampled
from it.

Learning the optimal policy is formulated as maximizing
the expected discounted sum of future rewards or expected
return Es0 [R

disc
0 |s0] and R

disc
t =

∑T
i=t γ

i−tri, where T ∈ N
is the time horizon. Value-based off-policy algorithms learn
the optimal policy by learning the optimal Q (action-value)
function: Qπ (st , at ) = E[Rdisct |st , at ].

In multi-goal tasks, there are multiple reward functions rg

parametrized by the goal g ∈ G. A goal is described with a
set of states Sg ⊂ S, and it is achieved when the agent is in
one of its goal states st ∈ Sg [25]. Thus, according to [42]
and [25], the policy is conditioned also on the goal π (a|s, g).
In our implementation, we simply insert goal g into state s
and consequently, when the initial state is sampled from µ0,
the goal is sampled as well. Henceforth, we refer to µ0 as the
initial state-goal distribution.

In robotics, sparse reward function is often formulated as:

r(s, ·) =

{
0, if s ∈ Sg

−1, otherwise
(1)

Another important aspect of an RL task is whether the
agent has access to any form of demonstration. A demon-
stration is an example of the desired (optimal or suboptimal)
behavior provided by an external source which can signifi-
cantly facilitate the exploration [43]. Oftentimes, an expert
human provides these examples in which case it can be
referred to as human demonstrations. Nevertheless, collecting
expert demonstrations is expensive and time-consuming,
or even not feasible. On the other hand, automatically
generating demonstrations presumes that the task can be
solved already, which raises the question of why RL training
is needed in the first place. For the aforementioned reasons,

2For simplicity, the environment is considered to be fully observable.
3Indicating the end of the episode.
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FIGURE 1. The overview of HiER and HiER+. For every episode, the initial state is sampled from µ0. After every episode, the
transitions are stored in Bser , and in case the λ condition is fulfilled then in Bhier as well. For training, the transitions are sampled
from both Bser and Bhier according to the ratio ξ . For a detailed description, see Alg. 1.

TABLE 1. Summary of related works.

in this paper, we assume that the agent is devoid of access to
any form of demonstration.

B. CURRICULUM LEARNING
In this section, the field of CL is briefly presented. For a
thorough overview, we refer the reader to [34], [36].

CL, introduced by Bengio et al. [35], attempts to facilitate
the machine-learning training process. Similar to how
humans require a highly-organized training process (intro-
ducing different concepts at different times) to become fully-
functional adults, machine-learning-based models might as
well benefit from a similar type of curriculum.
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FIGURE 2. Visualization of the effect of parameter c on µ0 in a 2D case
where state s = [sx , sy ]. The initial state s0 = [s0,x , s0,y ] is sampled from
the probability distribution µ0(c).

Originally, the curriculum followed an easy2hard or
starting small structure [35], however, conflicting results with
hard example mining [44] led to a more general definition of
CL which did not include the easy2hard constraint.

In supervised learning, a CL framework typically consists
of two main components: the difficulty measurer and the
training scheduler. The former assigns a difficulty score to
the samples, while the latter arranges which samples can be
used and when for the weight updates.

According to [34], in reinforcement learning, CL can
typically control either the data collection or the data
exploitation process. The data collection process can be
controlled by changing the initial state distribution, the
reward function, the goals, the environment, or the opponent.
The data exploitation process can be controlled by transition
selection or transition modification. HiER belongs to the data
exploitation branch of CL while E2H-ISE is classified as a
data collection CL method.

C. EVALUATION METHODS
State-of-the-art deep reinforcement learning models are
compared based on just a few experiments, primarily due
to constraints on training time. Therefore, simple point
estimates of aggregate performance such as mean andmedian
scores across tasks are insufficient as they do not capture the
statistical uncertainty implied by the finite number of training
runs. In this section, we present the most relevant statistical
evaluation methods utilized in RL.

In general, confidence intervals (CIs) are beneficial to
measure uncertainty. The bootstrap CI method creates
multiple datasets by resampling with replacement from a
set of data points (results of independent training runs).
As the distribution of the means of the resampled datasets
approaches a normal distribution,4 the CI can be calculated.
Traditionally, bootstrap CI is performed on a single task [45],
[46], [47]. Agarwal et al. [48] proposes the method of
stratified bootstrap CI which performs a bootstrap CI across
multiple tasks using stratified sampling.

Another useful evaluation method is presenting the per-
formance profiles. A tail distribution function is defined as
F(τ ) = P(X > τ ), where τ ∈ R, and X is a real-valued
random variable.5 The performance profiles are beneficial for
comparing different algorithms at a glance. In mathematical

4Central limit theorem.
5Performance estimates are random variables, based on a finite number of

runs.

terms, X has stochastic dominance over Y if P(X > τ ) ≥
P(Y > τ ), for all τ , and for some τ P(X > τ ) >

P(Y > τ ), where X and Y are random variables. Two main
versions are the run-score distribution [48] and the average-
score distributions [49]. Examples of performance profiles
are presented in Fig. 4 and the left side of Fig. 8.

Displaying the probability of improvement is another
beneficial evaluation method. It shows the probability of
Algorithm X exceeding Algorithm Y in a set of tasks.
Important to note that it only indicates the probability of
improvement and not the magnitude of the improvement.

Finally, standard aggregate performance metrics have
shortcomings. The median has high variability and it is
unchanged even when half of the results are zero, while
the mean can be significantly influenced by some outliers.
Thus, [48] proposes the interquartile mean (IQM) and the
optimality gap (OG) as alternatives to the median and the
mean. IQM removes the bottom and top 25% of the runs and
calculates the mean of the remaining 50% of the runs. The
OG represents the shortfall of the algorithm in achieving a
desirable target. It is important to note that the extent to which
an algorithm surpasses the desired target does not affect its
OG score.

