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Finite-Sample Identification of Linear Regression
Models With Residual-Permuted Sums
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Abstract—This letter studies a distribution-free,
finite-sample data perturbation (DP) method, the Residual-
Permuted Sums (RPS), which is an alternative of the
Sign-Perturbed Sums (SPS) algorithm, to construct
confidence regions. While SPS assumes independent
(but potentially time-varying) noise terms which are
symmetric about zero, RPS gets rid of the symmetricity
assumption, but assumes i.i.d. noises. The main idea is
that RPS permutes the residuals instead of perturbing
their signs. This letter introduces RPS in a flexible way,
which allows various design-choices. RPS has exact finite
sample coverage probabilities and we provide the first
proof that these permutation-based confidence regions are
uniformly strongly consistent under general assumptions.
This means that the RPS regions almost surely shrink
around the true parameters as the sample size increases.
The ellipsoidal outer-approximation (EOA) of SPS is also
extended to RPS, and the effectiveness of RPS is validated
by numerical experiments, as well.

Index Terms—Identification, linear systems, randomized
algorithms.

I. INTRODUCTION

ESTIMATING dynamical systems based on empirical
data is a fundamental problem in system identification,

machine learning and statistics. Classical results in the afore-
mentioned areas, such as prediction error methods, typically
provide point estimates with asymptotically guaranteed confi-
dence regions [1]. However, in practical problems, where the
robustness of the solution is a crucial aspect, confidence sets
with finite sample guarantees are highly desirable. Due to these
reasons, in the recent years, significant emphasis was given to
the non-asymptotic theory of system identification [2].
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A possible approach to build confidence regions with finite
sample guarantees for i.i.d. samples is to utilize randomized
hypothesis tests, e.g., Monte Carlo or bootstrap methods [3].
For linear regression problems, a random permutation based
test was presented in [4], however, it builds on asymptotic
approximations, hence it lacks finite sample guarantees.

An important identification method that uses the ideas
behind randomized tests and can build exact confidence
regions for finite sample sizes with distribution-free guar-
antees is Sign-Perturbed Sums (SPS) [5]. Later SPS was
generalized, and Data Perturbation (DP) methods were
introduced [6].

The core idea of SPS is to perturb the signs of the residuals
in the normal equations, assuming that the measurement noises
are independent and symmetric about zero. Then, based on
the rank statistics computed from these perturbed quantities,
SPS builds a confidence region around the least-squares (LS)
estimate [5]. DP methods generalize this idea in a way that
they allows different types of perturbations depending on the
characteristics of the observation noises. As a prime example,
a permutation-based DP method was introduced in [6], where
the residuals are permuted instead of sign-perturbed. This
requires exchangeable noises, but symmetricity is not needed.

Another approach to relax the symmetricity assumption of
SPS is LAD-SPS which builds confidence regions around the
least-absolute-deviation (LAD) estimate under the assumption
that the conditional medians of the noises are zero [7]. In
all of the above mentioned algorithms, the coverage proba-
bility of the true parameters can be exactly guaranteed for
any finite sample size, and the confidence set is given by
an indicator function that can be queried at any parameter
vector.

For linear regression problems, the (uniform) strong con-
sistency of SPS was proven in [8], which means that the
SPS regions almost surely shrink around the true system
parameters as the sample size increases. In addition, a compact
representation of SPS confidence sets, given by an ellipsoidal
outer-approximation (EOA) algorithm, was proposed in [5].

As so far consistency was only proven for SPS, it remained
an open question whether other types of DP methods, such as
permutation-based constructions, are consistent, as well. In this
letter, we propose the Residual-Permuted Sums (RPS) method
for linear regression problems, which is a generalization of
the original permutation-based approach of [6]. We rigorously
prove the (uniform) strong consistency of RPS under general
statistical assumptions, and also extend the EOA of SPS
to RPS. Finally, simulation experiments are presented that
demonstrate the effectiveness of RPS by comparing it with
SPS and asymptotic confidence ellipsoids.
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II. PROBLEM SETTING

This section specifies the addressed linear regression
problem and introduces our main assumptions on the system.

