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ABSTRACT In recent years, large language models (LLMs) have achieved remarkable success in natural
language processing (NLP). LLMs require an extreme amount of parameters to attain high performance.
As models grow into the trillion-parameter range, computational and memory costs increase significantly.
This makes it difficult for many researchers to access the resources needed to train or apply these
models. Optimizing LLM performance involves two main approaches: fine-tuning pre-trained models for
specific tasks to achieve state-of-the-art performance, and reducing costs or improving training time while
maintaining similar performance. This paper presents a systematic literature review (SLR) following the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. We reviewed
65 publications out of 983 from 2017 to December 2023, retrieved from 5 databases. The study presents
methods to optimize and accelerate LLMs while achieving cutting-edge results without sacrificing accuracy.
We begin with an overview of the development of language modeling, followed by a detailed explanation
of commonly used frameworks and libraries, and a taxonomy for improving and speeding up LLMs based
on three classes: LLM training, LLM inference, and system serving. We then delve into recent optimization
and acceleration strategies such as training optimization, hardware optimization, scalability and reliability,
accompanied by the taxonomy and categorization of these strategies. Finally, we provide an in-depth
comparison of each class and strategy, with two case studies on optimizing model training and enhancing
inference efficiency. These case studies showcase practical approaches to address LLM resource limitations
while maintaining performance.

INDEX TERMS Distributed training, GPU acceleration, large language model, LLM, LLM acceleration,
LLM frameworks, LLM optimization.

I. INTRODUCTION
In recent years, dense deep learning models have seen
an extraordinary growth in the number of parameters [1],
[2], [3]. Transformer as an effective deep learning archi-
tecture has been widely used over the recent years, and
transformer-based models have achieved notable success and
recognition in various fields including language modeling
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compared to the existing models [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13].

To achieve significant accuracy in deep learning, large
models with billions to trillions of parameters are essential.
Therefore, deep learning models continue to grow in
complexity with an array of large-scale models ranging
from Bidirectional Encoder Representations from Trans-
formers (BERTlarge, 340 million parameters) [8], Generative
Pre-trained Transformer-3 (GPT-3, 175 billion parameters)
[14], to General Language Model (GLM-3, 1.75 trillion
parameters) [15]. With models now reaching trillions of
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parameters, even the most powerful GPUs are struggling to
keep up [1]. This resource-intensive requirement is making
it difficult for many researchers to access the computational
resources they need to train these models [1], [4], [16]. Also,
handling, managing, and fitting these models into device
memory is a daunting challenge due to memory limitations,
and this tremendous size of data brings complexity, and
requires high-end computing resources with significant
memory requirements to process [5], [17], [18], [19].
Training large-scale models effectively require significant
adjustments [20], [21], [22], [23], [24], especially in terms
of increasing training throughput and loading these kinds of
large models into GPU memory [18].
As a result, developing frameworks, libraries and propos-

ing new techniques to overcome the mentioned challenges
has become an essential task. There are many studies
that have worked on possibilities for optimization and
acceleration with large models and using various techniques
to achieve state-of-the-art (SOTA) results without sacrificing
accuracy. These remarkable advancements in the field
of language models (LMs) required a systematic review
of recent LM optimization and acceleration techniques.
To address these challenges and guide future research, this
SLR paper aims to:

• Analyze recent optimization and acceleration techniques
for LLMs.

• Identify challenges associated with training, inference,
and system serving for LLMs (billions/trillions of
parameters).

• Develop a structured taxonomy to categorize LLM
optimization techniques.

• Review and evaluate recent libraries and frameworks
designed for LLM optimization.

• Identify promising areas for future research in LLM
development, focusing on efficiency, scalability, and
flexibility.

In this SLR we are making the following contributions:
• Comprehensive overview: We offer a comprehensive
overview of the development of language modeling
(Section II), detailing commonly used frameworks and
libraries (Section IV), and recently used techniques and
strategies (Sections V, VI, VII). This serves as a valuable
resource for understanding the current landscape of
LLM optimization.

• Taxonomy of optimization strategies: We categorize
optimization strategies into three classes: training opti-
mization, hardware optimization, and scalability and
reliability. This taxonomy helps clarify the various
approaches and their specific applications (presented in
Fig 4, Sections V, VI, VII).

• Detailed analysis of techniques: Our analysis explores
recent optimization and acceleration strategies, we pro-
vide two comparative analyses regarding performance,
cost, and scalability for reviewed strategies (presented
in Tables 6 and 7) and their core categories: training
optimization, hardware optimization, and scalability and

reliability (presented in Table 5). In the latter analysis,
we also consider the focus of classes.

• Case studies: We include two in-depth case studies
that demonstrate practical approaches to optimizing
model training and enhancing inference efficiency.
These case studies highlight how resource limita-
tions can be addressed while maintaining performance
(Sections VIII-A, VIII-B).

• Future direction:We explore a range of promising future
directions for LLM development. These areas, detailed
in specific sections, focus on enhancing efficiency,
scalability, and flexibility for LLMs (Section X).

This review paper is organized as follows: an overview
of language modeling development (Section II), followed
by an in-depth explanation of the most commonly utilized
frameworks and libraries specifically designed for optimizing
and accelerating large language models (LLMs) (Section IV,
Tables 3 and 4), accompanied by taxonomy and catego-
rization. Additionally, it delves into recent optimization and
acceleration strategies employed within LLMs, including the
taxonomy and categorization of these strategies (presented in
Fig. 1) (Section V, VI, VII), Table 8 summarizes the reviewed
papers, excluding those already covered in Tables 3 and 4
or the main text. Moreover, we present an individual
comparison in terms of performance, cost, and scalability
for reviewed strategies discussed in Tables 6, and 7, and
the classes (training optimization, hardware optimization,
scalability and reliability) presented in Table 5. In addition
to the mentioned factors, we consider the classes’ focus
in this comparison. Finally, we illustrate these concepts
with two real-world examples: optimizing model training
and improving inference efficiency through case studies
(Section VIII).

A. RELATED WORKS
In this section, we will present the related studies that
investigate optimization and acceleration with dense deep
learning models and LLMs. Jahan et al., in [25] present a
systematic literature review (SLR) by comparing 31 language
models inspired by BERT, published between 2018 and
2020, to help researchers choose the best model based on
their requirements. By analyzing each model’s performance
against RoBERTa, the study identified seven models that
performed better, and the rest of the studies investigated
with different parameter settings. The outperforming models
varied in dataset size, suggesting that both large and small
datasets can be effective depending on the model’s archi-
tecture. Ultimately, this research provides valuable insights
for researchers seeking the optimal language model for their
specific tasks. Yu et al. [26] conduct a survey that explores
the growing challenges and opportunities for optimizing
large-scale deep learning systems. By highlighting recent
advances in optimization techniques, it proposes a new way
to categorize and explain the different computing approaches
used. Zhao et al. [24] carry out a survey that focuses on
the recent advancements in LLMs. The study concentrates
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FIGURE 1. LLM optimization techniques and taxonomy.

on four major dimensions of LLMs: pre-training, adaptation
tuning, utilization, and capacity evaluation. The survey
emphasizes the techniques or discoveries essential for LLMs’
success. Additionally, it provides an overview of available
development resources and offers valuable guidelines for
successful LLM implementation, drawing from the latest
research. Bai et al.., in [27] provide a systematic survey that
provides an overview of LLM resource efficiency. It focuses
on LLM significant resource consumption in computational,
memory, energy, and financial aspects. It categorizes tech-
niques aimed at improving LLMs’ resource efficiency. Stan-
dardized evaluation metrics and datasets are also proposed
to facilitate fair comparisons. The survey offers insights
into current advancements and guides future developments
toward more sustainable and efficient LLMs.Wang et al. [28]
explore new methods to achieve comparable accuracy while
reducing training costs. They highlight optimized algorithms
for quicker learning, distributed architectures leveraging
widespread computing resources, and hardware acceleration
with communication optimization for collaborative training.

While challenges remain, these advancements pave the
way for more affordable and accessible AI in the future.
Min et al. [29] present a survey that explored recent studies
for using powerful pre-trained language models (PLMs) in
natural language processing (NLP) tasks through the analysis
of three popular approaches. The first approach trains on
a massive dataset for general language understanding, then
specializes it for a specific task with focused training. The
second approach prompts the PLM to treat the desired task
as similar to its pre-training tasks, allowing for efficient
‘‘few-shot’’ learning with just a few examples. The third
approach modifies NLP tasks as text generation to maximize
the utilization of knowledge embedded within a generative
language model. Qiu et al. [2] provide a comprehensive
overview of pre-trained models (PTMs), from fundamental
knowledge and model architectures to diverse pre-training
tasks, extensions, and real-world applications. It proposes
a clear taxonomy for easy navigation and provides abun-
dant resources like code, tools, corpora, and reading lists.
Recognizing current limitations, the survey also presents
a discussion on promising future directions to shape the
NLP landscape. This survey [30] explores techniques for
building efficient LLMs. It categorizes approaches into three
groups: Model-centric, Data-centric, and LLM frameworks.
In the model-centric method focuses on optimizing the
LLMs through techniques including compression, efficient
training, and specialized architectures. Data-centric focusing
on improving data quality and using prompts to guide
the model efficiently. LLM frameworks create specialized
software to handle LLMs, the survey aims to provide a
comprehensive understanding of how to make LLMs more
efficient and accessible.

In this SLR, we examine research published between
2017 and December 2023, filling a gap in existing surveys by
specifically focusing on optimizing and speeding up LLMs.
Following the PRISMA approach, we reviewed 65 articles.
The study starts with an overview of language modeling’s
development and then dives deep into the most popular
frameworks and libraries for optimizing and accelerating
LLMs. It organizes these models with a clear taxonomy and
categorizes them effectively. The research also investigates
recent approaches for optimizing and accelerating LLMs,
offering a classification system along with a summary and
comparison of the reviewed papers containing the latest
optimization techniques. Moreover, resource limitations and
the impact of various optimization techniques in LLMs were
addressed through two in-depth case studies. These studies
delve into practical approaches for optimizing training and
enhancing inference efficiency, demonstrating how these
techniques can be applied effectively without excessive
resources.

B. RESEARCH METHODOLOGY
In this study, we have followed the PRISMA statement to
ensure a systematic and transparent methodology. PRISMA
provides a comprehensive set of guidelines for conducting
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TABLE 1. Research queries executed.

systematic reviews. Our approach included a detailed search
strategy across multiple databases, explicit inclusion and
exclusion criteria, and a thorough study selection process.
We documented each step meticulously, including the study
selection and exclusion procedures. (presented in Fig. 2).
Eligibility Criteria:This reviewwill focus on the optimiza-

tion and acceleration of LLMs, examining the most recent
and widely utilized libraries, frameworks, and techniques
in this field. To ensure focused analysis, strict eligibility
criteria are applied. Only studies published between 2017 and
December 2023 are considered, excluding publications not
written in English and retracted papers. Additionally, studies
are excluded if they are irrelevant to our SLR, or do not
explicitly address ‘‘Optimization’’ ‘‘Acceleration,’’ or ‘‘Large
Language Models’’ in their titles, abstracts, or keywords.
Information Sources: To ensure a comprehensive search

for authentic studies, a variety of sources, including
databases, websites, and tools, were employed. Digital
libraries like IEEE Xplore, Web of Science, and Scopus
alongside open access libraries like arXiv and dedicated tools
like Zotero facilitated the data collection and reference man-
agement. The last search was conducted on May 25th, 2024.
Additionally, Rayyan and the researchrabbit.ai websites were
utilized for data exploration and study selection.
Search Strategy: This systematic review leveraged two

web-based AI tools, ResearchRabbit [31], and Rayyan [32],
for both data collection and study selection. In all databases
and websites, we were particularly interested in finding
studies that focused on language modeling, particularly
those that focused on LLM optimization and acceleration.
We employed various queries in each source (see Table 1)
and exported the retrieved studies for import into Rayyan.
Rayyan’s AI capabilities facilitated both the selection of
desired studies and the exclusion of irrelevant ones.
Selection Process: The process of selecting which works

to review in this study employed strict inclusion criteria.
In this SLR we explore the techniques and methods that
were primarily examined based on their focus on large-scale
language modeling, including transformer-based models
such as PLMs, LLMs, and even general NLP models. The
Rayyan platform facilitated the selection process. Two stages
were involved: initial screening using eligible and inclusion

1The initial search query in arXiv with this RQ was broad, returning
440 studies, many irrelevant to our research. To refine the results and
minimize the risk of bias, also ensure retrieval of high-quality, relevant
papers, we employed the AND operator along with the title field within the
search query specifically on arXiv.

criteria, followed by author selection of the most relevant and
impactful studies. Finally, the ‘‘compute rating’’ function in
Rayyan was used, and the authors double-checked excluded
studies for accuracy.
Data Extraction: In this stage, we focused on extracting

relevant data from selected studies. Our aim was to collect
information on two key aspects:
Outcomes: We were particularly interested in outcomes

related to LLM optimization and acceleration. Specifically,
we sought data on:

• Performance metrics: This could include metrics like
perplexity [19], BLEU score, ROUGE score [33],
or task-specific accuracy measures depending on the
study’s focus.