III. RELATED WORKS
The summary of the related works is presented in Tab. 1.
Following Section II-B, the CL algorithms are categorized
as data exploitation or data collection methods, presented
in Section III-A and III-B. Data exploitation methods either
modify the transitions or control the transition selection.
The structure and the performance of HiER are compared
with the state-of-the-art in Section IV-A and V. On the
other hand, the data collection methods presented in this
section, either control the initial state distribution or the goal
distribution. The E2H-ISE method controls both the initial
state distribution and the goal distribution as the state space
is augmented with the goal, as described in Section II-A.
Comparison with the state-of-the-art is presented
in Section IV-B and V.

A. DATA EXPLOITATION
Schaul et al. [28] proposed the technique of prioritized expe-
rience replay (PER) which controls the transition selection
by assigning priority (importance) scores to the samples of
the replay buffer based on their last TD error [50] and thus,
instead of uniformly, they are sampled according to their
priority. Additionally, as high-priority samples would bias the
training, importance sampling is applied.

As a form of prioritization, Oh et al. [29] introduced self-
imitation learning (SIL) for on-policy RL. The priority is
computed based on the clipped advantage. Furthermore, the
technique of clipped advantage is utilized to incentivize
positive experiences. By modifying the Bellmann optimality
operator, Ferret et al. [30] introduced self-imitation advan-
tage learning which is a generalized version of SIL for
off-policy RL.
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Wang et al. [31] presented the method of emphasizing
recent experience (ERE) which is a transition selection
technique for off-policy RL agents. It prioritizes recent data
without forgetting the past while ensuring that updates of new
data are not overwritten by updates of old data.

Andrychowicz et al. [32] introduced the technique of
hindsight experience replay (HER) which performs transition
modification to augment the replay buffer by adding virtual
episodes. After collecting an episode and adding it to the
replay buffer, HER creates virtual episodes by changing the
(desired) goal to the achieved goal at the end state (or to
another state depending on the strategy) and relabeling the
transitions before adding them to the replay buffer.

Bujalance and Moutarde [33] propose reward relabeling to
guide exploration in sparse-reward robotic environments by
giving bonus rewards for the last L transitions of the episodes.

B. DATA COLLECTION
Florensa et al. [21] presented the reverse curriculum gen-
eration method to facilitate exploration for model-free RL
algorithms in sparse-reward robotic scenarios. At first, the
environment is initialized close to the goal state. For new
episodes, the distance between the initial state and the goal
state is gradually increased. As prior knowledge, at least one
goal state is required. To sample ‘nearby’ feasible states,
the environment is initialized in a certain seed state (in the
beginning at a goal state), and then, for a specific time,
random Brownian motion is executed.

Ivanovic et al. [22] proposed the backward reachability
curriculum method (BaRC) which is a generalization of [21]
utilizing prior knowledge of the simplified, approximate
dynamics of the system. They compute the approximate back-
ward reaching sets using the Hamilton-Jacobi reachability
formulation and sample from them using rejection sampling.

Salimans and Chen [23] facilitate exploration by utilizing
one human demonstration. In their method, the initial
states come from the demonstration. More precisely, until
a timestep tD ∈ N, the agent copies the actions of the
demonstration, and after tD, it takes actions according to
its policy. During the training, tD is moved from the end
of the demonstration to the beginning of the demonstration.
Their method outperformed state-of-the-art methods in the
Atari game Montezuma’s Revenge. Nevertheless, arriving
at the same state after a specific sequence of actions (as
in the demonstration) is rather unlikely, especially when
the transition function is profoundly stochastic, such as in
robotics.

Sukhbaatar et al. [24] present automatic curriculum
generation with asymmetric self-play of two versions of the
same agent. One proposes tasks for the other to complete.
With an appropriate reward structure, they automatically
create a curriculum for exploration.

Florensa et al. [25] create a curriculum for multi-goal tasks
by sampling goals of intermediate difficulty (Goal GAN).
First, the goals are labeled based on their difficulty, and then

a generator is trained to output new goals with appropriate
difficulty to efficiently train the agent.

Pong et al. [26] proposed Skew-Fit, an automatic curricu-
lum that attempts to create a better coverage of the state space
by maximizing the entropy of the goal-conditioned visited
states H(S|G) by giving higher weights to rare samples.
Skew-Fit converges to uniform distribution under specific
conditions.

Racanière et al. [27] proposed an automatic curriculum
generation method for goal-oriented RL agents by training a
setter agent to generate goals for the solver agent considering
goal validity, goal feasibility, and goal coverage.

The data collection CL methods are relatively disparate,
however, some share specific characteristics. The methods
that control the initial state distribution [21], [22], [23]
attempt to reduce the task difficulty by proposing less
challenging starting positions. Other algorithms [24], [27],
utilize a secondary agent to train the protagonist. Instead of
focusing on task difficulty, the E2H-ISE algorithm controls
the entropy of the init-goal state distribution H(µ0). Among
the considered methods, only Skew-Fit [26] controls the
entropy but in that case, it is the entropy of the goal-
conditioned visited statesH(S|G), notH(µ0).

IV. METHOD
In this Section, our contributions are presented. First,
HiER in Section IV-A, and then E2H-ISE and HiER+ in
Section IV-B and IV-C. Our implementation is available at
our git repository.6

A. HIER
Humans remember certain events stronger than others and
tend to replay them more frequently than regular experiences
thus learning better from them [51]. As an example,
an encounter with a lion or scoring a goal at the last
minute will be engraved in our memory. Inspired by this
phenomenon, HiER attempts to find these events and manage
them differently than regular experiences. In this paper, only
positive experiences are considered with HiER, thus it can
be viewed as a special, automatic demonstration generator as
well.