A. Data Generation
Consider the following linear regression problem

Yt
.= ϕT

t θ
∗ + Wt, (1)

for t ∈ [n]
.= {1, . . . , n}, where ϕt is a d-dimensional random

regressor, Yt is the scalar output, Wt is the (random) scalar
noise and θ∗ is the d-dimensional (constant) true parameter.
We are given a sample of size n which consists of regressor
vectors (inputs) ϕ1, . . . , ϕn and outputs Y1, . . . ,Yn.

B. Assumptions
Our assumptions on the noises and the regressors are
A1: The noise terms {Wt} are independent and identically

distributed (i.i.d.) with finite fourth moments: E[W4
0 ] < ∞.

Note that these assumptions on the noises are very mild,
as most strong consistency results assume independence and
require moment conditions from the noise terms. Also note
that unlike SPS [5], the noises do not have to be symmetric
about zero, nor do they need zero mean; however their i.i.d.
nature is essential to ensure exact coverage probabilities.

A2: Regressors {ϕt} have uniformly bounded fourth
moments, ∀ t : E[‖ϕt‖4] ≤ κ < ∞, and they are �-
independent: ∀ t : ϕt ⊥⊥ {ϕk}|t−k|≥�, where “⊥⊥” denotes
independence.

A consequence of �-independent regressors is that our
analysis covers FIR and Generalised FIR models [1]. Also
note that the independence of {ϕt} and {Wt} is not assumed.

C. Co-Regressor Construction
We introduce a co-regressor based construction that is used

by the proposed RPS algorithm. The motivation for using co-
regressors is to cover various design-choices. We denote the
d-dimensional random co-regressor by ψt, and assume that

A3: The co-regressor vectors {ψt} are �-independent with
uniformly bounded fourth moments, i.e., for every t, we have
E[‖ψt‖4] ≤ κ < ∞, furthermore {ψt} is independent of the
noise sequence {Wt}, and for every t : E[ψtWt] = 0.

A4: We have

∀ i, j : |i − j| ≥ � : ψi ⊥⊥ ϕj and E
[
ψiϕ

T
j

] = 0, (2)

∀ k, l : ∀ i, j : |i − j| < � : E
[
ψ4

i,kϕ
4
j,l

] ≤ κ < ∞, (3)

furthermore, the condition below holds almost surely

lim
n→∞

1

n

n∑

t=1

ψtϕ
T
t
.= lim

n→∞ Vn = V � 0, (4)

where “� 0” denotes positive definiteness.
A5: There are user-chosen (random) matrices {Rn}, such that

{Rn} ⊥⊥ {Wt}, {Rn} are positive semidefinite, and there is a
positive definite R, such that almost surely

lim
n→∞ Rn = R � 0, (5)

Matrices {Rn} are only introduced to allow the reshaping of
RPS regions, however, Rn = In is also a valid choice.

There are several possible design choices for co-regressors
that can satisfy A3 and A4, here we list some of them. In

Algorithm 1 Pseudocode: RPS-Initialization (p)
1: Given a (rational) confidence probability p ∈ (0, 1), set

integers m > q > 0 such that p = 1 − q/m.
2: Choose a positive semidefinite matrix Rn and find its

principal square root R1/2
n , i.e., the p.s.d. matrix with

R1/2
n R1/2T

n = Rn.

3: For all i ∈ [n], generate (independent) uniform random
permutations σi,n of [n], that is, each of the n! possible
permutations has probability 1/(n!) to be selected.

4: Generate a random permutation π of {0, . . . ,m − 1}
uniformly, i.e., each permutation has probability 1/(m!)

case E[ϕt] is known, and the regressors are independent of
the noises, one can simply use ψt

.= ϕt − E[ϕt] as a co-
regressor. In case E[ϕt] is unknown, one can replace it with
an estimate, ψt

.= ϕt − ζt, where E[ζt] = E[ϕt], for example,
an independent copy of ϕt can be used as ζt. Finally, one can
also apply ψt

.= f (ϕt), where f is a suitable function.
Let us illustrate this latter option with signed-regressors

often used in adaptive filtering [9]. Let d = 1 and Yt
.= ϕt θ

∗+
|ϕt|Nt, where ϕt ⊥⊥ Nt and ϕt,Nt ∼ N (0, 1). Then, Wt

.=
|ϕt|Nt is not independent of ϕt. However, as sign(ϕt) and |ϕt|
are independent, we can use ψt

.= sign(ϕt) as a co-regressor,
since this ensures the independence of ψt and Wt.