• Training time reduction: We looked for data on how
different techniques impacted the time required to train
LLMs.

• Resource usage: If studies reported resource (memory)
usage changes with different optimization techniques,
we collected that data.

We aimed to collect all relevant results within these out-
come domains whenever possible. This included considering
data from different measures, time points, and analyses
reported by the study authors.
Additional Variables: In addition to the main outcomes,

we also extracted data on the following aspects of the studies:
• LLM architecture: The specific type of LLM architec-
ture used in the study.

• Optimization techniques: Detailed description of the
optimization techniques employed in the study.

• Hardware/Software platforms: The hardware and soft-
ware platforms used for training, inference, serving, and
evaluation.

Data Collection Process: ResearchRabbit is a web-based
tool powered by AI that helps and guides researchers to find
relevant studies in a variety of digital libraries and allows
researchers to export retrieved results in a collection to ref-
erence managers tools (similar to Zotero). ResearchRabbit’s
search is powered by SemanticScholar and shows only the
top 50 search results for a single query, aiming to maintain
the research focus effectively [31]. Initially, we applied our
queries to the ResearchRabbit website and then added the
most relevant retrieved results to our collection. Following
that, we applied the same queries in digital libraries like IEEE
Xplore,Web of Science, Scopus, and arXiv (see Table 2). The
papers were reviewed on a case-by-case basis. Then, a precise
summary of each paper was written. Finally, the interesting
data that directly addressed the issues the papers attempted to
address were extracted from the summaries.
Study Risk of Bias Assessment: In this SLR, we followed a

meticulous process to assess the risk of bias in the included
studies, adhering to best practices for ensuring the reliability
and validity of our findings.
Automation Tools:
• We utilized Rayyan, an AI-powered tool, to facilitate
the initial screening and selection process. Rayyan’s AI
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FIGURE 2. The PRISMA 2020 flow diagram of the performed search.

capabilities helped in identifying potential biases and
categorizing studies based on relevance and quality.

• ResearchRabbit was used for gathering relevant studies,
which provided a focused list of top search results,
aiding in maintaining the research scope effectively.

Reviewer Process:
• Each study was assessed by three independent review-
ers. This approach helps to minimize subjective bias and
ensures a more balanced evaluation.

• The reviewers independently examined each study
based on predefined criteria including selection bias,
performance bias, detection bias, attrition bias, and
reporting bias.

Independent Review and Consensus:
• The reviewers worked independently during the initial
assessment phase to ensure unbiased evaluations.

• After the independent assessments, the reviewers com-
pared their findings. Any discrepancies or disagreements
were resolved through discussion and consensus.

We adhered to a rigorous and systematic approach to
assess the risk of bias, which involved multiple independent

reviewers and the use of validated tools. Automation tools
such as Rayyan and ResearchRabbit played a crucial role
in streamlining the screening and selection process, thereby
enhancing the efficiency and accuracy of our assessments.
By combining independent reviews, consensus discussions,
and advanced AI tools, we ensured a robust and unbiased
evaluation of the included studies.
Synthesis Methods: To enable a comprehensive and

insightful analysis of LLM optimization techniques across
diverse contexts, a three-tiered categorization scheme will
be employed. The initial categorization will consist of group
studies based on the utilized LLM libraries/frameworks and
the optimization techniques investigated. Subgroups within
these categories will be further established based on the spe-
cific type of LLM or the NLP task addressed by the studies.
This method enables a highly detailed examination of how
the effectiveness of optimization techniques varies across
different LLM and NLP task configurations. Additionally,
key findings from each individual study will be summarized
in tables, including details like the optimization technique
used, LLM type, NLP task addressed, achieved performance
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TABLE 2. Studies retrieved per database / search engine.

metrics, and the study’s aims. Finally, a narrative synthesis
will be conducted to analyze recurring themes across the
studies. This thematic analysis will focus on the effectiveness
of LLM libraries and optimization techniques in achiev-
ing performance improvements while considering resource
constraints. It will also explore potential explanations for
observed variations in effectiveness, with particular attention
paid to factors like LLM size, resources used, and the NLP
task addressed.
Reporting Bias Assessment and Certainty Assessment:

To minimize the risk of bias in our systematic review,
we implemented a multifaceted strategy. First, to address
reporting bias, we utilized Rayyan and ResearchRabbit,
as AI-powered tools, during the initial screening and
selection process. These tools can categorize studies based
on relevance and quality and can help flag studies with
characteristics suggestive of reporting bias, such as those
focusing solely on positive outcomes. Second, to strengthen
the certainty of our findings and minimize subjective bias,
we implemented a multi-reviewer approach. Each study
underwent independent assessment by three reviewers based
on predefined criteria. This approach ensures amore balanced
evaluation and reduces the influence of individual reviewer
bias.

II. LANGUAGE MODELING DEVELOPMENT
Language modeling is a fundamental approach to enhancing
the ability of machines to understand and process human
language. It is a computational model that can learn and
predict the possibilities of incoming (or missing) tokens [24].
The development of language models can be classified as
follows (see Fig. 3):

• N-gram language models, like bigrams and trigrams,
are basic methods that learn from the frequency of
word sequences in text [34], [35]. However, their
limited context window restricts their ability to capture
long-range dependencies and understand the deeper
semantic relationships between words.

• Markov assumption language models, refers to those
models that predict the next word based on the most
recent in the context [24]. Both n-gram and Markov
assumption language models are commonly used to
improve task performance in NLP, and information
retrieval (IR) [36].

• Machine learning models, these models investigate
machine learning algorithms to enhance language

comprehension. They are trained on extensive text
corpora to discern patterns and relationships [37]. The
adoption of machine learning in NLP introduced a
more advanced methodology, enabling the creation of
applications such as spam detection [38] and sentiment
analysis [39].

• Neural language models, these models are developed
based on NN for working with a sequence of data. They
have a special ability of learning effective features for
words or sentences. These studies [40], [41], [42] have
initiated the use of language models for representation
learning (beyond word sequence modeling), and show
that these models have an important impact on the field
of NLP [24], [43].

• Transformer language models refer to those models that
leverage the capabilities of a deep learning architecture
called Transformer to process and understand human
language [44], [45]. These models achieved remarkable
results by using ‘‘special attention mechanism’’ to
understand the relationship between words and sen-
tences. These models capture context-aware represen-
tation instead of learning fixed word representations,
first pre-training then fine-tuning according to specific
downstream tasks [2], [8], [24], [46]. Transformer
architecture has been used to build PLMs such as
BERT [8], GPT-2 [47], and BART [48]. These models
underwent training using bidirectional language models
and specifically designed pre-training tasks applied to
extensive unlabeled datasets. The growth in model size
and data size has revolutionized the way we approach
downstream tasks, enabling large-sized PLMs to achieve
remarkable performance gains. These models exhibit
unique characteristics compared to smaller PLMs,
such as 330M-BERT and 1.5B-GPT-2, demonstrating
exceptional abilities in solving complex tasks. As a
result, LLM is the term used to refer to large-sized
PLMs [46], [49], [50].

III. MACHINE LEARNING MODELS
The process of building, deploying, and managing a machine
learning model involves three distinct phases: training,
inference, and system serving. Training is the foundation of
machine learning, where a vast dataset of labeled data is used
to develop amodel that can identify patterns and relationships
within the data. Inference is the application of the trained
model, where new, unseen data is fed into the model to
obtain predictions or classifications based on the learned
patterns. System serving ensures the model’s longevity
and effectiveness in real-world applications, handling large
volumes of requests, monitoring the model’s performance,
and providing continuous updates or modifications as
needed [11], [19], [51]. In the section IV, we provide a
categorization of the most recent frameworks and libraries
utilized for LLMs optimization, structured into three primary
classes: training, inference, and deployment and system
serving (presented in Fig. 4). However, certain studies can
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FIGURE 3. Language model development.

FIGURE 4. LLM frameworks and libraries.

be classified into two categories simultaneously, owing to
their ability to handle multiple tasks, such as LightSeq2
(section IV-A4), TurboTransformers (section IV-B4), and
PetS (section IV-B5).

IV. FRAMEWORKS AND LIBRARIES
As most LLMs are designed based on Transformers, these
models are a powerful type of neural network that have

achieved SOTA results on a wide range of applications.
To achieve these results the models are required to have
a huge model size with hundreds of billions, even trillion
of parameters. Training LLMs requires distributed training
algorithms, which employ parallel processing techniques
to efficiently train these massive models. To streamline
distributed training, various optimization frameworks have
been developed, providing tools and infrastructure for imple-
menting and deploying parallel algorithms [24], [52], [54].
In this section, we will provide the most recent frameworks
and libraries designed to overcome those limitations.

A. LLM TRAINING FRAMEWORKS AND LIBRARIES
This section will delve into the objectives and outcomes
of LLM frameworks and libraries employed in the training
phase. Additionally, a summary of each framework/library
will be provided individually (see Table 3).

1) GPIPE
GPipe [3] introduces a novel pipeline parallelism framework
based on batch partitioning. It divides each mini-batch
example into smaller micro-batches, which are subsequently
executed in sequence across the cells. During training,
it employs synchronous mini-batch gradient descent, where
gradients from all micro-batches are aggregated and applied
to the model at the end of the mini-batch. GPipe has been
shown to train two large-scale models: a convolutional model
for image classification and a transformer model for machine
translation. The convolutional model, AmoebaNet, was
trained on 480 × 480 input from the ImageNet 2012 dataset.
To enhance its performance, the model width was expanded,
and its parameters were scaled up to 557 million. The model
achieved a top-1 validation accuracy of 84.4%. Meanwhile,
the transformer model a single 128-layer, 6-billion-parameter
multilingual model trained across 103 languages, was also
evaluated. GPipe achieved superior performance compared
to training 350-million-parameter bilingual transformer big
models individually across 100 language pairs. The model
presents its efficiency by boosting the performance on a
variety of devices, with the support of flexibility on any deep
network architectures, utilizing the synchronous gradient
decent, and ensuring consistent training regardless of the
number of partitions.

2) BYTETRANSFORMER
ByteTransformer [4] is a transformer framework for GPU
acceleration with an efficient and high performance opti-
mized for variable-length inputs in NLP problems. The
framework uses an algorithm for overcoming the redundant
computations on zero-padding tokens, and variable input
length. Furthermore, the model proposed a fused Multi-Head
Attention (MHA) to reduce the memory overhead of the
intermediate matrix. This model manually optimizes the
memory sizes of layer normalization by introducing bias
and activation to maximize the overall system performance.
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TABLE 3. Summary of LLM training frameworks and libraries.

It has been used by some famous applications including
TikTok and Douying of ByteDance. Themodel was evaluated
on an NVIDIA A100, focusing on the forward pass of
BERT-like transformers, including BERT [8], ALBERT [55],
DistilBERT, and DeBERTa. It showcased a significant
improvement, enhancing the fused MHA mechanism by
6.13× compared to PyTorch attention. Additionally, Byte-
Transformer outperformed PyTorch, TensorFlow, Tencent
TurboTransformer [11], Microsoft DeepSpeed [5], and
NVIDIA FasterTransformer by 87%, 131%, 138%, 74%, and
55%, respectively, in terms of the end-to-end performance of
a standard BERT transformer.

3) MEGATRON-LM
Megatron-LM [19] is a deep learning library for training
LLMs efficiently and effectively. It enables the library
for the training of very large transformer models with
billions of parameters. It offers a set of optimization
methods for distributed training, it includes strategies like
intra-layer model parallelism, and mixed-precision training.
These optimization techniques significantly enhance training
efficiency and speed, facilitating effective distributed training
across multiple GPUs. Megatron-LM operates independently
without requiring new compiler or library changes. This
makes it orthogonal and complementary to pipeline model
parallelism, allowing for seamless integration and flexibility
within existing NLP frameworks.

The library has been shown to be highly effective for
training LLMs. A Megatron-LM model with 8.3 billion
parameters was trained on 512 NVIDIA V100 GPUs using 8-
way model parallelism and achieved sustained performance
of up to 15.1 PetaFLOPs across the entire application. This
is significantly faster than previous approaches to training
LLMs. Additionally, it has been shown to achieve SOTA
results on several NLP benchmarks. A Megatron-LM model

with 8.3 billion parameters achieved a perplexity of 10.8 on
the WikiText103 benchmark. Also, it achieved an accuracy
of 66.5% on the LAMBADA dataset, which outperforms the
previous SOTA of 63.2%.