PER and HER control what transitions to store in the
experience replay buffer and how to sample from them.
Contrary to them, HiER creates a secondary experience
replay buffer. Henceforth, the former buffer is called standard
experience replay buffer Bser , and the latter is referred to as
highlight experience replay buffer Bhier . At the end of every
episode, HiER stores the transitions inBhier if certain criteria
are met. For updates, transitions are sampled both from the
Bser and Bhier based on a given sampling ratio. HiER is
depicted in Fig. 1 marked in blue.
The criteria can be based on any type of performance

measure, in our case, the undiscounted sum of rewards R =∑T
i=0 ri was chosen. The reward function r is formulated as in

6https://github.com/sztaki-hu/hier
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Eq. (1). Although more complex criteria are possible, in this
work, we consider only one performance measure and one
criterion: if R is greater than a threshold λ ∈ R then all
the transitions of that episode are stored in Bhier and Bser ,
otherwise only in Bser . Nevertheless, λ can change in time,
thus we define a λj for every j where j ∈ N is the index
of the episode. In this work, the following λ modes were
considered:
• fix: λj = Zλ for every j where Zλ ∈ R is a constant.7

• predefined: λ is updated according to a predefined
profile. Profiles could be arbitrary, such as linear,
square-root, or quadratic. In this work, only the linear
profile with saturation was considered:

λj = min
(
1,

t
Ttotal · zsat

)
(2)

where t ∈ N and Ttotal ∈ N are the actual, and the total
timesteps of the training and zsat ∈ [0, 1] is a scaler,
indicating the start of the saturation.8

• ama (adaptive moving average): λ is updated according
to:

λj =

min

(
λmax , M +

1
w

w∑
i=1

Rj−i

)
, if j > w

λ0, otherwise

(3)

where λ0 ∈ R is the initial value of λ , while λmax ∈ R is
themaximumvalue allowed for λ . Furthermore,w ∈ Z+
is the window size andM ∈ R is a constant shift.9

Another relevant aspect of HiER is the sampling ratio
between Bser and Bhier for weight update, defined by ξ ∈
[0, 1]. It can change in time, updated after every weight
update, thus we define a ξk for every k where k ∈ N is
the index of the weight update. The following versions were
considered:
• fix: ξk = Zξ for every k where Zξ ∈ R is a constant.
• prioritized: ξ is updated according to:10

ξk =
L
αp
hier,k

L
αp
hier,k + L

αp
ser,k

(4)

where Lhier,k ∈ R and Lser,k ∈ R are the TD errors
of the training batches sampled from Bhier and Bser at
k . The parameter αp ∈ [0, 1] determines how much
prioritization is used.11

Sampling from Bhier and not only from Bser introduce a
bias towards the experiments collected in Bhier . This bias is
similar in nature to the case when demonstrations are utilized.
In that scenario, the expert demonstrations are sampled and

7We also tried a version with n highlight buffers and n thresholds
Z1,Z2, . . . ,Zn. An episode is stored in the highlight buffer with the highest
Zi for which R > Zi.

8In the equation, λj does not directly depend on j. However as t increases,
so does j and λj with it.

9In an alternative versionM is not a constant but relative to 1
w
∑w

i=1 Rj−i.
10Similarly as in the case of PER.
11If αp = 0, then ξ = 0.5 regardless Lhier,k and Lser,k .

combined with online experience, biasing the exploration
towards the desired behavior. In our case, as the agent is
devoid of any form of demonstration, Bhier serves similarly
as a demonstration buffer. This bias is essential for achieving
enhanced performance (presented in Section V). However,
some characteristics of the proposed methods mitigate the
sampling bias. The predefined and the ama λ methods
alleviate the bias by setting the entry of Bhier lower at the
beginning and gradually increasing it resulting in a higher
cardinality for Bhier and higher similarity between Bhier and
Bser . Furthermore, the presented prioritized ξ method
prevents overfitting on the data of Bhier as low Lhier loss
reduces ξ (see Eq.(4)). On the other hand, the bias could be
further reduced by gradually decreasing ξ over time, or the
gradient of the data from Bhier could be scaled, similarly to
importance sampling in the case of PER [28].
Another relevant aspect worth detailing is the difference

between the prioritized ξ method and PER. While
PER changes the probability distribution of selecting specific
transitions from Bser based on their individual TD error, the
prioritized ξ method controls sampling between Bser
and Bhier based on the mean TD error of the data selected
from Bser and Bhier . Thus, the sampling distribution of PER
has |Bser | outputs while the sampling distribution of the
prioritized ξ method has two outputs, one for Bser
and one for Bhier . Another relevant difference is that in the
prioritized ξ method, contrary to PER, the gradients are
not scaled, similar to a standard demonstration buffer.

Important to note that the formulation of HiER is
fundamentally different from [28], [29], [30], [31], [32], [33],
not only but most importantly because of the idea of the
secondary experience replay.

B. E2H-ISE
A key attribute of HiER is that it learns from relevant positive
experiences, described in Section IV-A. However, if these
experiences are scarce in the first place, Bhier would be
considerably limited or even empty. Thus, HiER could benefit
from an easy2hard data collection CL method by having
access to more positive experiences.

E2H-ISE is a data collection CL method based on
controlling the entropy of the initial state-goal distribution
H(µ0) and with it, indirectly, the task difficulty. In general,
µ0 is constrained to one point (zero entropy) and moved
towards the uniform distribution on the possible initial space
(max entropy). Even though certain E2H-ISE versions allow
decreasing the entropy, in general, theymoveµ0 towards max
entropy.

To formalize E2H-ISE, the parameter c ∈ [0, 1] is
introduced as the scaling factor of the uniform µ0, assuming
that the state space, including the goal space, is continuous
and bounded. The visualization of the scaling factor c is
depicted in Fig. 2. If c = 1 there is no scaling, while c =
0 means that µ0 is deterministic and returns only the center
point of the space. To increase or decreaseH(µ0), c changes
in time, thus we define cj for every j where j ∈ N is the index

VOLUME 12, 2024 100107



D. Horváth et al.: HiER for Boosting Off-Policy Reinforcement Learning Agents

of the episode. At the start of the training, c is initialized and
it is updated at the beginning of every training episode before
s0 is sampled fromµ0.12 The following versions are proposed
for updating c:
• predefined: c changes according to a predefined
profile similar as in the case of λ predefined (see
Section IV-A). In this paper, only the linear profile with
saturation was considered.13

• self-paced: c is updated according to:

cj =


min(1, cj−1 + δ), if Ptrain,w > 9high

max(0, cj−1 − δ), if Ptrain,w < 9low

cj−1, otherwise

(5)

where Ptrain,w ∈ R is mean of last w ∈ Z+ (window
size) training success rate, δ ∈ [0, 1] is the step size, and
9high ∈ R and 9low ∈ R are threshold values.14 After
any update on c, Ptrain,w15 is emptied, and the update on
c is restarted after w episodes.