III. THE RESIDUAL-PERMUTED SUMS ALGORITHM

In this section, we introduce the Residual-Permuted Sums
algorithm. The method is a generalization of the permutation-
based hypothesis test proposed in [6]. It consists of two
parts, in the first part the main parameters and the random
permutations are computed, while the second part decides
whether a given parameter θ is included in the confidence
region. The first part is given by Algorithm 1 and the second is
presented by Algorithm 2. Using this construction, the p-level
RPS confidence region can be defined as follows

Cp,n
.= {θ ∈ R

d: RPS-Indicator (θ) = 1}. (6)

A. Exact Coverage of RPS Confidence Regions
The exact coverage probability of the permutation-based

variant of SPS was proved in [6], for the case of deterministic
regressors. This result can be extended to cover the exact
confidence of RPS regions under our assumptions:

Theorem 1: Assuming {Wt} are i.i.d., and Rn, {ψt} are inde-
pendent of {Wt}, the coverage probability of the constructed
confidence region Cp,n is exactly p, that is

P
(
θ∗ ∈ Cp,n

) = 1 − q

m
= p. (7)

Proof: The exact coverage of RPS regions can be proven
very similarly to the proofs in [5], [6], [10]: by showing that
{‖Si(θ

∗)‖2}m−1
i=0 are exchangeable. First, for deterministic Rn

and {ψt}, it can be shown that {‖Si(θ
∗)‖2}m−1

i=0 are condition-
ally i.i.d. (thus also exchangeable) w.r.t. the ordered noises,
i.e., the σ -algebra generated by (W(1), . . . ,W(n)). This can be
generalized for random Rn and {ψt} by using that they are
independent of {Wt} and the law of total expectation, i.e., by
conditioning on Rn and {ψt}, as well.
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Algorithm 2 Pseudocode: RPS-Indicator (θ )
1: Compute the prediction errors for θ : for t ∈ [n] let

εt(θ)
.= Yt − ϕT

t θ.

2: Evaluate for i ∈ [m − 1] the following functions:

S0(θ)
.= R

− 1
2

n
1

n

n∑

t=1

ψtεt(θ),

Si(θ)
.= R

− 1
2

n
1

n

n∑

t=1

ψtεσi,n(t)(θ).

3: Compute the rank of ‖S0(θ)‖2 among {‖Si(θ)‖2}:

R(θ) .=
[

1 +
m−1∑

i=1

I

(∥∥S0(θ)
∥∥2 �π

∥∥Si(θ)
∥∥2
)]

,

where “�π” is “>” with random tie-breaking, i.e.,
‖Sk(θ)‖2 �π ‖Sj(θ)‖2 if and only if (‖Sk(θ)‖2 >

‖Sj(θ)‖2) ∨ (‖Sk(θ)‖2 = ‖Sj(θ)‖2 ∧ π(k) > π(j)).
4: Return 1 if R(θ) ≤ m − q, otherwise return 0.

IV. STRONG CONSISTENCY OF RPS REGIONS

In this section, we present one of the main contributions
of this letter, the proof that the confidence regions generated
by RPS are strongly consistent. First, we prove a lemma that
plays a key part in the proof of the main theorem.

A. Permutation Lemma
The next lemma is a strong law of large numbers (SLLN)

for randomly permuted sequences. The main idea behind its
proof is to extend Cantelli’s SLLN [11]. Note that SLLN type
theorems for permuted sequences in the literature mainly focus
on a single exchangeable sequence, however, we have a new
permutation for every n, i.e., a double-indexed sequence.