4) LIGHTSEQ2
LightSeq2 [52] proposes a software library that accelerates
the training of transformer-based models within GPUs.
It is a system-level optimization while maintaining accuracy
and training behavior. The system works with BERT
(encoder), GPT (decoder), Transformer (encoder-decoder),
and vision transformer. The system uses three techniques
for improving training speed and efficiency. First (layer-
specific kernels), after analyzing Transformer-specific layers
in detail, rewriting the kernels with dependencies and other
techniques to improve parallelism, and using small kernels to
improve GPU utilization. Second (mixed-precision trainer),
instead of applying batch updates to many individual full-
precision updates, it applies batch updates to reduced-
precision parameters. Finally, introduced an efficientmemory
management technique to minimize the need for frequent
allocation and release calls. This strategy involves recycling
the memory space of tensors that remain unused during the
backward pass.

The system accelerates the entire training process for
transformer models. LightSeq2 achieves significant perfor-
mance improvement on a variety of NLP tasks, includ-
ing machine translation, on the WMT14 English-German
machine translation task, it achieved a 308% speedup on the
WMT14 English-German machine translation task compared
to PyTorch.

5) COLLIE
CoLLiE [53] introduces a library designed to efficiently
facilitate the collaborative training of LLMs using 3D
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parallelism [24] (Sections V-C4, V-C1, V-C2), parameter-
efficient fine-tuning (PEFT) methods, and optimizers. The
library demonstrated significantly improved training effi-
ciency compared to existing solutions. The study empirically
evaluates the correlation between model size and GPU
memory consumption under different optimization methods
and analyzes throughput. Additionally, the study investigates
training methods to improve the abilities of the LLaMA-65B
model, specifically focusing on following user instructions.
Techniques like LoRA [33], LOMO [56] (Section V-A4),
AdaLomo [57], and AdamW demonstrated success in boost-
ing the model’s instruction following capabilities without
sacrificing its overall performance. Notably, LoRA and
AdaLomo achieved impressive results, enabling the model to
achieve an average score of 56.9.

6) LLM TRAINING FRAMEWORKS AND LIBRARIES:
CHALLENGES AND KEY FINDINGS
This section explores five prominent frameworks and
libraries: GPipe [3], ByteTransformer [4], Megatron-
LM [19], LightSeq2 [52], and CoLLiE [53]. Each offers
unique functionalities to overcome limitations in LLM
training.
Addressing Training Challenges:
• Distributed training: As LLMs grow complex, training
them on a single device becomes impractical. Frame-
works like Megatron-LM [19] and CoLLiE [53] employ
distributed training algorithms that split the model
across multiple GPUs, enabling parallel processing and
faster training.

• Efficiency and speed: LightSeq2 [52] tackles training
speed through system-level optimizations. It utilizes
techniques like layer-specific kernels and mixed-
precision training to enhance GPU utilization and reduce
memory usage. Similarly, ByteTransformer [4] accel-
erates transformer models for variable-length inputs in
NLP tasks.

• Memory management: Efficient memory allocation is
crucial for LLM training. CoLLiE [53] overcomes
memory constraints in LLM training by utilizing 3D
parallelism to efficiently distribute memory across
training machines and GPUs, enabling the training of
large models even in resource limited environments.

• Fine-tuning and performance: CoLLiE [53] investigates
methods to improve specific LLM capabilities, such
as following user instructions. It explores parameter-
efficient fine-tuningmethods that enhancemodel perfor-
mance in targeted areas without compromising overall
functionality.

Key Findings:
• GPipe [3] demonstrates successful training of a large
multilingual transformer model, achieving superior
results compared to training individual smaller models.

• ByteTransformer [4] significantly outperforms existing
frameworks in terms of performance for BERT-like
transformers on various benchmarks.

• Megatron-LM [19] facilitates training of LLMs with
billions of parameters, achieving SOTA on NLP tasks
while offering high throughput.

• LightSeq2 [52] accelerates transformer model training
by up to 308%, showcasing substantial performance
improvements.

• CoLLiE [53] introduces a library for collaborative
LLM training, demonstrating improved efficiency and
effectiveness in training large models like LLaMA-65B.
It explores methods to enhance specific functionalities
without impacting overall performance.

B. LLM INFERENCE FRAMEWORKS AND LIBRARIES
This section will introduce the LLM frameworks and libraries
designed particularly for inference tasks, followed by a
summary of each one (see Table 4).

1) DEEPSPEED INFERENCE
DeepSpeed Inference [5] presents a comprehensive system
solution for efficient transformer inference. It has the
potential to enable new and innovative applications of
transformer models in cloud datacenters and other resource-
constrained environments. The system consists of two main
parts: DeepSpeed Transformer and ZeRO-Inference [1]. The
model is a GPU-only solution that leverages a variety
of optimizations to achieve SOTA (minimize) latency and
(maximize) throughput for transformer models of all sizes.
Specifically, in the first phase DeepSpeed Transformer uses
tensor-slicing and inference-optimized pipeline parallelism to
scale dense transformer models across GPUs.

For sparse transformer models, it has developed a
massive-GPU sparse transformer layer that can extend the
scalability of Mixture-of-Experts (MoE) transformer layers
to hundreds of GPUs. This is achieved through a combination
of parallelism techniques and optimization strategies for
communication. Then, DeepSpeed Transformer employs
optimized sparse kernels to reduce the computational burden
on a single GPU. ZeRO-Inference [1] is a heterogeneous
solution that leverages GPU, CPU, and NVMe memory
to enable massive transformer inference with limited GPU
resources.

It is particularly useful for inferring models that are
too large to fit in GPU memory. It works by partitioning
the model weights across multiple GPUs and offloading
unused weights to CPU and NVMe memory. This allows
ZeRO-Inference to infer models that are much larger than
would be possible with GPU-only solutions. As a result,
DeepSpeed Inference boosts throughput by more than 1.5×
for throughput-oriented scenarios and minimizes the latency
by more than 7.3× compared to existing solutions for latency
orientation scenarios. It facilitates real-time inference at
a trillion-parameter scale by utilizing hundreds of GPUs,
marking an unparalleled achievement in terms of inference
scale. This technology allows for the inference of models that
are 25 times larger than what GPU-only solutions can handle,
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TABLE 4. Summary of LLM inference frameworks and libraries.

achieving a substantial throughput of 84 TFLOPS, which is
over 50% of the A6000 peak performance.

2) FLEXGEN
Accelerating LLM inference is achievable by using multiple
high-end accelerator technologies, due to their high com-
putational and memory requirements. FlexGen [17] study
proposes an offloading engine model which focuses on
using (resource-constrained devices) limited resources to
reach high-throughput LLM inference. The engine is flexible
for configuration using different hardware resources by
aggregating memory and computation from the GPU, CPU,
and disk. To optimize throughput within the search space,
researchers developed a linear programming-based search
algorithm, through it the model can find efficient patterns for
saving and accessing tensors. It has a larger space of batch
size options to choose from without sacrificing accuracy
through using 4-bit to compress weights and attention cache
without the need for retraining or calibration. The model’s
efficiency has been experimented by using NVIDIA T4
(16 GB) GPUs for running OPT-175B. It significantly

outperforms DeepSpeed Zero-Inference [1], [5] and Hugging
Face Accelerate by enabling significantly larger batch
sizes, often reaching orders of magnitude higher than its
competitors. As a result, it can achieve significant speedups
in throughput. On a single T4 GPU equipped with 208 GB
CPU DRAM and a 1.5 TB SSD, input sequence length 512,
and output sequence length 32: With a latency of 5,000
seconds, it (effective batch size 64) surpasses DeepSpeed
Zero-Inference (batch size 1) by over 40×, whereas Hugging
FaceAccelerate fails to complete a single batch. Furthermore,
it can reach 69× higher throughput with a higher latency
of 12000 seconds compared to baselines (effective batch
size 256, or 8192 tokens in total). Finally, the model can
achieve 100× higher maximum throughput (effective batch
size 144, or 4608 tokens in total) with 4-bit quantization to
compression and 4000 seconds by holding all weights in the
CPU and getting rid of disk offloading. The model achieved
these results by aggregating memory and computation from
the GPU, CPU, and disk, and by using a number of techniques
to improve efficiency, such as I/O schedule tasks, possible
compression techniques, and distributed pipeline parallelism.
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FlexGen is a significant advancement in LLM inference, as it
enables high-throughput generation on resource-constrained
devices. This opens new possibilities for deploying and using
LLMs in a wider range of applications.

3) NLP-FAST
NLP-Fast [58] is a system that accelerates the performance
of large-scale heterogeneous NLP models by identifying
performance-critical operations and applying holistic model
partitioning, cross-operation zero skipping, andmodel/config
adaptive hardware reconfiguration. NLP-Perf, a performance
analysis tool, collects performance data for NLP models and
identifies performance-critical operations. Holistic model
partitioning is a comprehensive optimization technique,
which integrates threemodel partitioning approaches: partial-
head update, column-based algorithm, and feed-forward
splitting, to facilitate end-to-end model partitioning. Cross-
operation zero skipping, skips zero or near-zero values
across multiple operations, which can significantly reduce the
amount of computation required, these two optimization can
be executed on different hardware platforms. Model/config
adaptive hardware reconfiguration, reconfigures the model
architecture for the specific hardware platform that it is
running on, which can further improve performance. NLP-
Fast has been evaluated on a variety of NLP models
and hardware platforms, including CPU, GPU, and FPGA.
The evaluation results show that NLP-Fast can improve
throughput by up to 2.92×, 1.59×, and 4.47× over the
baseline performance on each platform.

4) TURBOTRANSFORMERS
TurboTransformers [11] is a lightweight, easy-to-use system
that enables efficient deployment of transformer models
for online services. It achieves SOTA performance on
GPU platforms by proposing three innovative features that
distinguish it from other similar models: Firstly, proposes
an efficient and parallel GPU-based batch reduction kernels
algorithm for Softmax and LayerNorm. Secondly, proposes
a sequence-length-aware algorithm for memory allocation
to efficiently balance memory allocation and deallocation,
this algorithm overcomes the problem of variability of the
input sentences. Finally, applying the framework involves
utilizing a novel batch scheduler that leverages dynamic
programming to achieve the optimal throughput on variable-
length requests. It is a lightweight and easy-to-use system
that can be integrated into PyTorch code with just a few lines
of code. This makes the model a very accessible option for
researchers and practitioners who want to use transformer
models for online services.

5) PETS
The existing large-scale transformer modes follow the pre-
train-then-fine-tune paradigm, copying the entire model for
each downstream task consumes a lot of storage. This
approach is unsuited for multi-purpose serving. Parameter
Efficient Transformers (PET) reduce the resource overhead.

They share the pre-trained model among tasks and only
fine-tune a specific portion based on the task parameters.
Prior to PetS [59], the serving systems did not have any
mechanism to provide flexibility for PET task management,
and also there is no available efficient method to serve queries
to different task batches. It is the first unified framework
for multi-task PET serving in a single system. As a class
of transformer models PETs have been designed to be
more efficient in terms of both parameters and computation.
Therefore, PETs are well-suited for deployment in resource-
constrained environments. Conventional serving frameworks
move data between the GPU and CPU memory when the
GPU cannot hold all of the data for the tasks that are being
processed. This reduces the throughput of the system. It has
the potential to revolutionize the way that LLMs are served,
making it possible to deploy and run LLMs on a wider
range of devices and with lower resource requirements. This
could make LLMs more accessible to a wider range of
users and businesses. Pets framework is a flexible PET tasks
management mechanism and a specialized PET Inference
Engine (PIE) that allows both inter-task and inter-algorithm
query-batching. It enables 26× more concurrent tasks and
enhances serving throughput by 1.53× on Desktop GPUs and
1.63× on Server GPUs.

6) PETALS
PETALS [60] emerges as a collaborative platform specifi-
cally designed for the distributed inference and fine-tuning
of LLMs over the internet. It aims to overcome the
limitations associated with existing approaches, offering a
range of advantages. The platform focuses on achieving high
performance by leveraging pipeline parallelism, effectively
enhancing the efficiency of LLM inference and fine-tuning
processes. Furthermore, it showcases scalability, demonstrat-
ing its capability to support a substantial number of users
and accommodate large-scale LLMs. This adaptability is
complemented by the provision of a flexible API, allowing
users to tailor the inference and fine-tuning processes
according to their specific requirements. The PETALS
key feature is its emphasis on collaboration, providing a
framework that enables multiple participants to actively
engage in LLM inference and fine-tuning tasks collectively.
The collaborative nature of PETALS contributes to its
potential in democratizing access to LLMs, making them
more accessible and valuable across a diverse range of
applications. In summary, PETALS emerges as a promising
platform with the potential to enhance the accessibility and
utility of LLMs. It can offload a 176B parameter model
in 5.5 seconds for a regular setup and 11 seconds for
a multi-GPU setup. These results demonstrate PETALS’s
superior performance for running large models with limited
resources.