• control: c is updated according to:

cj =

{
min(1, ct−j + δ), if Ptrain,w ≥ ψ
max(0, ct−j − δ), if Ptrain,w < ψ

(6)

where ψ ∈ R is the target. The algorithm attempts to
move and keep Ptrain,w at ψ . Updates are executed only
if j > w.

• control adaptive: This method is similar to
control but the target success rate ψ is not fixed but
computed from the mean evaluation success rate:

ψj = min

(
ψmax , 1+

1
w

w∑
i=1

Revalj−i

)
(7)

where1 ∈ [0, 1] is a constant shift (as we want to target
a better success rate than the current) and ψmax ∈ R
is the maximum value allowed for ψ .16 Updates are
executed only if j > w.

Sampling from µ0(c ̸= 1) introduces bias to the states
within the probability distribution of µ0(c). This bias is
reduced as c increases. Furthermore, as the buffers are
circular, once they reach their capacity, the old experiences
are replaced with new ones. On the other hand, we conducted
experiments on dynamically subtracting the center of µ0(c)
to counterbalance the sampling bias, e.g.: µ0(c) = µ0(c1) −
µ0(c2) where c1 > c2. However, they did not result in
any improvement. Our experimental results, presented in
Section V, show that accepting the bias and starting with c

12For evaluation, the environment is always initialized according to the
unchanged µ0.

13We have experimented with a 2-stage version where µ0 and µG (initial
goal distribution) were separated.

14If 9low = 0, then c can only increase.
15The circular buffer storing the success rates.
16Important to note that contrary to the training, in the evaluation,

we sample from the unrestricted µ0 (c = 1), thus the eval success rate
represents the real success rate of the agent. Consequently, c can be set to
keep the training to a success rate that is just (by 1) above the eval success
rate.

close to zero is beneficial as HiER+ further improves the
performance of HiER.

Important to note, our E2H-ISE formulation is inherently
different from [21], [22], [23] as our solution does not
concentrate on goal difficulty but the entropy of µ0. In our
case, the easy2hard attribute derives from the magnitude
of the entropy and not from the goal difficulty. It is also
disparate from [26] as their solution maximizes the entropy
of goal-conditioned visited states H(S|G) and not H(µ0).
Nevertheless, the E2H-ISE method is only an example
of data collection CL methods that can be utilized in
HiER+. It is proposed in this paper, as it is significantly
easier to implement than the presented, more sophisticated,
state-of-the-art methods, while it is universal and requires
minimal prior knowledge. Thus, the full potential of HiER+
can be presented conveniently with the E2H-ISE method.
Comparing different data collection CL methods in HiER+
is out of the scope of this work.

Algorithm 1 HiER+
1: Initialize c← 0, λ , ξ, n, θ, φ
2: nhier ← ξ · n ▷ n: batch size
3: Initialize Bser ← ∅

4: Initialize Bhier ← ∅

5: Initialize episode buffer E ← ∅
6: s← µ0(c0) ▷ Init env
7: while Convergence do
8: a← πθ (s) ▷ Collecting data
9: s2, r, d ← Env.step(a)
10: E ← E ∪ (s, a, s2, r, d)
11: s← s2
12: if Episode ends then
13: Bser ← Bser ∪ E ▷ Store transitions of E
14: Bser ← Bser ∪ Evirtual ▷ HER (optional)
15: Update λj ▷ HiER: Section IV-A
16: if λj <

∑
ri∈E ri then

17: Bhier ← Bhier ∪ E
18: end if
19: Update cj ▷ E2H-ISE: Section IV-B
20: E ← ∅
21: s← µ0(cj)
22: end if
23: ifWeight update then
24: Dser ← select (n− nhier ) sample from Bser
25: Dhier ← select nhier sample from Bhier
26: D← Dser +Dhier
27: Update weights θ, φ based on D
28: Update priorities in Bser ▷ PER (optional)
29: Update ξk ▷ HiER: Section IV-A
30: nhier ← ξk · n
31: end if
32: if Evaluation then
33: Evaluate agent with µ0(c = 1) ▷ Standard init
34: end if
35: end while
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C. HIER+

In this section, HiER+ is presented which is an enhancement
of HiER with an arbitrary data collection CL method. Even
though in this work, we present HiER+ with E2H-ISE, it is
important to note that the fundamental architecture of HiER+
would remain consistent when paired with alternative data
collection CL approaches. It can be added to any off-policy
RL algorithm with or without HER and PER, as depicted in
Fig. 1 and presented in Algorithm 1. Having initialized the
variables and the environment (Lines 1-6), the training loop
starts. After collecting an episode, its transitions are stored
in Bser , and if HER is active then virtual experiences are
added as well (Lines 13-14).17 Then the λ parameter of HiER
is updated and if the given condition is met, the episode is
stored in Bhier as well (Lines 15-18). In the next steps, the
c parameter of E2H-ISE is updated and the environment is
reinitialized (Line 19-21), thus the agent can start collecting
the next episode. At a given frequency, the weights of the
models are updated (Line 23-31). The batches of Dser and
Dhier are sampled and combined (Lines 24-26). After the
weight update (Line 27), if PER is active, the priorities inBser
are updated (Line 28). Finally, the ξ parameter and with it the
batch size of HiER is updated (Lines 29-30).