Lemma 1: Let {Xi} and {Yi} be sequences of �-independent
random variables with E[Xa

i Yb
j ] ≤ κ0 < ∞ for all |j − i| < �

and a, b ∈ N0 satisfying 0 ≤ a, b ≤ 4 and (a = b or a+b ≤ 4).
Furthermore, for |j − i| ≥ � let Xi and Yj be independent and
E[XiYj] = 0. Let {σn} be independent, where σn is a uniform
random permutation of [n]. Then, we have

1

n

n∑

i=1

XiYσn(i)
a.s.−→ 0 (as n → ∞). (8)

Proof: For every s ∈ N, let Js
.= {s, s + �, s + 2 �, . . . }.

Then, for each s, {Xj}j∈Js is an independent sequence. Let Is
.=

In
s
.= Js ∩ [n], hence if s ≤ �, �n/�� ≤ |Is| ≤ �n/��.

By the (first) Borell-Cantelli lemma [12], (8) holds if

∞∑

n=1

P

{∣∣∣∣
1

n

n∑

i=1

XiYσn(i)

∣∣∣∣ ≥ ε

}

≤
∞∑

n=1

P

{∣∣∣∣
1

n

∑

i∈I1

XiYσn(i)

∣∣∣∣+ · · · +
∣∣∣∣
1

n

∑

i∈I�

XiYσn(i)

∣∣∣∣ ≥ ε

}

≤
∞∑

n=1

�∑

s=1

P

{∣∣∣∣
1

n

∑

i∈Is

XiYσn(i)

∣∣∣∣ ≥ ε

�

}
< ∞, (9)

for any ε > 0, where we applied the triangular inequality
and the union bound. By using the (generalized) Chebyshev
inequality, the convergence of the series in (9) follows from

�4

ε4

∞∑

n=1

�∑

s=1

E

∣∣∣
1

n

∑

i∈Is

XiYσn(i)

∣∣∣
4
< ∞. (10)

Therefore, our goal will be to show (10). Let us expand
∣∣∣
∑

i∈Is

XiYσn(i)

∣∣∣
4 =

∑

i∈Is

X4
i Y4
σn(i)

+ 6
∑

i,j∈Is,i<j

X2
i Y2
σn(i)X

2
j Y2
σn(j)

+ 12
∑

i,j,k∈Is,i<j<k

X2
i Y2
σn(i)XjYσn(j)XkYσn(k)

+ 24
∑

i,j,k,l∈Is,i<j<k<l

XiYσn(i)XjYσn(j)XkYσn(k)XlYσn(l)

+ 8
∑

i,j∈Is,i �=j

X3
i Y3
σn(i)XjYσn(j). (11)

Now, we will take the expectation of (11), term by term.
In the first two terms, for any permutation, none of the
summed expected values are zero, and each one of them can
be upper bounded by a corresponding power of κ0 using our
independence and moment assumptions. Note that a = b = 0
is also allowed which ensures that κ0 ≥ 1. Then,

�∑

s=1

∑

i∈Is

E

[
X4

i Y4
σn(i)

]
≤ ��n/��κ2

0 = O(n),

�∑

s=1

∑

i,j∈Is,i<j

E

[
X2

i Y2
σn(i)X

2
j Y2
σn(j)

]
≤ �

(� n
�
�

2

)
κ4

0 = O
(

n2
)
.

(12)

In order to upper bound the expectation of the third term,
we introduce the �-neighbourhood of index i as N(i)

.=
{j : |i − j| < �}. If j /∈ N(i), then E[XiYj] = 0 and Xi ⊥⊥
Yj, and consequently, the summed expectations in the third
term can be nonzero only: a) if the �-neighbourhoods of j
and k each contains at least one of σn(i), σn(j), σn(k) or b)
σn(j) and σn(k) are in the �-neighbourhood of i or σn(i), or if
they in the �-neighbourhood of each other. More precisely, by
using the law of total probability and introducing the events
A
.= Ai(j, k)

.= {σn(i) ∈ N(j) ∩ N(k)} and Bj(k)
.= Bj(i, k)

.=
{σn(j) ∈ N(i) ∪ N(σn(i)) ∪ N(σn(k))},

�∑

s=1

∑

i,j,k∈Is
i<j<k

E
[
X2

i Y2
σn(i)XjYσn(j)XkYσn(k)

∣
∣A ∨ (Bj(k) ∧

Bk(j))
]
P
(
A ∨ (Bj(k) ∧ Bk(j))