7) LIGHTSEQ
LightSeq [61] is a lightweight inference library, addresses the
need for efficient and convenient deployment of Transformer
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models in online services. It utilizes a combination of GPU
optimization techniques, including coarse-grained fused
kernel functions, hierarchical auto-regressive search, and
dynamic GPU memory reuse strategy, to achieve significant
performance gains compared to TensorFlow and FasterTrans-
former (FT). It supports a wide range of models and search
algorithms, encompassing BERT, GPT, Transformer, and
Variational Autoencoders (VAEs), whereas seamlessly inte-
grating with popular models like BERT [8], RoBERTa [66],
GPT, VAEs, MT Transformer, and Speech Transformer. The
library is user-friendly, with a serving system and CUDA
implementations, enabling easy deployment of popular
models online without code modification. It addresses the
deployment challenges of resource-intensive sequence mod-
els, narrowing the performance gap between large models
and the demands of online services. In machine translation
benchmarks, it consistently outperforms TensorFlow and
FasterTransformer (FT), achieving up to 14× and 1.4×
speedups, respectively.

8) EET
Easy and Efficient Transformer (EET) [62] offers a library
designed to accelerate transformer inference. It encompasses
a range of optimizations for transformer inference, spanning
both algorithmic and implementation aspects. To address
the inefficiencies of explicit matrix addition and masked
attention, the study implements custom CUDA kernels.
Also, to extend all kernels to support a larger model
size up to 12288 and a longer sequence above 4096 the
research proposes a new method called thread block fold-
ing. Furthermore, the study introduced a CUDA memory
management mechanism aimed at minimizing memory usage
for models of the size. EET evaluated against Fairseq,
LightSeq, and Faster Transformer (FT), On both a 2080Ti
and A100, EET achieves a speedup of 4.48-20.27× and 4.30-
27.43×, respectively, compared to Fairseq. On a 2080Ti, EET
outperforms LightSeq [61] with a speedup of 0.82-2.46× for
model sizes of 768 and 1024. EET attains a speedup of 1.21-
6.30× and 1.62-812× over FT v3.1 on a 2080Ti and A100,
respectively, and a speedup of 1.40-4.20× over FT v4.0 on an
A100.

9) SPLITWISE
Splitwise [63] investigates inefficiencies in LLM inference,
which relies on expensive GPUs. The analysis reveals
two distinct phases in LLM inference: a compute-intensive
prompt computation and a memory-intensive token gen-
eration phase. While existing methods optimize batching
and scheduling, they underutilize compute resources during
token generation. To address this, the study proposes
separating these phases across different machines. This
allows for hardware optimized for each phase: powerful
machines for prompt computation and potentially older,
more cost-effective machines for token generation. Splitwise
facilitates communication between these machines using fast

interconnects. This approach enables the design of clusters
optimized for throughput, cost, or power consumption. The
model achieves up to 1.4× higher throughput at 20% lower
cost or 2.35× higher throughput with the same cost and
power consumption. This approach improves LLM inference
efficiency by leveraging hardware specialization, leading to
more cost-effective and power-efficient deployments.

10) LLMCOMPASS
Zhang et al. [64] propose LLMCompass, a library that effi-
ciently evaluates hardware design for LLMs. LLMCompass
considers various hardware options and identifies the optimal
configuration for a specific task. The study also uses a
cost model to recommend the most economical design. The
library demonstrates high accuracy, with an average error
of 10.4% for predicting task execution time and 4.1% for
LLM tasks, compared to real hardware. Notably, the model
can simulate running a massive LLM like GPT-3 175B on
a powerful computer setup with 4× A100 GPUs in just
16 minutes. Leveraging LLMCompass, the study identified
hardware designs that are more affordable than current
options (e.g., using less powerful components or cheaper
memory) while still offering good performance. These
designs couldmake LLMsmore accessible to awider range of
users.

11) POWERINFER
PowerInfer [65] is a high performance inference engine
designed to run LLMs efficiently on consumer-grade GPUs.
It leverages the power-law distribution of neuron activation
in LLMs, assigning frequently activated (hot) neurons to
the GPU and input-specific (cold) neurons to the CPU.
This hybrid approach significantly reduces the pressure on
GPU memory and minimizes data transfers between CPU
and GPU. Furthermore, PowerInfer incorporates adaptive
predictors and neuron-aware sparse operators to optimize
performance and maintain model accuracy. Evaluations
demonstrate that PowerInfer on an NVIDIA RTX 4090 GPU
achieves inference speeds up to 11.69× faster inference than
systems like llama.cpp.It delivers an average token generation
rate of 13.20 tokens per second, rivaling the performance of
top-tier server-grade GPUs.

12) LLM INFERENCE FRAMEWORKS AND LIBRARIES:
CHALLENGES AND KEY FINDINGS
This section presents various frameworks and libraries
designed to improve the efficiency of running LLMs. The
following paragraphs discuss the challenges and key findings
of the reviewed studies.
Challenges of LLM Inference:
• LLMs are computationally expensive due to their
massive size and complex architecture.

• Traditional inference methods struggle to handle large
models on resource-constrained devices.

• Balancing speed, accuracy, and resource utilization is
crucial for deploying LLMs in real-world applications.
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Key Findings:
• Hardware specialization: Splitwise [63] proposes sepa-
rating compute-intensive and memory-intensive phases
onto different machines with specialized hardware.

• Resource optimization: FlexGen [17] utilizes various
techniques like I/O scheduling, compression, and dis-
tributed processing to efficiently use resources from
CPU, GPU, and disk.

• Algorithmic optimizations: Libraries like EET [62]
and LightSeq [61] implement custom algorithms and
memory management techniques to accelerate inference
on GPUs.

• Heterogeneous platforms: NLP-Fast [58] leverages
different hardware platforms (CPU, GPU, FPGA) by
identifying performance-critical operations and apply-
ing targeted optimizations.

• Distributed inference: PETALS [60] facilitates collab-
orative inference and fine-tuning of LLMs across a
network, enabling scalability and efficient resource
utilization.

• Efficiency gains: Several frameworks achieve signif-
icant performance improvements. DeepSpeed Infer-
ence [5] boasts throughput boosts of 1.5× and latency
reductions of 7.3×. FlexGen demonstrates even greater
throughput gains, particularly on resource-constrained
devices. Other frameworks like NLP-Fast [58], Turbo-
Transformers [11], LightSeq [61], and EET [62] show
promising results in accelerating inference.

C. LLM DEPLOYMENT AND SERVING LIBRARIES
As mentioned in section IV, some of the frameworks
and libraries are utilized for multiple purposes. Besides
vLLM [67] (Section IV-C1), the models used for deployment
and serving purposes are mentioned in these sections
LightSeq2 IV-A4, TurboTransformer IV-B4, PetS IV-B5.

1) VLLM
vLLM [67] is a high performance system that efficiently
handles LLMs at a large scale. The model tackles the
memory limitations of existing LLM serving systems through
a novel algorithm called PagedAttention (Section V-A1).
PagedAttention splits the KV cache into manageable blocks,
minimizing wasted memory and enabling efficient sharing
across requests. vLLM is a distributed system that supports
popular LLMs and even models exceeding single GPU
memory. Evaluations present vLLM significantly improves
throughput by 2-4× faster compared to existing systems,
especially for complex tasks involving long sequences, large
models, and intricate decoding algorithms. This makes vLLM
a significant advancement for efficient LLM processing,
enabling faster and more scalable LLM applications.

2) LLM DEPLOYMENT AND SERVING LIBRARIES:
CHALLENGES AND KEY FINDINGS
As explored in previous sections (Sections IV-A6 and IV-B12)
a variety of LLM frameworks exist that hold promise

for deployment and serving applications. This section will
discuss the key challenges and findings associated with LLM
deployment and serving.
Challenges of LLM Deployment and Serving:
• Memory limitations: Large LLMs can easily overwhelm
the memory capacity of a single GPU. This limits their
deployment and serving for real-world applications.

• Scalability: Effectively handling multiple user requests
simultaneously with large LLMs requires efficient
scaling solutions.

• Variability of input: LLM performance can suffer
when dealing with input sequences of varying lengths,
requiring dynamic memory allocation strategies.

• Ease of deployment: Integrating complex LLM serving
systems into existing workflows can be challenging for
researchers and practitioners.

Key Findings:
• PagedAttention: This algorithm (introduced by vLLM
[67]) breaks down the KV cache into manageable
blocks, minimizing wasted memory and enabling effi-
cient sharing across requests. This is a significant
improvement for processing large LLMs.

• Efficient GPU utilization: TurboTransformers [11] uti-
lize techniques like parallel GPU kernels and dynamic
batch scheduling to optimize performance on GPUs.
This translates to faster inference for transformer-based
models.

• System-level optimizations: LightSeq2 [52] demon-
strates how system-level optimizations within the train-
ing process can significantly improve training speed
and efficiency for transformer models. This translates to
faster deployment of LLMs in general.

These findings from vLLM [67], TurboTransformers [11],
and LightSeq2 [52] offer promising solutions for overcoming
challenges in LLM deployment and serving. By focusing
on memory management, efficient GPU utilization, user-
friendly tools, and co-optimization.

V. TRAINING OPTIMIZATION
Training optimization in LLMs involves improving the
efficiency and effectiveness of the training process. This
encompasses a range of techniques and strategies aimed
at improving factors such as convergence speed, model
generalization, and resource utilization. The goal of training
optimization is to achieve the desired model performance
with faster training times, reduced resource requirements,
and improved overall training effectiveness. In this section,
we will focus on model optimization, size reduction,
distributed training, and heterogeneous training (Fig. 5).

A. MODEL OPTIMIZATION
Model optimization in LLMs refers to the process of
improving the model’s architecture, structure, or parameters
to enhance its overall performance. We stated various tech-
niques aimed at achieving better accuracy, efficiency, or both.
Common model optimization strategies for LLMs include
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FIGURE 5. Training optimization techniques.

TABLE 5. Comparative analysis between different categories.

algorithmic optimization (section V-A1), layer-specific
kernels (section V-A2), model partition (section V-A3),

fine-tuning (section V-A4), and scheduler optimization
(section V-A5).
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1) ALGORITHMIC OPTIMIZATION
FlexGen [17] devised a linear programming-based search
algorithm to optimize throughput within the search space.
This model can identify efficient patterns for tensor saving
and access.

Building on techniques for efficient model execution,
SwapAdvisor [68], proposes a novel approach to deep
learning memory management, that enables the training
and serving of large models despite limited GPU memory.
Through smart swapping between CPU and GPU memory,
it optimizes scheduling, memory allocation, and swap plan-
ning to maximize computational efficiency. This approach
allows training models up to 12× beyond the usual GPU
memory limit while maintaining significant performance.
It stands as an innovative solution for deep learning with
limited GPU resources.

NLP-Fast [58] employs algorithmic optimization tech-
niques to enhance the performance of large-scale heteroge-
neous NLP models. One of the techniques is cross-operation
zero skipping, which eliminates unnecessary computations
by skipping zero or near-zero values across multiple
operations. By leveraging these techniques, NLP-Fast can
significantly improve the overall performance of NLPmodels
on various hardware platforms.

ByteTransformer [4] was developed to address the chal-
lenges of redundant computations and memory overhead in
transformer models, it employs a combination of algorithmic
optimizations and memory-efficient techniques, including a
padding-free algorithm, fusedMHA, andmanually optimized
memory sizes of layer normalization. These techniques
effectively eliminate unnecessary computations, minimize
memory footprint, and reduce the cost of accessing GPU
global memory, leading to significant performance gains
compared to other transformer frameworks.

Sheared LLAMA [72] model introduces a dynamic batch
loading. This innovative algorithm efficiently adjusts the
composition of sampled data within each training batch
based on varying losses observed across different domains.
The primary objective is to dynamically update the batch
loading process to maximize learning efficiency, ensuring
that the model achieves the reference loss approximately
simultaneously across all domains. All training experiments
have been done on a maximum of 16 Nvidia A100 GPUs
(80 GB).

GrowLength [73] enhances the pre-training of LLMs by
gradually increasing the training length, it introduces an
innovative method inspired by the principles of extending
context windows during training. This innovative approach
accelerates the pre-training phase of LLMs by dynamically
and gradually extending the length of the training sentence.
The primary benefit of this method lies in its adaptability
and efficient resource utilization. It optimizes computational
resources effectively, allowingmodels to process more tokens
within a restricted time frame. Throughout the training
process, the model incrementally increases the training
length, resulting in reduced computational expenses and

enhanced training efficiency. The experiments have been
done in three different setups: 1) LLM128, in this setup
the sentence length fixed of 128 tokens, totaling 0.36B.
2) LLM1024, sentence length was set to 1024 tokens,
the same total tokens as LLM128, allowing direct runtime
comparison. 3) GrowLength, in this experiment the method
progressively grew from 128 to 1024 tokens, saving time with
shorter lengths and enhancing performance at 1024 tokens.
As a result, with equivalent tokens, LLM1024 required
longer pre-training than LLM128. Using GrowLength led
to a significant decrease in loss, and emphasized its
computational efficiency and practical value in resource-
constrained configurations.