V. RESULTS
Our contributions were validated on 8 tasks of three robotic
benchmarks. The tasks are the push, slide, and pick-and-place
tasks of the Panda-Gym [37] and the Gymnasium-Robotics
Fetch benchmarks [38], and two mazes, depicted on Fig. 11
of the Gymnasium-Robotics PointMaze environment [39].
The Panda-Gym Environment is based on the PyBullet [40]
physics engine while the Gymnasium-Robotics Fetch and
PointMaze environments are based on MuJoCo [41].
It is important to note, that for all tasks, the state and action

spaces are continuous, and the reward function is sparse
without any reward shaping. Furthermore, the agent is devoid
of access to any form of demonstration. These constraints,
significantly exacerbate the difficulty of exploration.

The naming convention of the algorithms is the following:
Algorithm [Components]. The algorithm can be either Base-
line, HiER, or HiER+, and the options for the components are
HER and PER.18 Thus, Baseline [HER & PER] means that
the base (SAC, TD3, or DDPG) RL algorithm was applied
with HER and PER. On the other hand, HiER [HER] means
that the base RL algorithmwas appliedwith ourHiERmethod
and HER but without PER. HiER+ is HiER with E2H-ISE.

First and foremost, we present our evaluation protocol
in Section V-A which is essential for result reproducibility.
Then, the aggregate performance (across all tasks) of HiER
is shown compared to their corresponding baselines in
Section V-B. Subsequently, HiER and HiER+ (with E2H-
ISE) are thoroughly evaluated on the push, slide, and pick-

17Bser and Bhier are circular buffers, thus once they are full, the new
transitions are replacing the old ones.

18With the exception of Fig. 16.

and-place tasks of the Panda-Gym robotic benchmark in
Section V-C. Furthermore, HiER is evaluated on the push,
slide, and pick-and-place tasks and two mazes, depicted on
Fig. 11 of the Gymnasium-Robotics Fetch and PointMaze
benchmarks in Section V-D and Section V-E. Then, the
qualitative results of all tasks are evaluated in Section V-F.
Additionally, the comparisons of the different ξ , λ , and
c methods are presented in Section V-G1 and V-G2.
Finally, our method is validated with DDPG and TD3
in Section V-G3.
For our experiments, the SAC RL algorithm was chosen,

except in Section V-G3. The standard hyperparameters are
set as default in [52] except the discount factor γ = 0.95 as
in [37], and the SAC entropy maximization term α = 0.1.
The buffer size of Bhier was set to 106.

In all the experiments with the exception of Sec-
tion V-G1 and V-G2, HiER was applied with the
predefined λ method and with the prioritized
version of ξ when PER was active and with the fix version
with ξ = 0.5 otherwise. Furthermore, in HiER+, the E2H-
ISE method was employed with the self-paced option.
The aforementioned settings were selected according to our
comparison presented in Section V-G1 and V-G2.

A. EVALUATION PROTOCOL
For results reproducibility, it is important to disclose the
evaluation protocol. Each algorithm (configuration) and task
pair is trained in 10 independent runs with different random
seeds. For every run, at a specified frequency, the evaluation
performance of the model is measured, presented at Line 32-
34 of Algorithm 1. The two most relevant performance
metrics are the evaluation success rate and the evaluation
accumulated reward, henceforth success rate and reward.
In this paper, the performance is measured 50 times during
a single training, and each time, the evaluation score is
computed by taking the mean of 100 episodes. At the end
of the training, all evaluation data is saved and stored. For
the evaluation presented in this paper, in the case of success
rates, the best scores of each run were the base datapoints,19

meaning for each algorithm (configuration) and task pair
there are 10 datapoints, one for every run. This evaluation
protocol follows [14], [53], [54] and the idea is similar to the
method of early stopping.

In the following sections, the primary basis of evaluation is
the success rate which was chosen for the following reasons:
• Our main objective is to solve the tasks with the highest
success rate. As we focus on sparse reward scenarios
with Eq.(1), the only additional information in the
reward score is how fast the agent solved the task which
is less relevant in our case.

• The success rate is an already normalized scale between
zero and one. Reward scores of Eq.(1) with different
time horizons are significantly disparate.

19For calculating the mean, median, IQM, and OG scores.
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TABLE 2. HiER compared to the state-of-the-art across all tasks. For the reward, there is no universal desirable target, thus there is no OG value. The
column-wise best results are marked in bold. Both HiER version outperform their corresponding baseline. HiER [HER] yields the best performance in all
metrics.

FIGURE 3. HiER compared to the state-of-the-art across all tasks with 95% CIs. Both HiER version outperform their corresponding baseline. HiER [HER]
yields the best performance in all metrics. The point estimates are presented in Tab. 2.

FIGURE 4. Performance profiles across all tasks with 95% CIs. Left: run-score distribution, right: average-score distribution.
The red-dotted line shows the median values while the areas under the performance profiles correspond to the mean values
(comparing with Tab. 2, the average-score distribution needs to be examined). Both HiER and HiER [HER] have stochastic
dominance over their corresponding baselines.

• The reward value depends on the reward function itself.
The same task can be executed with a different reward
function, whose results are not comparable.

• The success rate could be seen as a specific reward
function giving zero reward to every non-goal state, and
one for every goal state.

Nevertheless, we report our reward scores, for the aggregated
results, presented in Tab. 2, and for the results of HiER and
HiER+ on the Panda-Gym environment, displayed in Tab. 5.
In the cases of reward scores, instead of the best, the last
values of each run were utilized. Our aim is to show that
our methods outperform the state-of-the-art not only in the
chosen evaluation protocol but in other protocols as well.

In general, we present our results with the mean, median,
interquartile mean (IQM), and optimality gap (OG) metrics.
For the former three, higher values are better, while for OG,
the lower score is better. In the case of the success rate,
the desired target is 1.0 which is the maximum achievable

score.20 For displaying the amount of uncertainty, in the
graphs, 95% confidence intervals (CIs) were applied.

For plotting the figures of aggregated results, the perfor-
mance profiles, and the probability improvements, the rliable
[48] library was utilized. Having 10 runs was sufficient, thus
we present our results without task bootstrapping (as default
in rliable).