) ≤ �

(� n
�
�

3

)
κ4

0 ·

·
[(
� (n − 1) (n − 2)

n(n − 1)(n − 2)

)
+
(

4� 6� (n − 2)

n(n − 1)(n − 2)

)]
= O

(
n2
)
,

(13)

where the upper bound κ4
0 on the conditional expectation

follows from our moment assumptions and the repeated
application of the Cauchy–Schwarz inequality. The argument
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behind the definition of event A is to cover the possibilities
given in the description of point a). Note that it can be that
N(j) ∩ N(k) �= ∅ due to the construction of Is, and our
definition of A gives the least constraints on σn to ensure that
the corresponding summand has a nonzero expectation. As
event A has the highest probability among those events that
ensure this, P(A) = O(1/n) can be used as an upper bound
for the probabilities of all events described in a).

The expectation of the fourth term can be upper bounded
very similarly to the third one, using case separation. For the
sake of brevity, we only provide the final bound

�∑

s=1

∑

i,j,k,l∈Is
i<j<k<l

E
[
XiYσn(i)XjYσn(j)XkYσn(k)XlYσn(l)

]

≤ �

(� n
�
�

4

)
κ5

0

[(
�2 (n − 2) (n − 3)

n(n − 1)(n − 2)(n − 3)

)

+
(
(n − 5�)(n − 7�)2� 4�

n(n − 1)(n − 2)(n − 3)

)]
= O

(
n2
)
, (14)

where we can repeatedly use Hölder’s inequality to upper
bound the expectation terms in (14) by κ5

0 .
The expectation of the fifth term of (15) can be upper

bounded similarly to the second term, that is by using that at
most n2 expectations are summed, therefore

�∑

s=1

∑

i,j∈Is,i<j

E

[
X3

i Y3
σn(i)XjYσn(j)

]
= O

(
n2
)
. (15)

Putting the five expectations together, we get

�∑

s=1

E

(
n∑

i=1

XiYσn(i)

)4

= O
(

n2
)
. (16)

Consequently, we can conclude that:

�4

ε4

∞∑

n=1

�∑

s=1

E

∣∣
∣∣
1

n

n∑

i=1

XiYσn(i)

∣∣
∣∣

4

≤ c
∞∑

n=1

1

n2
< ∞, (17)

for some constant c, which completes the proof.

B. Strong Consistency
In the following, we state and prove our main theorem about

the strong consistency of RPS. Our proof takes several ideas
from the strong consistency proof of IV-SPS [10]. A major
difference is that in case of sign-perturbations (such as in
IV-SPS), standard SLLN type results can be applied, while for
the case of RPS, we must use Lemma 1.

Theorem 2: Assuming A1-A5, ∀ ε > 0, we have

P

( ∞⋃

k=1

∞⋂

n=k

{ Cp,n ⊆ Bε
(
θ∗)}

)
= 1, (18)

where Bε(θ∗) .= { θ ∈ R
d:
∥∥θ − θ∗∥∥ ≤ ε }.

Proof: In the first part of the proof we are going to prove
that for any “false” parameter vector θ ′ �= θ∗, we have

∥∥S0
(
θ ′)∥∥2 a.s.−−→ ∥∥R− 1

2 V
(
θ∗ − θ ′)∥∥2

> 0, (19)

while, for i �= 0, we have
∥∥Si
(
θ ′)∥∥2 a.s.−−→ 0, (20)

as n → ∞. Recall the definitions of V and R from A4, A5. As
a consequence of (19) and (20), as n grows, the rank R(θ ′)
of
∥∥S0(θ

′)
∥∥2 will be eventually m, therefore θ ′ will be (a.s.)

excluded from the confidence region, as n → ∞.
As a first step, we reformulate S0(θ

′) and Si(θ
′),

S0
(
θ ′) = R

− 1
2

n
1

n

n∑

t=1

ψtεt
(
θ ′)

= R
− 1

2
n

1

n

n∑

t=1

ψt
(
ϕT

t θ
∗ + Wt − ϕT

t θ
′)