PagedAttention [67] introduces another innovative
approach to improve learning efficiency. This novel attention
algorithm is inspired by virtual memory used in operating
systems. The algorithm splits the KV cache into fixed-size
blocks, similar to memory pages, reducing fragmentation
and enabling efficient sharing across requests. This approach
significantly improves memory utilization and allows for
larger batch sizes.

2) LAYER-SPECIFIC KERNELS
LightSeq [61] (Section IV-B7) is a lightweight inference
library instead of using a straightforward combination of
the fine-grained GPU kernel functions in TensorFlow or
PyTorch implementations, it utilizes a method known as
coarse-grained fusion. This strategy mitigates the significant
time costs associated with numerous kernel function launches
and GPU memory I/O operations for intermediate results.
Therefore, it achieves a significant reduction in the number of
atomic kernel functions, leading to a remarkable performance
boost compared to conventional TensorFlow approaches.

LightSeq2 [52] (Section IV-A4) proposed a software
library that accelerates the training of transformer-based
models within GPUs. It is a system-level optimization
while maintaining accuracy and training behavior. The
library works with BERT (encoder), GPT (decoder), Trans-
former (encoder-decoder), and vision transformer. LightSeq2
uses three techniques for improving training speed and
efficiency. The first technique used for increasing GPU
utilization is layer-specific kernels technique. After analyzing
Transformer-specific layers in detail, rewriting the kernels
with dependencies and other techniques to improve paral-
lelism, and using small kernels to improve GPU utilization.

3) MODEL PARTITION
NLP-Fast [58] (Section IV-B3) accelerates the performance
of large-scale heterogeneous NLPmodels by applying several
techniques. It proposed holistic model partitioning as a
solution for optimizing every operation in NLP models. This
technique breaks down the model into smaller, more efficient
submodels can be tailored for different hardware platforms.

GPipe [3] (Section IV-A1) is an efficient, task-
independent, and supports any deep neural network archi-
tecture that can be expressed as a sequence of layers.
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It can use different accelerators, each of which supports
re-materialization. GPipe partitions the model across the
accelerators, with each accelerator responsible for a sequence
of layers (called a cell).

Megatron-LM [19] introduces a new method for training
LLMs, which empowers the training of exceptionally large
transformer models with billions of parameters within GPUs.
Megatron-LM uses intra-layer model parallelism, a strategy
that subdivides the model into smaller submodels capable of
being trained separately.

4) FINE-TUNING
AlphaTuning [74] is a novel method specifically designed for
large-scale pre-trained language models (PLMs). It combines
the quantization of PLMs with fine-tuning, only a subset
of quantized parameters is fine-tuned for the target task.
This selective approach significantly decreases the overall
memory footprint and the number of parameters to be trained.
Despite these reductions, it maintains performance levels
comparable to full fine-tuning across a diverse range of
downstream tasks.

QFT [75] proposes a novel framework designed for
memory-efficient fine-tuning of LLMs. The model utilizes
quantization techniques to significantly reduce memory
usage during fine-tuning while preserving model perfor-
mance. The framework adopts the Lion optimizer, known for
its memory efficiency and compatibility with quantization,
and the conversion of all model states into integers to
minimize memory footprint. The study also features a
specialized gradient flow and parameter update scheme
tailored for quantized weights. Extensive evaluations show
the framework’s effectiveness, allowing fine-tuning of large
LLaMA-7B models with less than 30 GB of memory on
a single A6000 GPU a substantial reduction compared to
standard methods while maintaining similar performance
across various benchmarks.

LOMO [56] is a novel technique for training LLMs on
machines with limited GPU capacity. LOMO proposed a
memory-efficient update method that greatly lowers memory
consumption compared to traditional methods. This enables
fine-tuning large models, such as those with 65 billion
parameters, on consumer-grade GPUs like the RTX 3090.
The study validates LOMO’s efficiency through analyses
of memory usage, performance testing, and benchmark task
evaluations. Existing techniques like LOMO reduce memory
usage but compromise performance.

AdaLomo [57] offers a better solution. It incorporates a key
feature from the powerful AdamW optimizer (adaptive learn-
ing rate) but uses clever techniques to stay memory-friendly.
This allows AdaLomo to match AdamW’s performance on
various tasks, making LLM training more accessible with
less memory needed. On average, AdaLomo achieved scores
of 30.8, 39.7, 51.0, and 56.9 on the LLaMA benchmark for
models with 7B, 13B, 30B, and 65B parameters, respectively.

LoRA [33] is a method designed to adapt LLMs, such
as GPT-3, for specific tasks, addressing the challenges of

traditional fine-tuning. Instead of adjusting all pre-trained
model weights, LoRA introduces trainable rank decomposi-
tion matrices into each layer of the Transformer architecture,
significantly reducing the number of trainable parameters
needed for downstream tasks. This approach reduces the
number of trainable parameters by 10,000× and reduces GPU
memory requirements by 3× compared to GPT-3 175B fine-
tuned with Adam, while maintaining or improving model
quality on benchmarks like RoBERTa, DeBERTa, GPT-2,
and GPT-3. LoRA achieves higher training throughput
with no added inference latency and facilitates efficient
task-switching by sharing the pre-trained model and only
optimizing the small low-rank matrices, thereby reducing
storage and hardware costs. It is versatile and can be com-
bined with other methods, applicable to any neural networks
with dense layers. For GPT-3 175B, LoRA with 4.7M
parameters achieves 73.4% accuracy on WikiSQL, 91.7%
on MNLI-m, and Rouge-1/2/L scores of 53.8/29.8/45.9 on
SAMSum, demonstrating its superior performance and
efficiency.

5) SCHEDULER OPTIMIZATION
TurboTransformers [11] (Section IV-B4) introduces a novel
sequence-length-aware batch scheduler that utilizes dynamic
programming (DP) to optimize response throughput. This
approach overcomes the limitations of traditional batch
schedulers that struggle with varying input lengths. The
model considers sequence length in batching decisions. The
scheduler’s core algorithm operates inO(n2) time complexity,
making it efficient for real-time applications.

PetS [59] (Section IV-B5) introduces a unified framework
aimed at enhancing multi-task PET serving efficiency.
It comprises two main components: a flexible PET task man-
agement mechanism and a specialized PIE. Together, these
components facilitate both inter-task and inter-algorithm
query-batching, streamlining the processing of PET tasks.
This approach optimizes resource utilization and enhances
the efficiency of PET serving. The PET task scheduler
efficiently schedules PET operations to run in parallel on
the GPU, maximizing hardware utilization and performance.
It dynamically assigns PET tasks to CUDA streams, consid-
ering both PET operator characteristics and system resource
constraints. This lightweight online scheduling strategy
effectively balances computational and memory-intensive
tasks, leading to improved throughput and reduced latency
in multi-task PET serving scenarios.

B. SIZE REDUCTION OPTIMIZATION
Minimizing the size or complexity of LLMs is a crucial
optimization technique known as size reduction optimiza-
tion. This approach is essential for addressing challenges
associated with memory demands, computational efficiency,
and storage limitations. Size reduction optimization encom-
passes various techniques, including model compression and
quantization (Section V-B1), pruning (Section V-B2), and
hyperparameter optimization (Section V-B3).
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Cramming [16] investigates the trade-offs involved in scal-
ing down language model training, and investigates different
parts of the training pipeline to identify the modifications that
have the biggest impact on performance in a scaled-down
setting. As a result, the research figured out that even under
customized and constrained settings, the scaling laws [76]
were almost true as it was observed for performance in large-
compute settings. As a predictable outcome of these laws,
it is a challenging task to perform downscaling. However,
a smaller model architecture requires less computation power
and allows to boost up the gradient computations, as a
result the rates of the improved model within the time
remain nearly unchanged. The study shared that doing
modifications to the training methodology leverages scaling
law to bring about enhancements by increasing the effective
rate of gradient computations without sacrificing the model
size. Two model setups have been analyzed: one utilizing a
classical rtx2080ti GPU, and the other employing a modern
rtxa4000 or rtxa6000 GPUs. Each setup was configured
with 4 CPU cores and 32 GB of RAM. The paper proposes
several modifications to the standard training pipeline to
make it possible to train a language model on a single GPU in
one day. As a result, each of these modifications has a direct
impact on the model size reduction such as smaller model
architecture, shorter training schedule, lower learning rate,
mixed precision training, and specialized training library.

1) MODEL COMPRESSION AND QUANTIZATION
FlexGen [17] (Sections IV-B, and V-A1) through a lin-
ear programming-based search algorithm identifies opti-
mal patterns for tensor storage and retrieval. Furthermore,
it employs 4-bit quantization to compress weights and
attention cachewithout compromising accuracy, significantly
reducing model size and memory footprint. These opti-
mizations enable it to achieve impressive throughput gains
compared to existing LLM inference systems.

SWARM parallelism [10], proposes a model for training
a large model with unreliable heterogeneous devices with
low network bandwidth by using dynamically generated,
randomized pipelines instead of static pipelines dynam-
ically instead of statically. The study incorporates 8-bit
compression to minimize model size and facilitate train-
ing on resource-constrained devices with limited network
bandwidth. This compression technique significantly reduces
the amount of data that needs to be transferred between
nodes during training, leading to improved efficiency and
throughput.

QMoE [77] is a compression and execution framework
that reduces memory usage significantly. This is achieved
through a scalable compression algorithm that shrinks trillion
parameter MoEs down to less than 1 bit per parameter. This
impressive compression is facilitated by a custom format
specifically designed to work with bespoke GPU kernels,
enabling efficient processing with minimal slowdowns.
QMoE can compress the SwitchTransformer-c2048 model to
under 160GB (20× compression, 0.8 bits per parameter) with

minimal impact on accuracy, achievable within a day on a
single GPU. This enables the execution of trillion-parameter
models on affordable commodity hardware, such as a single
server with 4× NVIDIA A6000 or 8× NVIDIA 3090 GPUs,
with less than 5% runtime overhead compared to uncom-
pressed inference. The framework reduces the model size
from 3.2TB in bfloat16 to less than 160 GB, allowing
efficient execution on commodity hardware and enhancing
the practical adoption and research of MoE architectures.

AlphaTuning [74] is a compression-aware parameter-
efficient adaptation method for large-scale PLMs. It com-
bines the quantization of PLMs with fine-tuning, but only a
subset of quantized parameters are fine-tuned for the target
task. This significantly reduces the total memory footprint
and the number of trainable parameters, while still achieving
comparable performance to full fine-tuning on a variety of
downstream tasks. It relies on binary-coding quantization,
a technique that decomposes full-precision parameters into
binary parameters alongside a distinct set of scaling factors.
The model is evaluated across various PLMs and downstream
tasks, and achieves comparable performance to full fine-
tuning, even at low bitwidths. While it was applied to GPT-2
and OPT, it achieved a compression ratio of over 10 times
under 4-bit quantization and a reduction in the number of
trainable parameters by over 1,000-fold, while still achieving
competitive performance on a variety of downstream tasks.

GPTQ [78] proposes a new highly accurate and highly
efficient post-training quantization method based on approx-
imate second-order information which is called a new
one-shot weight quantization. This model reaches a level
that is considered acceptable to precisely quantize models to
3 or 4 bits per parameter, it requires a few hours at most to
run on a model that has hundreds of billions of parameters.
The model experimented on both OPT-175B and BLOOM-
176B it took approximately 4 GPU hours by reducing the
bitwidth down to 3 or 4 bits per weight, with minimal
loss of accuracy compared to the uncompressed baseline.
Compared to previous one-shot quantization methods the
model achieves more than twice the compression without
sacrificing accuracy. Also, within the method for first-time
models with 175 billion parameters can execute inside a
single GPU for generative inference. The results show that
these enhancements can boost performance by up to 3.25×
while using high-end GPUs (NVIDIA A100) over FP16 and
reach 4.5× and up to 4.5× while using more cost-effective
GPUs (NVIDIA A6000). This model can also achieve
robust accuracy results even using an extreme quantization
regime, while the weights are quantized to 2-bit or ternary
quantization level.

FPTQ [79] also proposes a novel post-training quantization
technique to address the deploying LLM challenge. This
technique effectively compresses LLMs into a format using
4-bit weights and 8-bit activations (W4A8). This approach
achieves SOTA performance on popular LLMs like BLOOM
[80], LLaMA [14], and LLaMA-2 without requiring fur-
ther fine-tuning. FPTQ offers a significant advantage by
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optimizing both memory usage and computation efficiency
during the inference stage without sacrificing accuracy. This
technique simplifies the deployment process for LLMs and
makes them more practical for real-world use. The model
was validated on various datasets, including LAMBADA,
MMLU, and a set of Common Sense QA tasks. The
researchers compared the model’s performance to an exist-
ing technique called LLM-QAT (LLM-Quantization-Aware
Training). However, limited data availability for LLM-QAT
restricted the comparison to the Common Sense QA dataset.
On this task, FPTQ achieved results closer to the FP16
compared to LLM-QAT.While the analysis was only possible
for 7B and 13B parameter LLaMA models due to data
limitations, FPTQ consistently performed better across all
subsets of the dataset. This is evidenced by the average scores:
73.38 and 76.81 for LLaMA-7B and 13B, respectively. These
findings suggest that FPTQ is an effective approach for LLM
quantization.