B. AGGREGATED RESULTS ACROSS ALL TASKS
Prior to showing the experimental results on each of the three
robotic benchmarks, this section provides a summary of the
aggregated results across all tasks, focusing on HiER and
HiER [HER].

20As the desired target is 1.0 which is in itself the highest possible number,
these results are redundant as the mean is also presented. Nevertheless,
to facilitate comparison, we preferred to keep them in the graphs.

100110 VOLUME 12, 2024



D. Horváth et al.: HiER for Boosting Off-Policy Reinforcement Learning Agents

FIGURE 5. Probability of improvement of HiER versions compared to their
corresponding baselines and themselves across all tasks with 95% CIs.
The average probabilities from top to bottom are the following: 0.76,
0.88, and 0.85.

Our experimental results are presented in Tab. 2 and Fig. 3.
The results indicate that both HiER versions outperform
their corresponding baseline, and HiER [HER] yields the
best performance in all metrics. In terms of point estimates,
while Baseline [HER] yields 0.56 and -43.7 IQM success
rate and IQM reward, HiER [HER] achieves 0.83 and
-32.48 scores which are increments of 0.27 and 11.22, respec-
tively. Moreover, regarding the uncertainty, both HiER and
HiER [HER] are superior to their corresponding baselines as
the confidence intervals do not overlap.

Additionally, the performance profile graph, presented
in Fig. 4, displays the run-score and the average-score
distributions of the aforementioned algorithms. It shows that
both HiER and HiER [HER] have stochastic dominance over
their baselines.

Finally, Fig. 5 shows that both HiER and HiER [HER]
outperform their baselines with 0.85 and 0.88 probability.21

Additionally, HiER [HER] surpasses HiERwith a probability
of 0.76.

C. PANDA-GYM
Having presented the aggregated results on HiER, we present
our results on the Panda-Gym robotic benchmark with more
details and task-specific results. Additionally, we demon-
strate how HiER+ with E2H-ISE can further improve the
performance of HiER. From the Panda-Gym robotic bench-
mark, three robotic manipulation tasks were considered:
• PandaPush-v3: A block needs to be pushed to a
target. Both the block starting position and the target
position are within the reach of the robot.

• PandaSlide-v3: A puck needs to be slid to a target
position outside of the reach of the robot.

• PandaPickAndPlace-v3: A block needs to be
moved to a target that is oftentimes in the air thus the
robot needs to grasp the block.

The starting position of the block (or the puck) and the goal
position are sampled from the corresponding distributions.
The action space is composed of incremental actions on the
tool center point in x, y, and z axes. Furthermore, in the
case of the PandaPickAndPlace-v3 task, the action

21Important to note, that these probabilities could be significantly higher
if the easy tasks were removed.

space expanded with a continuous gripper control action. The
reward function is sparse, as described in Eq.(1). The tasks
are depicted in Fig. 6. For further details, we refer the reader
to [37].

The aggregated results are presented in Fig. 7, while the
performance profiles of the algorithms are demonstrated
in the left side of Fig. 8. Our experimental results show
that HiER (blue) and both versions of HiER+ (purple and
magenta) significantly outperform the baselines (gray), while
E2H-ISE alone could only slightly improve the performance.
Moreover, the right side of Fig. 8 shows at least a 0.99 average
probability of improvement for our methods compared to the
baselines.

Regarding the specific tasks, the learning curves of
the selected configurations are depicted in Fig. 6. For
all cases, HiER and HiER+ significantly outperform the
baselines. Moreover, Tab. 3 presents a simplified summary
of the performance of the algorithms on the specific tasks.
Our results show that HiER [HER] enhances its baseline
by an increment of 0.03, 0.44, and 0.12 IQM score on
the PandaPush-v3, PandaSlide-v3, and Panda-
PickAndPlace-v3 tasks. Nevertheless, HiER+ [HER]
further improves the performance, achieving 1.0, 0.82, and
0.71 IQM scores. Tab. 4 and Tab. 5 display the results of all
configurations based on their success rates and rewards.

D. GYMNASIUM-ROBOTICS FETCH
In this section, HiER is evaluated on the FetchPush-
-v2, FetchSlide-v2, and FetchPickAndPlace-v2
tasks of the MuJoCo-based Gymnasium-Robotics Fetch
environment.

Even though the tasks are similar to the Panda-Gym
robotic benchmark, the robot configuration, the observation
space, and the environment dynamic (different simulator) are
disparate. Our goal with these experiments is to demonstrate
that HiER does not uniquely work for the Panda-Gym robotic
benchmark. The tasks are depicted in Fig. 9. For more details,
we refer the reader to [38].

In this section, HiER and HiER [HER] are compared
with their corresponding baselines. Our experiment results
are presented in Tab. 6 and depicted in Fig. 9 and Fig. 10.
In all cases, the HiER versions outperform their corre-
sponding baselines. Regarding the FetchPush-v2 task,
HiER [HER] improves the IQM score of the Baseline [HER]
method by 0.06 (increasing from 0.92 to 0.98). In the case
of the FetchSlide-v2 task, HiER achieves the best
result with a 0.56 IQM score, yielding a 0.54 increase
compared to its baseline with 0.02. Interestingly, adding HER
worsens the performance. Nevertheless, HiER [HER] still
outperforms Baseline [HER]. Finally, for the FetchPick-
AndPlace-v2 task, HiER [HER] achieves a 0.73 IQM
score. Compared to the Baseline [HER] method with 0.24,
it yields a 0.49 improvement. Interesting to note that for
the latter two tasks, both HiER versions outperform both
baselines.
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FIGURE 6. Learning curves of HiER and HiER+ with E2H-ISE compared to the state-of-the-art based on success rates on the push, slide, and
pick-and-place tasks of the Panda-Gym robotic benchmark with 95% CIs.

FIGURE 7. Aggregate metrics on the push, slide, and pick-and-place tasks of the Panda-Gym robotic benchmark with 95% CIs. HiER (blue) and both
versions of HiER+ (purple and magenta) significantly outperform the baselines (gray). E2H-ISE alone could slightly improve the performance of the
baseline.