= R
− 1

2
n

1

n

n∑

t=1

ψtϕ
T
t θ̃ + ψtWt, (21)

Si
(
θ ′) = R

− 1
2

n
1

n

n∑

t=1

ψtεσi,n(t)
(
θ ′)

= R
− 1

2
n

1

n

n∑

t=1

ψt

(
ϕT
σi,n(t)θ

∗ + Wσi,n(t) − ϕT
σi,n(t)θ

′)

= R
− 1

2
n

1

n

n∑

t=1

ψtϕ
T
σi,n(t)θ̃ + ψtWσi,n(t), (22)

where θ̃
.= θ∗ − θ ′. We will examine the four terms from (21)

and (22) separately. In case of the reference sum, we first
assume that � = 1, then generalize our result to arbitrary �.

i) Reference sum first term: Using A4 and A5 it holds that

lim
n→∞ R

− 1
2

n
1

n

n∑

t=1

ψtϕ
T
t θ̃ = R− 1

2 V θ̃ (a.s.). (23)

In the following, we will prove almost sure convergence to

zero for every sum, therefore the term R
− 1

2
n can be omitted

from the sums as R
− 1

2
n

a.s.−−→ R− 1
2 (A5).

ii) Reference sum second term: Using Cantelli’s SLLN
element-wise it can be proven that

lim
n→∞

1

n

n∑

t=1

ψtWt = 0 (a.s.), (24)

since {ψt,jWt} is an independent sequence, E[ψt,jWt] = 0 and
E[ψ4

t,jW
4
t ] < ∞ (A1, A3).

We conclude that, as n → ∞, we have
∥∥S0

(
θ ′)∥∥2 a.s.−−→ ∥∥R− 1

2 V θ̃
∥∥2
> 0. (25)

For an arbitrary �, the same construction can be used as
in the proof of Lemma 1, to decompose the sequence into
subsequences {ψkϕk}k∈Js of independent variables, e.g.,

1

n

n∑

t=1

ψtϕ
T
t θ̃ = � n

�
�

n

�∑

s=1

(
1

� n
�
�
∑

t∈In
s

ψtϕ
T
t θ̃

)
, (26)

where In
s and Js are defined above (26), hence �n/�� ≤ ∣∣In

s

∣∣ ≤
�n/��. As we decomposed {ψkϕk} into the sum of � subseries,
and each such subseries converges (a.s.) based on our previous
arguments, the original series converges (a.s.) to the sum of
the corresponding limits. Thus, (25) is ensured for any �.

iii) Permuted sum first term: Notice that the summed
elements in the first term of Si(θ

′) (22) do not form an
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independent sequence, therefore well-known SLLN results
cannot be applied to prove a.s. convergence. To prove that

lim
n→∞

1

n

n∑

t=1

ψtϕ
T
σi,n(t)θ̃ = 0 (a.s.), (27)

Lemma 1 can be applied element-wise. Note that the condi-
tions of the lemma follows from A2, A3 and A4 using that
E|X|p < ∞ ⇒ E|X|q < ∞ if q ≤ p, and one can use the
Cauchy–Schwarz inequality to show that the expectations of
the cross-products are also bounded. Finally, the maximum of
the obtained bounds can serve as κ0.

iv) Permuted sum second term: The summed terms form an
�-independent sequence in this case, however for every sample
size n, a new sum is generated. Nevertheless, we can apply
Lemma 1 element-wise again to prove that

lim
n→∞

1

n

n∑

t=1

ψtWσi,n(t) = 0 (a.s.), (28)

since A1 and A3 satisfies the assumptions of Lemma 1, for
the same reasons as in the previous sum (iii).

From the previous derivations, we can conclude that
∥
∥Si
(
θ ′)∥∥2 a.s.−−→ 0, (29)

as n → ∞, for each i ∈ {1, . . . ,m − 1}.
Now, we prove that the confidence region converges to θ∗

uniformly, not just pointwise. Let us introduce

�n
.=

⎡

⎢⎢
⎢
⎣

ϕT
1
ϕT

2
...

ϕT
n

⎤

⎥⎥
⎥
⎦
, �n

.=

⎡

⎢⎢
⎢
⎣

ψT
1
ψT

2
...