Norm Tweaking [54] method introduces a novel technique
in quantization, specifically for LLMs. While existing quan-
tization methods like GPTQ [78] achieve acceptable 4-bit
weight-only quantization, attempts at lower bit quantization
often lead to significant performance degradation. It intro-
duces a strategy to rectify the quantized activation distribu-
tion, restoring accuracy for LLMs. The method involves gen-
erating calibration data and applying channel-wise distance
constraints to normalization layer weights. Experiments show
significant improvements in both weight-only quantization
and joint quantization of weights and activations, achieving
high accuracy even at 2-bit quantization. It offers a practical
solution for reducing computational and storage costs in
LLMs while maintaining performance.

FineQuant [81] introduces an innovative weight-only
quantization technique that significantly decreases mem-
ory usage and speeds up LLM inference with minimal
quality loss. Key features of this technique include utiliz-
ing pre-trained model weights without further fine-tuning,
applying adaptive granularity quantization to minimize
accuracy loss, and implementing an efficient GPU processing
approach. Tested on large-scale models like OPT-175B,
FineQunat demonstrates minimal accuracy loss, achieves up
to 3.65× higher throughput with the same number of GPUs,
and reduces resource demands.

PETALS [60] (Section IV-B6) is a collaborative platform
for distributed inference and fine-tuning of LLMs over the
internet. To enhance efficiency, quantization techniques have
been employed to store a higher number of parameters
per GPU, thereby decreasing the need for consecutive
devices and communication rounds and use 8-bit precision to
compress the weights, reducing the nodes required to store
all layers. To achieve more efficient data transfer between
pipeline stages, dynamic blockwise quantization is utilized.
It utilize 8-bit mixed matrix decomposition for matrix
multiplication allows the model to quantize the weights to
8-bit precision, significantly reducing the memory footprint
compared to 16-bit weights.

QFT [75] (Section V-A4) addresses memory limitations
during fine-tuning LLMs by introducing a novel quantization
framework. It converts all model states into integers to
minimize memory footprint and employs the Lion optimizer
for its memory efficiency and compatibility with quantiza-
tion. Additionally, the framework incorporates a specialized
scheme for handling quantized weights during training.

QuantEase [82] is a framework for post-training quantiza-
tion of LLMs that enhanced their deployment efficiency. The
framework addresses the challenge of layer-wise quantization
by optimizing each layer individually, utilizing Coordinate
Descent (CD) to achieve high quality solutions efficiently
without complex matrix operations. The framework includes
an outlier-aware variant that maintains crucial ‘‘outlier’’
weights in full precision to enhance accuracy. Demonstrating
SOTA performance, QuantEase significantly improves per-
plexity and zero-shot accuracy compared to existing methods
like GPTQ [78], with up to 15% relative improvement.
Efficient linear algebra optimizations allow for the quan-
tization of large models such as Falcon-180B on a single
GPU in under 3 hours. The outlier-aware variant supports
near or sub-3-bit quantization with minimal accuracy loss,
outperforming methods like SpQR by up to two times in
perplexity reduction.

LLM-Pruner [83] (Section V-B2) compresses LLMs by
removing non-essential parts based on gradient information
while keeping their functionality. This significantly reduces
model size with minimal accuracy loss, achieved through
fine-tuning with a small amount of data.

2) PRUNING
SparseGPT [70] framework has developed an efficient and
precise post-training pruning technique for significantly
reducing the size of large-scale GPT-family models. This
method achieves at least 50% sparsity in a single step,
without requiring retraining. Remarkably, it enables the
processing of the largest open-source models, such as OPT-
175B and BLOOM-176B, in less than 4.5 hours. It makes
the model achieve 50-60% unstructured sparsity with a
negligible increase in perplexity and removes more than
100 billion weights with minimal impact on accuracy. The
study demonstrates that the parameterization of massive GPT
models enables pruning without relying on the gradient
information. It highlights that sparse models with comparable
accuracy to dense models can be identified within the ‘‘close
neighborhood’’ of the dense models. The study’s findings
reveal that sparse models achieve performance very similar
to the dense models. The study also shows that it is easier to
prune larger models: for a fixed sparsity level, the accuracy
drop for larger sparse models is smaller, to the point where
there is practically no accuracy decrease when reaching 50%
sparsity, to the point where reach 50% sparsity does not result
in any noticeable accuracy decrease on the largest models.

Sheared LLAMA [72] is used to reduce the size of the
LLaMA2-7B model to 1.3B and 2.7B parameters, and it
performed better than other open-source models of the same
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size on a variety of downstream and instruction tuning
evaluations. LLM-shearing also requires only 3% of the
computing resources to train as the same models trained
from scratch. One of the main steps of Sheared LLAMA
is a novel pruning algorithm that can prune a source model
to any specified target architecture. The algorithm is an
extended version of CoFiPruning that allows the source
model to be pruned to any specified target architecture, based
on the desired model size and performance requirements.
Pre-trained models are typically well-optimized to balance
expressivity and inference efficiency, therefore these config-
urations are used as the target architectures.

LLM-Pruner [83] introduces a framework for compressing
LLMs in a task-agnostic way while minimizing the need for
the original training corpus. The framework uses structural
pruning to remove non-critical parts of the model based
on gradient information. The pruned models’ performance
is recovered using LoRA [33] tuning, which takes just
3 hours and 50K data samples. Experiments on LLaMA [14],
Vicuna [84], and ChatGLM [85] show that the compressed
models maintain 94.97% of their original performance even
after removing 20% of parameters. However, higher pruning
rates lead to significant performance drops and incoherent
sentence generation.

3) HYPERPARAMETER OPTIMIZATION
Selecting the right hyperparameters is essential for devel-
oping effective LLMs, as these parameters significantly
influence the model’s convergence speed, generalization
ability, and overall performance in various language tasks.
Whereas often an iterative and computationally demanding
process, hyperparameter optimization is crucial for achieving
optimal model performance. Cramming [16] employs a lower
learning rate to stabilize the training process and prevent
overfitting, enabling effective model training within limited
computational resources.

C. DISTRIBUTED TRAINING
Distributed training refers to the process of training LLMs
across multiple computing devices or processing units. This
approach harnesses the power of parallelism to distribute the
computational burden, enabling faster training of large mod-
els with millions or even billions of parameters. Distributed
training is crucial for managing the massive datasets and
computational demands associated with cutting-edge LLMs.

1) DATA PARALLELISM
Data parallelism is a parallel training technique that replicates
the entire model across multiple GPUs or devices and
distributes the training data among them. Each device handles
a portion of the data, performs forward and backward
propagation, and computes gradients independently. These
gradients are then aggregated across all devices to update
the global model parameters. It is a fundamental and widely
used technique for improving the training throughput of deep

learning models. Its simplicity, scalability, and effectiveness
make it a valuable tool for researchers and practitioners in the
field of machine learning [15], [24], [69], [80].

2) MODEL PARALLELISM
The model parallelism can be classified into two groups
tensor parallelism (section V-C2a) and pipeline parallelism
(section V-C2b).

a: TENSOR PARALLELISM
Tensor parallelism involves partitioning a tensor across an
array of devices, necessitating a distributed matrix-matrix
multiplication algorithm for mathematical computations.
Using the tensor parallelism reduces the response time for
individual queries [15], [17]. Megatron-LM introduced 1D
tensor parallelism (Section IV-A3) which partitions the linear
layer within the Transformer architecture along either the
row or column dimensions.WithinMegatron-LM, tensors are
broken down into a single dimension [15], [19].

b: PIPELINE PARALLELISM
FlexGen [17] (Section IV-B2) utilizes pipeline parallelism to
distribute an l-layer LLM evenly across m GPUs, enabling
parallel execution of all layers. Each GPU executes the same
sequence of operations, essentially reducing the problem to
training an n/m-layer transformer on a single GPU. This
approach leverages the existing policy search algorithm
developed for single-GPU training. In order to implement
micro-batch pipelining, a new repetition statement (for-loop)
is used within the applied algorithm effectively merging the
iteration-level pipeline parallel execution schedule with a
single-device offloading runtime.

PETALS [60] (Section IV-B6) utilizes pipeline parallelism
to efficiently distribute the computation of LLMs among
multiple servers. Servers are organized into a chain, with
each server responsible for executing a portion of the model
pipeline. This approach enables efficient parallel processing,
improving the overall performance of inference and fine-
tuning tasks.

GPipe [3] (Section IV-A1) employs a novel pipeline paral-
lelism algorithm based on batch splitting, where mini-batch
examples are divided into smaller micro-batches and sequen-
tially executed across cells during training. Themodel utilizes
synchronous mini-batch gradient descent, accumulating gra-
dients from all micro-batches and applying them to the model
at the end of the mini-batch. The efficiency of the model is
demonstrated through the successful training of large-scale
models, including a convolutional model (AmoebaNet) for
image classification and a transformer model for machine
translation. Themodel showcases its flexibility across various
deep network architectures, achieving superior results and
consistent training performance on diverse devices.

DFX [86] is a low-latency multi-FPGA appliance for
accelerating transformer-based text generation. It uses model
parallelism to split the transformer model across multiple
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FPGAs. This allows each FPGA to process a different part
of the model in parallel, thereby accelerating the overall
text generation process. Also, it uses an efficient network
to interconnect the FPGAs and reduce communication
overhead. The network uses a ring topology to minimize
communication overhead. This model utilized four Xilinx
Alveo U280 FPGAs and evaluated its performance on the
GPT-2 language model. It demonstrated a 5.58× acceleration
in speed and a 3.99× enhancement in energy efficiency
compared to four NVIDIA V100 GPUs. In addition to its
performance and energy efficiency benefits, this solution
proves to bemore cost-effective than GPU-based alternatives.
Moreover, it offers an 8.21× cost advantage over a GPU
appliance delivering similar performance levels.

3) COMBINED PARALLELISM
Narayanan et al.., in [69] proposed a new technique called
PTD-P for training LLMs on GPU clusters. PTD-P combines
pipeline parallelism, tensor parallelism, and data parallelism
to achieve high computational performance and graceful
scaling. Data parallelism divides the training data into smaller
batches, which are then processed in parallel on all the GPU
servers. This allows PTD-P to achieve faster training by
leveraging the parallel computing capabilities of the GPU
cluster. Also, GPipe [3], and ZeRO [18] (section IV-A1,
and V-C4 respectively) are other examples of combined
parallelism.

4) ZERO
ZeRO [18] proposed solutions to overcome the limitations of
existing methods and efficiently train large models. While
using existing systems the memory consumption can be
classified into two main parts which are model states, and
residual states.Most of thememory capacity is used bymodel
states (such as momentum, variance in Adam, gradients,
and parameters) while working with large models. The rest
part of the memory is occupied by residual states (such
as activation, temporary buffers, and unusable fragmented
memory). For applying optimization in both model state
memory and residual state memory, efficiently training
models of such colossal sizes is crucial as they grow from
billions to trillions of parameters. The study introduces a
novel memory optimization technique aimed at substantially
improving training speed, and with approach enables scaling
the model size in proportion to the number of devices
while maintaining high efficiency. Leveraging the latest
hardware, this model can scale to over 1 trillion parameters
by carefully evaluating communication volume and memory
capacity requirements, this boosts memory efficiency for
model states. For optimizing model state memory, which
occupies most of the memory during training, the study
introduces ZeRO-DP, ZeRO-powered data parallelism which
has three main optimization stages: in the first stage, only
the optimizer states are partitioned; in the second stage,
both optimizer states and gradients are partitioned; and in
the final stage, all three model states are partitioned. This

results in a significant boost in memory efficiency. The rest
of the memory consumed by residual states could become
a secondary memory bottleneck. The study overcame this
problem by three factors: Firstly using activation partition
to optimize activation memory by locating and deleting
activation replication in existing MP (model parallelism),
and when appropriate offloads activations to CPU. Secondly,
keeping the balance of memory and computation efficiency
by introducing appropriate size temporary buffers to strike.
Finally, during the training process, memory becomes
fragmented because tensors have varying lifetimes. The lack
of contiguous memory, resulting from this fragmentation,
can lead to memory allocation failures, even when there
is sufficient free memory space available. To address this
problem, ZeRO-R takes a proactive approach by effectively
handling memory based on the distinct lifetimes of tensors,
thereby preventing memory fragmentation. Remarkably, this
model achieves a throughput of 15 Petaflops when training
models with over 100 billion parameters, demonstrating
super-linear speedup on 400 GPUs. It indicates an 8×
increase in model size and a 10× increase in performance
compared to recent SOTA models.