FIGURE 8. Left: performance profiles (run-score distribution) on the push, slide, and pick-and-place tasks of the Panda-Gym robotic benchmark
with 95% CIs. Right: Probability of improvement on the push, slide, and pick-and-place tasks of the Panda-Gym robotic benchmark with 95%
CIs. The average probabilities from top to bottom: 0.625, 0.857, 0.86, 1.0, 1.0, 0.99, 0.99, 1.0, 1.0, and 1.0.

E. GYMNASIUM-ROBOTICS POINTMAZE
In this section, HiER is evaluated on the PointMazeWall-
-v3 and PointMaze-S-v3 tasks of the MuJoCo-based
Gymnasium-Robotics PointMaze environment to show the

universality of our approach in a fundamentally different
problem.

In these tasks, a ball, placed in a maze, needs to move from
the start position to the goal position in a continuous state and
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TABLE 3. Simplified summary of our results on the push, slide, and pick-and-place tasks of the Panda-Gym robotic benchmark based on success rates.
The column-wise best results are marked in bold. The full table with all the configurations is presented in Tab. 4.

TABLE 4. HiER and HiER+ compared to the state-of-the-art based on success rates on the Panda-Gym robotic benchmark. On the left side of the header,
the components of the specific algorithm are displayed (HER, PER, ISE, HiER). The column-wise best results are marked in bold.

TABLE 5. HiER and HiER+ compared to the state-of-the-art based on the evaluation rewards on the Panda-Gym robotic benchmark. On the left side of
the header, the components of the specific algorithm are displayed (HER, PER, ISE, HiER). The desired performance scores for the OG metric are -10, -20,
and -30 for the push, slide, and pick-and-place tasks respectively. The column-wise best results are marked in bold.

TABLE 6. HiER compared to the state-of-the-art based on success rates on push, slide, and pick-and-place tasks of the Gymnasium-Robotics Fetch
benchmark. The column-wise best results are marked in bold.

action space. The start and the target positions are generated
randomly with some constraints. For more details, we refer
the reader to [39].

In our experiments, two different maze layouts were
considered as depicted in Fig. 11. The reward function is
changed to Eq. (1). As the tasks take longer to execute, the
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FIGURE 9. Learning curves of HiER compared with its baselines on push, slide, and pick-and-place tasks of the Gymnasium-Robotics Fetch benchmark
with 95% CIs.

FIGURE 10. Aggregate metrics on the push, slide, and pick-and-place tasks of the Gymnasium-Robotics Fetch benchmark with 95% CIs. Both HiER
(blue) and HiER [HER] (magenta) significantly outperform the baselines (light blue and purple).

FIGURE 11. The tasks of Gymnasium-Robotics PointMaze environment [39]. The mazes were custom-made, thus we named them accordingly. The layouts
(b) and (d) show the placement of the walls and the possible start and target positions from a top view. The environment is based on the MuJoCo
simulator [41].

horizon is 500 timestep which is tenfold compared to the
robotic manipulation tasks. Thus, for these experiments, the
discount factor γ was set to one.22

22Not having a discount on future reward does not pose a problem as the
reward function is formulated with -1 reward in every timestep, described in
Eq.(1). Thus, the agent aims to solve the task as fast as possible.

The results of our experiments are presented in Tab. 7 and
depicted in Fig. 12. In the case of the PointMaze-Wall-
-v3 task, the results are quite close to the optimal 1.0 success
rate, thus there is no significant difference, even though
HiER still performs equally or better than the baselines
depending on the metrics and the configurations. Regarding
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FIGURE 12. Learning curves of HiER compared with its baselines on the
Gymnasium-Robotics PointMaze environment with 95% CIs.

TABLE 7. HiER compared to the state-of-the-art based on success rates on the Gymnasium-Robotics PointMaze environment. The column-wise best
results are marked in bold.

FIGURE 13. The analysis of HiER λ versions (a) and (b), and HiER ξ versions (c). HiER λ ama parameters: λ0 = −50, λmax = −10 M = 0 and w = 20. The
without version indicates that HiER was not used.

FIGURE 14. Comparison of different HiER λ methods on the slide task of the Panda-Gym benchmark with 95% CIs. The
predefined λ method is seemingly superior, although the CIs with the fix λ method overlap. HiER λ ama parameters:
λ0 = −50, λmax = −10 M = 0 and w = 20. The profiles of HiER λ are depicted on Fig. 13 (b).

themore challengingPointMaze-S-v3 task, HiER [HER]
outperforms Baseline [HER] by 0.2 IQM score, rising from
0.69 to 0.89.

F. QUALITATIVE EVALUATION
In this section, the qualitative evaluation of the afore-
mentioned tasks is presented. We refer the reader to the

project site23 to watch our results compared with the
baselines.

Regarding the Panda-Gym and the Gymnasium-Robotics
Fetch environment, on many occasions, the baseline appears
to be disoriented and incapable of completing the task.
It appears that, during the training process, the agent

23http://www.danielhorvath.eu/hier/#bookmark-qualitative-eval
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FIGURE 15. Comparison of different HiER ξ methods on the slide task of the Panda-Gym benchmark with 95% CIs. The
fix ξ = 0.25, ξ = 0.5, and the prioritized appear to be the best versions in this order, although their CIs overlap.

FIGURE 16. Comparison of different E2H-ISE c methods on the slide task of the Panda-Gym benchmark with 95% CIs. The parameters of
the methods and the point estimates are presented in Tab. 8.

became entrapped in a local minimum as a result of
the challenging exploration problem caused by the con-
tinuous state and action space, the sparse reward, and
the lack of demonstrations. This phenomenon is signif-
icantly less frequent in the case of HiER and HiER+
which solve the tasks with a considerably higher suc-
cess rate, in correlation with the presented quantitative
evaluation.

In the case of the Gymnasium-Robotics PointMaze envi-
ronment, the qualitative evaluation does not show relevant
differences. The primary reason is that while the mean,
median, and IQM success rate scores are considerably
higher in the case of HiER [HER], both HiER [HER] and
Baseline [HER] managed to obtain a perfect success rate
of 100% at least once in the PointMaze environment (see
Tab. 7).