ψT
n

⎤

⎥⎥
⎥
⎦
, wn

.=

⎡

⎢
⎢
⎣

W1
W2
...

Wn

⎤

⎥
⎥
⎦,

Qi,n
.= 1

n

n∑

t=1

ψtϕ
T
σi,n(t) = 1

n
�T

n Pi,n�n, (30)

where Pi,n is a permutation matrix corresponding to σi,n. Using
the definition from (4), it holds that Vn = 1

n�
T
n�n.

Our previous results showed that for every i, ‖Si(θ
′)‖2

converges (a.s.). As a consequence, for each realization ω ∈ �
(from an event with probability one, where (�,F ,P) is the
underlying probability space), and for each δ > 0, there exists
a N(ω) > 0 such that for n ≥ N and i �= 0,

∥∥R
− 1

2
n Vn − R− 1

2 V
∥∥ ≤ δ,

∥∥ 1
n R

− 1
2

n �T
n wn

∥∥ ≤ δ, (31)
∥∥R

− 1
2

n Qi,n
∥∥ ≤ δ,

∥∥ 1
n R

− 1
2

n �T
n Pi,nwn

∥∥ ≤ δ. (32)

Then, using similar reformulations as in the proof of
[10, Th. 2], for all n ≥ N, we have

∥∥S0
(
θ ′)∥∥ ≥ σmin

(
R− 1

2 V
)∥∥θ̃

∥∥− δ
∥∥θ̃
∥∥− δ, (33)

where Uσ�VT
σ is the SVD decomposition of R− 1

2 V and σmin(·)
denotes the smallest singular value. We also have

∥∥Si
(
θ ′)∥∥ = ∥∥R

− 1
2

n Qi,nθ̃ + 1
n R

− 1
2

n �T
n Pi,nwn

∥∥ ≤
∥∥R

− 1
2

n Qi,n
∥∥∥∥θ̃

∥∥+ ∥∥ 1
n R

− 1
2

n �T
n Pi,nwn

∥∥ ≤ δ
∥∥θ̃
∥∥+ δ. (34)

Therefore, we have
∥∥Si(θ

′)
∥∥ <

∥∥S0(θ
′)
∥∥,∀ θ ′ that satisfy

δ
∥∥θ̃
∥∥+ δ < σmin

(
R− 1

2 V
)∥∥θ̃

∥∥− δ
∥∥θ̃
∥∥− δ, (35)

which can be reformulated as

μ(δ)
.= 2δ

σmin

(
R− 1

2 V
)

− 2δ
<
∥∥θ̃
∥∥, (36)

therefore, those θ ′ for which μ(δ) <
∥∥θ∗ − θ ′∥∥ are not in

the confidence region Cp,n, for n ≥ N. For any ε > 0, by

setting δ = (εσmin(R− 1
2 V))/(2 + 2ε), we have Cp,n ⊆ Bε(θ∗),

therefore, the claim of the theorem follows.

V. ELLIPSOIDAL OUTER-APPROXIMATION

The RPS-Indicator function can decide whether a given
parameter is included in the confidence region. In order
to give a compact representation of the whole region, we
introduce a permutation-based version of the ellipsoidal outer-
approximation (EOA) method [5], [10]. The main motivation
behind such constructions is that evaluating every parameter,
even on a grid, to build the RPS region is computationally
demanding, especially in higher dimensions. The ellipsoids are
constructed in a way that they have the same shape, orientation
and center as the asymptotic confidence ellipsoids, see (38),
only their sizes (determined by the radius parameters) are
different. However, they have finite sample guarantees. The
radius computation, which is based on the ordering of the
residual-permuted sums, and the construction of the ellipsoid
can be derived similarly as for IV-SPS [10], since the sign-
perturbations can be simply replaced by permutations.