5) SEQUENCE PARALLELISM
Sequence parallelism [15], [87], is a novel approach proposed
to efficiently train Transformers with longer sequences on
GPUs. It addresses the quadratic memory requirements
of self-attention in Transformer models. Unlike traditional
methods, it does not require a single device to handle
the entire sequence. By splitting sequences into chunks
and distributing them across devices, it achieves effective
training with infinitely long sequences. It introduces Ring
Self-Attention to enhance the process, demonstrating supe-
rior performance in batch size and sequence length compared
to tensor parallelism, handling sequences over 27× longer
than existing methods.

6) AUTOMATIC PARALLELISM
The automatic selection and parallelization strategies as
the latest advances in parallel training demonstrated by
FlexFlow [71] and Alpa [24], [88]. Alpa is an automated
system that generates execution plans for distributed model-
parallel training. It’s an architecture that can automatically
derive efficient parallel execution plans at each parallelism
level. It is different from specialized systems as it can handle
models with heterogeneous architectures and models without
manually designed plans. However, it is not hardware-aware
and does not consider network topology. Also, it does
not search for activation checkpointing, which could lead
to suboptimal results. Alpa has been evaluated on large
models training with billions of parameters. The model’s
performance has been compared with the SOTA systems
such as Megatron-LM [19] and DeepSpeed [5], on an
Amazon EC2 cluster with 64 GPUs. It presents the similar
training performance as Megatron-LM on GPT models and
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outperforms DeepSpeed on GShared MoE models with up
to 9.7× speedup. Moreover, it generalized well to models
without manual strategies and demonstrated 80% liner
scaling efficiency onWide-ResNet. The results presented that
Alpa’s performance in training large models efficiently and
its ability to generalize to diverse models.

D. HETEROGENEOUS TRAINING
ZeRO-Offload [20], aims to democratize large-scale model
training, making it accessible to a wider audience. It achieves
this by using a single GPU to train models with over
13 billion parameters, eliminating the need for data scientists
to modify the models or sacrifice computational efficiency.
The study introduces ZeRO-Offload, a novel heterogeneous
deep learning (DL) training technology. The model leverages
both CPU memory and compute for offloading and offers an
efficient scaling path onmultiple GPUs through collaboration
with ZeRO-powered data parallelism [18]. Through first-
principle analysis, the study asserts that the model provides
an optimal solution, maximizing memory savings while
minimizing communication and CPU compute overhead for
large model training.

ZeRO-Infinity [1] introduces an innovative system technol-
ogy that enables the model scaling on constrained resources.
It achieves this without the need for extensive model code
modifications by harnessing the power of GPU, CPU, and
NVMe memory. The model made up of five innovative
technologies: 1) infinity offload engine, this technique
uses simultaneous exploitation of GPU, CPU, and NVMe
memory, as well as GPU and CPU compute to fully leverage
heterogeneous architecture on modern clusters, 2) memory-
centric tiling, handle extensive operators without necessity
of model parallelism, 3) bandwidth-centric partitioning,
is employed to make the most of the aggregate memory
bandwidth across all parallel devices, 4) overlap-centric
design, is implemented to enable the simultaneous execution
of compute and communication tasks, 5) ease-inspired
implementation, to prevent the need for extensive model
code refactoring. SWARM Parallelism [10] (section V-B1)
introduced a model aimed at training large models efficiently,
particularly on unreliable heterogeneous devices with limited
network bandwidth. Instead of employing static pipelines,
the model utilizes dynamically generated and randomized
pipelines to adapt to varying conditions. This allows each
device to share its results with any other device that is
responsible for the next stage of the pipeline. This enables
devices with high performance to process inputs from
multiple predecessors, distribute their results across multiple
weaker peers, and rebalance the workload in case of failure
to improve utilization.

NLP-Fast [58] (Section IV-B3) is a system designed
to enhance the performance of large-scale heterogeneous
NLP models by pinpointing the most resource-intensive
operations and employing a combination of techniques: holis-
tic model partitioning, cross-operation zero skipping, and
model/config adaptive hardware reconfiguration. Splitwise

[63] (section IV-B9) improves LLM inference by separating
workload onto different machines for high throughput, cost,
or power efficiency. It allows for building both homogeneous
and heterogeneous clusters depending on the optimization
goal.

E. TRAINING OPTIMIZATION: CHALLENGES AND KEY
FINDINGS
In the previous sections we have offered a comprehensive
overview of training optimization (Section V) which includes
model optimization (Section V-A), size reduction optimiza-
tion (Section V-B), distributed training (Section V-C), and
heterogeneous training (Section V-D). In this section and the
following paragraphs, we will discuss training optimization’s
challenges and key findings.
Challenges of Model Optimization:
• Resource constraints: LMs demand significant memory
and computational power, limiting training and deploy-
ment on single devices.

• Balancing efficiency and accuracy: Optimizing LLMs
requires finding a balance between efficient resource
utilization and maintaining model performance.

• Memory bottlenecks: Distributing LMs across devices
introduces memory limitations on each device.

• Communication overhead: Data exchange between
devices during training can become a bottleneck,
slowing down the process.

• Hardware heterogeneity: Efficiently utilizing devices
with varying memory capacities and processing speeds
in a distributed setting is challenging.

• Scalability limitation: Traditional methods might not
scale well with increasing device numbers due to
memory and communication constraints.

Key Findings:
• Algorithmic: Techniques like FlexGen [17], Light-
Seq [61], and NLP-Fast [58] improve efficiency by
optimizing computations, memory access, and utilizing
specialized hardware kernels.

• Model partitioning: Techniques like GPipe [3] and
Megatron-LM [19] partition models for efficient pro-
cessing across multiple devices.

• Fine-tuning for efficiency: Techniques like AlphaTun-
ing [74] and LoRA [33] enable fine-tuning large
models on limited memory by reducing the number of
parameters requiring adjustment.

• Scheduler optimization: Techniques like TurboTrans-
formers [11] improve response throughput and task
execution on GPUs.

• Size reduction optimization: This approach focuses
on reducing model complexity through techniques
like quantization (reducing storage bits) and pruning
(removing non-essential parts).

• Parallelism strategies: 1) Data parallelism: Distributes
training data across devices for faster training. 2) Model
parallelism: Splits the model across devices for parallel
computations (tensor, pipeline, sequence parallelism).
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FIGURE 6. Hardware optimization.

3) Combined parallelism: Combines data and model
parallelism for even faster training (PTD-P, ZeRO [18],
GPipe [3]).

• Memory optimization: ZeRO [18] optimizes memory
for trillions of parameters, Activation Partitioning
deals with activation memory efficiently, and ZeRO-
Offload [20] and ZeRO-Infinity [1], which allow
training on single GPUs or limited resources by utilizing
CPU and NVMe memory.

• Heterogeneous optimization: SWARM Parallelism [10]
tackles unreliable devices with limited bandwidth by
adapting workloads, NLP-Fast [58] optimizes execution
on mixed platforms by pinpointing resource-heavy
operations, and Splitwise [63] distributes work across
heterogeneous machines considering different goals like
throughput, cost, and power consumption.

• Automatic parallelism: Alpa [88] automatically gen-
erates execution plans for distributed model parallel
training, applicable to diverse models.

Overcoming these challenges and leveraging these tech-
niques, model training can be made more efficient, scalable,
and accessible, paving the way for even more powerful and
versatile LLMs.

VI. HARDWARE OPTIMIZATION
Hardware optimization is a systematic approach to improving
the performance, efficiency, and functionality of computer
hardware. By identifying and addressing bottlenecks in hard-
ware architecture [18], software, and the operating system,
hardware optimization can enhance overall speed, reduce
power consumption, and improve the reliability of hardware
components (Fig. 6). Splitwise [63] (Section IV-B9) is a
technique to optimize hardware utilization by separating
the prompt computation and token generation phases onto
different machines. This approach allows designing clusters
optimized for cost, throughput, and power consumption. The
model achieves up to 1.4× higher throughput at 20% lower
cost or 2.35× higher throughput with the same cost and
power.

A. MEMORY OPTIMIZATION
In the process of training deep learning models, memory
usage is primarily attributed to various factors, including
model parameters, layer activations, gradients, and optimizer
states, such as momentum and variances in the Adam
algorithm [15], [18]. The terms ‘‘model states’’ [18] or
‘‘model data’’ [15] encompass model parameters, gradients,

and optimizer states collectively, while ‘‘residual states’’ [18]
or ‘‘non-model data’’ [15] refer to layer activations, tempo-
rary buffers, and unusable fragmented memory collectively.

In this section, we will explain the common and recent
approaches that have been used for increasing training
throughput and loading larger models into GPU memory
while training deep learning models.

1) MEMORY MANAGEMENT
TurboTransformers [11] (section IV-B4), proposed a
sequence length aware algorithm for memory allocation
to efficiently balance memory allocation and deallocation,
this algorithm overcomes the problem of variability of
input sentence. LightSeq2 [52] introduces an innovative
memory management approach, specifically designed for
the Transformer structure. This strategy efficiently reduces
peak memory consumption and minimizes the need for
frequent allocation and release calls. Notably, LightSeq2
stands out as the pioneer in accelerating the entire training
process of Transformers. In real-time applications where
response time is crucial, model parallelism and pipeline
parallelism can introduce significant delays due to the extra
communication overhead caused by splitting tensors or
layers, even with technologies like NVLink and GPUDirect.
EET [62] (section IV-B8) focuses on minimizing memory
usage for loading large models in online services. The
proposed solution involves dynamic memory management,
specifically targeting the reduction of memory consumption
for activation caches and operation result buffers, as weights
and certain pre-allocated caches are inherently difficult
to compress. They introduce a dynamic CUDA memory
management mechanism specifically designed to reduce
CUDA memory usage for the same model size, unlike the
manual memory allocation required by FT.

B. HARDWARE-AWARE OPTIMIZATION
Hardware-aware optimization (HAO) is the process of
optimizing the hardware utilization of deep learning models
to achieve maximum performance on specific hardware
platforms [91]. In this section, we will explain offloading and
mixed precision optimization.

1) OFFLOADING
FlexGen [17] (SectionIV-B2) presents an offloading
framework for LLMs that optimizes I/O efficiency and
throughput by considering computation schedule, tensor
placement, and computation delegation. It utilizes a linear
programming-based search algorithm and unifies the place-
ment of weights, activations, and the KV cache, enabling
significantly larger batch sizes compared to existingmethods.

ZeRO-Offload [20] model facilitates the training of
large model heterogeneous on GPU + CPU systems,
enabling the handling of models up to 10× larger on
a single GPU without sacrificing efficiency by using a
unique optimal offload strategy. Also, the design achieves
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TABLE 6. Comparative analysis between different strategies [A].
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TABLE 7. Comparative analysis between different strategies [B].
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a highly scalable multi-GPU configuration by integrating
the offload strategy with ZeRO-powered data parallelism,
enabling ZeRO-Offload to achieve nearly linear scalability,
and smooth integration with model-parallel training. This
combination allows for the training of even larger models
than using ZeRO-Offload or model parallelism indepen-
dently. Moreover, the model enhances CPU performance by
introducing a high-performance Adam optimizer, achieving a
6× improvement over SOTA Adam implementations. It also
employs a one-step delayed parameter update strategy to
overlap GPU forward and backward passes with CPU param-
eter updates. Additionally, the model’s size has increased
by a factor of 10 compared to widely used frameworks
such as PyTorch. To maintain computational efficiency, the
model minimizes data traffic to and from the GPU, increases
GPU memory utilization, and allows offloading data and
computation to the CPU.On a single NVIDIAV100GPU, the
model can achieve 40 TFlops/GPU for 10 billion parameters,
and it can scale up to 128 GPUs when available. The model
also supports model parallelism, enabling training models
with more than 70 billion parameters on a single DGX-2
box, resulting in a 4.5× increase in model size compared to
employing model parallelism alone.

Eliseev and Mazur [89] propose a model to efficiently run
large sparse MoE language models on hardware with limited
GPU memory. Using parameter offloading and leveraging
the properties of MoE models enabled Mixtral-8 × 7B
with mixed quantization to operate on desktop hardware
and free-tier Google Colab instances. The study showed
that some experts are reused between adjacent tokens, and
early layers can predict subsequent experts. This led to an
MoE-specific offloading strategy employing an LRU (Least
Recently Used) cache and advanced prediction of needed
experts. The model significantly improves speed, achieving
2-3 tokens per second on various consumer GPUs, and offers
a practical solution for running large MoE models on limited
hardware.

2) MIXED PRECISION
Mixed precision training [92] proposes a method for training
deep neural networks using half-precision floating-point
numbers, aiming to reduce memory requirements by almost
half and accelerate arithmetic on modern GPUs without
compromising model accuracy or requiring adjustments to
hyperparameters.

Cramming [16] conducts all experiments and ablation
studies using a consistent setup that employs automated
mixed precision for both standard 16-bit and 32-bit floating-
point precision.

LightSeq2 [52] (section IV-A4) optimizes the training pro-
cess by implementing batched updates on reduced-precision
parameters instead of numerous individual updates on full-
precision parameters. In mixed precision training, where
parameters and gradients are in FP16 during forward and
backward propagation, maintaining FP32 copies is necessary
for accuracy during the update values calculation. Typically,

a system copies each piece of gradients, parameters to/from
its FP32 counterpart in one training step, ensuring the
accurate update of FP32 parameters with the loaded FP32
gradient by the trainer kernel.