G. OTHER
In this section, the different λ , ξ , and cmethods are presented
in Section V-G1 and V-G2. Additionally, our method is
validated with DDPG and TD3 in Section V-G3. All
experiments were conducted on the Panda-Gym benchmark.

1) HIER λ AND ξ METHODS
The comparison of the different HiER λ methods are depicted
in Fig. 13 (a) and (b) and Fig. 14. The experiments were
executed without HER, PER, and E2H-ISE. In these settings,
the predefined λ method outperforms the other variants,
although its CI overlaps the CI of the fix λ method. The λ

profiles are presented in Fig. 13 (b).

The impact of HiER ξ method is shown in Fig. 13 (c) and
Fig. 15. The experiments were executed with HER and E2H-
ISE but without PER. In these settings, the fix ξ = 0.25,
ξ = 0.5, and the prioritized ξ method appear to be
the best versions in this order, although their CIs overlap.24

Important to note, that when PER is active, it scales the
gradient proportionally to the probability of the samples, thus
prioritized ξ mode is recommended to counterbalance
this effect.

2) E2H-ISE VERSIONS
The different E2H-ISE cmethods are presented in Tab. 8 and
displayed in Fig. 16. The experiments were executed without
PER. The ranking of E2H-ISE versions is relatively sensible
for the applied methods (HER and HiER). Without HiER,
there is no significant difference between the cmethods.With
HiER but without HER the control and the control
adaptive c methods yield the highest performance,
although their CIs overlap with the other versions.With HiER
and HER, the control adaptive and self-paced c
methods achieve the best performance. Nevertheless, further
optimization, or possibly another version of E2H-ISE could
improve the performance.

3) TD3 AND DDPG
To validate ourmethods not only with SAC, Fig. 17 and Tab. 9
show our results in the case of DDPG and TD3. In both cases,
HiER+ improved the results of the baseline. In the case of

24In other settings, we found ξ = 0.5 slightly better than the others.
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TABLE 8. The effect of the E2H-ISE c methods on the success rates on the PandaSlide-v3 task. HiER parameters: λ mode predefined and ξ fix with
ξ = 0.5. E2H-ISE parameters: self-paced 9low = 0.2, 9high = 0.8 and δ = 0.05; control: ψ = 0.8 and δ = 0.01; control adaptive: 1 = 0.2,
ψmax = 0.9, and δ = 0.01. The row-wise best results are marked in bold.

FIGURE 17. Comparison of the TD3 and DDPG versions of HiER+ with their baselines on the push, slide, and
pick-and-place tasks of the Panda-Gym benchmark with 95% CIs. The point estimates are presented in Tab. 9.

TABLE 9. HiER+ compared to the state-of-the-art based on success rates on the Panda-Gym robotic benchmark in the case of TD3 and DDPG. The
column-wise best results for TD3 and DDPG separately are marked in bold.

TD3 (blue), the improvement is more significant as the CIs do
not overlap. In the case of DDPG (magenta), although there
is a considerable improvement, the CIs overlap.

VI. CONCLUSION
In this work, we introduced a novel technique called the
highlight experience replay (HiER) to facilitate the training of
off-policy reinforcement learning agents in a robotic, sparse-
reward environment with continuous state and action spaces.
Furthermore, the agent is devoid of access to any form of
demonstration. These constraints, significantly exacerbate
the difficulty of exploration.

In our method, a secondary replay buffer is created to
store the most relevant experiences based on some criteria.
At training, the transitions are sampled from both the standard
experience replay buffer and the highlight experience replay
buffer. Similarly to the hindsight experience replay (HER)
and prioritized experience replay (PER), HiER can be
added to any off-policy reinforcement learning algorithm.
Following [34], HiER is classified as a data exploitation (or
implicit) curriculum learning method.

To demonstrate the universality of HiER, it was validated
on 8 tasks of three different robotics benchmarks [37], [38],
[39] based on two different simulators [40], [41]. On one
hand, among the 8 tasks, 3-3 were the same in principle
(push, slide, and pick-and-place) but the robot configurations,
the state spaces, and the dynamics of the environments
were disparate. On the other hand, the last 2 tasks were

fundamentally different as a ball needed to find a target in
different mazes.

In all of the experiments, HiER significantly improved
the state-of-the-art methods. Our experimental results show
that HiER is especially beneficial in hard-to-solve tasks
such as PandaSlide-v3, FetchPickAndPlace-v2,
or PointMaze-S-v3.

HiER collects and stores positive experiences to improve
the training process. With HiER+, we showed how HiER
can benefit from a traditional, data collection curriculum
learning method as well. Lack of general and easy-to-
implement solutions, we proposed E2H-ISE, an easy2hard
data collection CL method that requires minimal prior
knowledge and controls the entropy of the initial state-
goal distribution H(µ0) which indirectly controls the task
difficulty. Nevertheless, applying more sophisticated CL
methods in place of E2H-ISE might be beneficial in future
research.

HiER+ was validated on the PandaPush-v3, Panda-
Slide-v3, and PandaPickAndPlace-v3 tasks of the
Panda-Gym [37] robotic benchmark. Our results show that
HiER+ could further improve the performance of HiER.
Furthermore, we presented our experiments on the differ-

ent λ , ξ , and cmethods of HiER and E2H-ISE. On one hand,
we found that in the case of HiER λ , the predefined ver-
sion was superior. On the other hand, the rankings of the ξ and
c methods are more unambiguous and depend on the applied
configuration. We also showed that HiER+ improves the
baselines not only with SAC but with TD3 andDDPG aswell.
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Additionally, the qualitative analysis revealed that
HiER and HiER+ showed a reduced tendency to be
trapped in local minima compared to the vanilla baseline
methods.

For future work, we will investigate other possible HiER
versions. Moreover, we are interested in how HiER+ could
facilitate sim2sim and sim2real knowledge transfer.
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