First, we introduce a correlation approach based estimate
[1, Sec. VII.5], that will be the center of the region, as

θ̂n
.=
(

n∑

t=1

ψtϕ
T
t

)−1 n∑

t=1

ψtYt (37)

Then, the RPS outer-approximation can be given as

On,p
.=
{
θ ∈ R

d :
∥∥R

− 1
2

n Vn

(
θ − θ̂n

)∥∥2 ≤ r
}
, (38)

where r is the qth largest solution of the following convex
semi-definite programming problems, for i ∈ {1, . . . ,m − 1}

min γ

s.t. λ ≥ 0[−I + λAi λbi
λbT

i λci + γ

]
� 0. (39)

In (39), “� 0” denotes positive semidefinitness and

Ai
.= I − R

1
2 T
n V−T

n QT
i,nR−1

n Qi,nV−1
n R

1
2
n

bi
.= R

1
2 T
n V−T

n QT
i,nR−1

n

(
ξi − Qi,nθ̂n

)

ci
.= −ξT

i R−1
n ξi + 2θ̂T

n QT
i,nR−1

n ξi − θ̂T
n QT

i,nR−1
n Qi,nθ̂n

ξi
.= 1

n

n∑

t=1

ψtYσi,n(t). (40)

As On,p is an outer approximation of Cn,p it follows that

P
(
θ∗ ∈ On,p

) ≥ 1 − q

m
= p, (41)

hence On,p is a guaranteed confidence ellipsoid for any n.
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Fig. 1. Comparison of 0.9-level RPS indicator, RPS EOA, SPS
indicator, SPS EOA and asymptotic confidence regions for n = 250.

VI. SIMULATION EXPERIMENTS

In this section, we illustrate RPS through two numer-
ical experiments. In the first experiment, we compared
the RPS indicator and outer-approximation regions with
the SPS indicator and outer-approximation regions, further-
more, with the confidence ellipsoid based on the classical
asymptotic theory [1]. We consider a 2-dimensional FIR
system

Yt = b∗
1Ut−1 + b∗

2Ut−2 + Wt, (42)

where b∗
1 = 5, b∗

2 = 1, {Wt} are i.i.d. Laplacian random
variables with mean 0 and variance 1, and the input is Ut =∑5

i=1 ciVt−i+1, with Vt ∼ N (0, 1) and c1 = 1, c2 = 0.775,
c3 = 0.55, c4 = 0.325, c5 = 0.1. From (42), the linear
regression problem can be constructed as θ∗ = [b∗

1, b∗
2]T and

ϕt = [Ut−1,Ut−2]T. The sample size was n = 250. We chose
ψt = ϕt and Rn = 1

n�
T
n�n to make sure that the RPS and SPS

regions have the same shape and orientation as the asymptotic
confidence ellipsoids. The 0.9-level confidence regions, with
m = 10 and q = 1 for the RPS and SPS methods, are presented
in Fig. 1. It can be observed that the RPS regions are smaller
than the SPS sets, and that they are about the same size as
the asymptotic confidence regions. This experiment indicates
that RPS can outperform SPS sample complexity wise, while
having an advantage over the asymptotic region that it has
finite sample coverage guarantees.

In the second experiment, we investigated the sizes of RPS
regions for different sample sizes. We used the same system
setting as in the first experiment, with the exception that {Wt}
was a sequence of i.i.d exponential random variables with
parameter 0.5, i.e., not a symmetric distribution about zero.
Fig. 2 illustrates the RPS indicator and asymptotic confidence
regions for n = 200, n = 1000 and n = 2000. It shows
that for smaller sample sizes, RPS regions have smaller sizes
than asymptotic ellipsoids, but this size difference decreases
as the sample size increases. Nonetheless, RPS has exact
finite sample coverage guarantees, unlike the asymptotic
region.

Fig. 2. Comparison of 0.9-level RPS indicator and asymptotic confi-
dence regions for n = 200, n = 1000 and n = 2000.

VII. CONCLUSION

In this letter, we have introduced the Residual-Permuted
Sums (RPS) algorithm, motivated by a permutation-based DP
method, as an alternative to SPS, in which the symmetricity
and independence assumptions on the noises are replaced by
an i.i.d. condition. RPS can construct exact, non-asymptotic,
distribution-free confidence regions for the true parameters of
linear regression problems. One of the main contributions of
this letter is that we proved the (uniform) strong consistency
of the RPS construction under general assumptions. We also
demonstrated the effectiveness of RPS empirically.
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