FP8-LM [90] introduces a novel FP8 automatic mixed-
precision framework for training LLMs, optimizing
mixed-precision and distributed parallel training through
three levels of FP8 utilization. By gradually incorporating
8-bit gradients, optimizer states, and distributed learning,
the framework significantly enhances training efficiency.
During the training of a GPT-175B model on the H100 GPU
platform, the FP8 framework reduced memory usage by 39%
and increased training speed by 75% compared to the BF16
framework, outperforming Nvidia’s Transformer Engine by
37%. This advancement leads to substantial cost reductions
for training large models and is adaptable to various tasks
such as instruction tuning and reinforcement learning with
human feedback.

C. HARDWARE OPTIMIZATION: CHALLENGES AND KEY
FINDINGS
Challenges of Hardware Optimization:

• Memory limitation: Deep learning models can require
vast amounts ofmemory to store parameters, activations,
and gradients. This limits the size and complexity of
models that can be trained on a single device.

• Limited hardware utilization: Traditional training meth-
ods may not fully utilize the capabilities of modern
hardware like GPUs.

• Balancing speed and accuracy: Techniques like mixed
precision training aim to improve training speed by
reducing memory usage, but this can potentially com-
promise model accuracy.

Key Findings:
• Memory management: Techniques like sequence length
aware allocation and dynamic memory management can
significantly reduce memory usage during training.

• Hardware-aware optimization: Offloading computations
to CPUs or leveraging mixed precision training can
improve hardware utilization and training speed.

• Model parallelism: Splitting models across multiple
devices can handle larger models but can introduce
communication overhead, impacting training speed.

• Large model training: Frameworks like ZeRO-Offload
[20] enable training models significantly larger than
what a single GPU can handle.

In the domain of hardware optimization, a continuous
stream of novel methodologies is emerging, demonstrably
expanding the frontiers of feasibility within the training
paradigm.

VII. SCALABILITY AND RELIABILITY OPTIMIZATION
Scalability optimization focuses on improving hardware sys-
tems’ capacity to flexibly handle varyingworkloads, enabling
smooth scaling adjustments to meet evolving demands [1],
[5], [18], [19], [20], [69], and reliability optimization aims
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FIGURE 7. Scalability and reliability optimization.

to strengthen the dependability and stability of hardware
infrastructure, reducing the likelihood of failures, errors,
or disruptions [10], [60] (Fig. 7).

A. FAULT TOLERANCE
SWARM Parallelism [10] (section V-D) allows high-
performance devices to handle inputs from several preceding
sources, share their outcomes with less powerful peers,
and adjust the workload distribution in the event of a
failure, enhancing resource utilization. The model ensures
continuous training and boosts overall efficiency by redis-
tributing workload in case of device failure or premature
termination.

PETALS [60] (section IV-B6) is a distributed Transformer
model that can be easily scaled and fault-tolerant. It uses a
load-balancing algorithm to distribute servers evenly among
Transformer blocks and a routing algorithm to find the fastest
path for inference. It also stores past inputs to each server
in case one fails, so that the client can quickly continue
with a replacement server. PETALS is a reliable and scalable
Transformer model that can be used for both inference and
training. It uses a combination of load balancing, routing, and
fault tolerance to ensure that it can handle network disruptions
and server failures without impacting performance.

B. SCALABILITY
ZeRO-Offload [20] is a highly scalable multi-GPU design
achieved through an integrated offload strategy and
ZeRO-powered data parallelism. This combination leads
to nearly linear scalability, allowing for the training of
significantly larger models than when using ZeRO-Offload
or model parallelism independently. The model further
optimizes CPU execution with a high-performance Adam
optimizer, resulting in a 6 time higher than SOTA Adam
implementation. Despite a growth in model size by a
factor of 10, the approach minimizes data traffic to and
from the GPU, maximizes GPU memory utilization, and
facilitates offloading data and computation to the CPU.
ZeRO-Offload maintains a single copy of optimizer states in
CPU memory, ensuring constant communication volume and
CPU computation, regardless of data parallelism. This design
choice enables excellent scalability on up to 128 GPUs,
and ZeRO-Offload can also be combined with model
parallelism for higher memory savings when multiple GPUs
are available.

C. SCALABILITY AND RELIABILITY OPTIMIZATION:
CHALLENGES AND KEY FINDINGS
Challenges of Scalability and Reliability:

• In the context of optimizing LLMs, a trade-off exists
between achieving high scalability and maintaining reli-
ability. Scalability, which involves handling increased
workloads, often necessitates the integration of more
complex components. However, this added complexity
can introduce new potential points of failure, thereby
impacting the system’s overall reliability. Balancing
these two objectives is crucial to ensure both effective
performance and robustness in large-scale deep learning
systems.

Key Findings:
• Fault tolerance: This approach involves creating mech-
anisms to handle failures gracefully. Two notable tech-
niques are SWARM Parallelism [10] and PETALS [60].
SWARM Parallelism distributes the workload across
multiple devices and compensates for failures by
redistributing tasks if a device fails. Similarly, PETALS,
a distributed Transformer model, employs load balanc-
ing and routing strategies to maintain smooth operation
even in the event of server failures.

• Scalability techniques: Technique like ZeRO-Offload
[20] achieve high scalability for training large models.
This method combines data parallelism with an offload-
ing strategy, minimizing data traffic and maximizing
resource utilization.

VIII. CASE STUDIES
The following case studies delve into the practical application
of advanced optimization strategies on LLMs. With the
rapid growth and increasing complexity of LLMs, efficient
deployment and execution have become critical challenges.
These case studies illustrate how cutting-edge techniques
in model compression, pruning, and inference optimization
can significantly enhance the performance and feasibility of
deploying these massive models on more accessible hard-
ware. By examining specific implementations and outcomes,
these examples provide valuable insights into overcoming
the computational and resource constraints associated with
large-scale languagemodels, thereby promoting their broader
adoption and utility in real-world applications.

A. OPTIMIZING MODEL TRAINING WITH SPARSEGPT
Background: LLMs like GPT-3 have billions of parameters,
which pose significant challenges in terms of storage, com-
putational requirements, and energy consumption. Pruning,
or removing less important parameters, can help mitigate
these issues, but traditional pruning methods often require
multiple iterations of fine-tuning, which is computationally
expensive. This approach (SparseGPT [70]) proposes a
one-shot pruning method that significantly reduces the num-
ber of parameters without the need for extensive retraining.
Context and Problem: In this case study, the focus

is on training a LLM with billions of parameters on
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TABLE 8. Summary on reviewed papers excluding those already covered in Tables 3 and 4 or the main text.
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limited hardware. The initial challenge was the high com-
putational and memory requirements that exceeded the
capabilities of available resources, making it difficult to
efficiently train the model within a reasonable timeframe and
budget.
Optimization Strategy:The primary optimization strategies

involved in SparseGPT are:
One-Shot Pruning: To achieve significant sparsity in

the LLM in a single pruning step, eliminating the need
for iterative pruning and retraining. One-Shot Pruning:
SparseGPT implements its pruning strategy through a
streamlined process. First, a thorough model analysis is
conducted to pinpoint parameters that can be removed
without significant impact. This analysis leverages pruning
criteria that assess parameter importance without requiring
gradient calculations, saving on computational resources.
Finally, SparseGPT employs a single step pruning approach,
achieving substantial sparsity (at least 50% for massive
models) in a single step. This one-shot approach significantly
reduces the time and complexity compared to iterative
pruning methods.
Unstructured Sparsity: To reduce the number of parame-

ters while maintaining model accuracy through unstructured
pruning, where individual weights are removed based on
their importance. This approach focuses on eliminating
individual weights within the model that are deemed less
important. By analyzing the model’s internal structure,
SparseGPT achieves impressive sparsity levels of 50-60%,
significantly reducing model size. This aggressive pruning
strategy is remarkable because it achieves this with minimal
impact on the model’s ability to perform language modeling
tasks accurately. For instance, SparseGPT can remove over
100 billion weights from massive models like OPT-175B and
BLOOM-176B without compromising their performance on
language modeling tasks.
Parametrization Without Gradient Dependence: To lever-

age the parametrization of massive GPT models to enable
pruningwithout relying on gradient information. Thismethod
allows the identification of sparse counterparts within a
close range of the original dense model, ensuring these
sparse models maintain similar performance. Interestingly,
the strategy highlights that larger models are even easier
to prune using this approach. They experience minimal
accuracy drops even at significant sparsity levels (e.g.,
50%). This observation underscores the effectiveness of the
parametrization technique in enabling aggressive pruning
while preserving model performance.
Outcomes: The application of SparseGPT led to remark-

able results:
• Model size reduction: SparseGPT achieved 50-60%
sparsity, significantly reducing the model size by
removing more than 100 billion weights in models like
OPT-175B and BLOOM-176B.

• Processing time: The pruning process was completed in
less than 4.5 hours for the largest open-source models,
demonstrating high efficiency.

• Accuracy maintenance: The pruned models exhibited
negligible increases in perplexity and retained perfor-
mance levels very similar to their dense counterparts.

• Scalability: The study revealed that larger models are
easier to prune, with practically no accuracy decrease
observed at 50% sparsity.

This case study demonstrates the efficacy of SparseGPT’s
one-shot pruning approach for reducing the size of mas-
sive language models. By leveraging unstructured sparsity
and parametrization strategies without gradient dependence,
SparseGPT achieves substantial reductions in model size
and resource requirements while maintaining high levels
of performance. This approach enables more efficient and
accessible deployment of large language models in various
applications, making them more practical for real-world use.

B. ENHANCING INFERENCE EFFICIENCY WITH QMOE
Background:LLMswith trillions of parameters are becoming
increasingly common. However, training and deploying these
models is challenging due to their immense computational
and memory demands. Existing compression techniques
struggle to handle such large models effectively. QMoE [77]
framework addresses this challenge by introducing novel
compression methods to make these models more practical
for real-world use.
Strategy Selection: QMoE was chosen as the optimization

strategy. This approach allows for the compression of large
models by quantizing their parameters to extremely low
precision, which drastically reduces the model size while
maintaining its performance. This strategy is particularly
useful for handling the large parameter counts typical of MoE
models.
Optimization Strategy: The core optimization strategies

involved in QMoE are:
Scalable Compression Algorithm: QMoE tackles the

challenge of massive model sizes with a scalable com-
pression algorithm. This innovative technique achieves
impressive sub-1-bit compression for trillion-parameter MoE
models, without requiring retraining. In the case of the
SwitchTransformer-c2048model, this translates to a dramatic
size reduction from 3.2 TB to amere 160GB (roughly 0.8 bits
per parameter). Remarkably, this is achieved with minimal
compromise on accuracy, as measured by performance on
pretraining validation tasks and zero-shot data.
Customized Compression Format and GPU Kernels:

QMoE takes advantage of custom designed GPU kernels
to unlock the potential of its compressed format. These
specialized kernels enable swift, on-the-fly decoding of
the model, ensuring efficient processing during use. This
allows the compressed model to run seamlessly on common
hardware like 8 NVIDIA RTX 3090 or 4× NVIDIA
A6000 GPUs. Even with this readily available hardware,
the runtime overhead stays below 5% compared to an
uncompressed model, which would require a staggering
20 times more GPUs.
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Outcomes: The implementation of QMoE resulted in
significant improvements:

• Compression ratio: The model size was reduced by
approximately 95%, allowing the SwitchTransformer-
c2048 model to fit within the memory constraints of
standard hardware. This reduction from 3.2 TB to less
than 160 GB translates to a compression ratio of around
0.8 bits per parameter.

• Inference speed: The QMoE framework enables the
efficient execution of massive MoE models on com-
modity hardware with a runtime overhead of less
than 5%. This efficiency allows the trillion-parameter
SwitchTransformer-c2048 model to run on a single
commodity GPU server.

• Accuracy: Despite the substantial compression, the
model maintains high performance on pretraining val-
idation tasks and zero-shot data, with only a minor
decline in accuracy.

This case study demonstrates the feasibility of deploying
trillion-parameter models in real-world applications through
the use of advanced compression techniques. The QMoE
approach not only reduces resource requirements but also
enhances the deployability of cutting-edge language models
across various environments. By leveraging a scalable
compression algorithm, a customized compression format,
and bespoke GPU kernels, QMoE achieves significant
improvements in model efficiency and performance. This
makes large-scale models more accessible and practical for
real-world applications. It addresses key limitations of MoE
architectures and promotes their wider adoption, paving the
way for further research and advancements in this field.

IX. DISCUSSION
This section examines optimization and acceleration tech-
niques for LLMs. We will discuss the relevant libraries
and frameworks that facilitate these advancements, alongside
challenges and key findings of various optimization strate-
gies.

A. LLM TRAINING CHALLENGES
Training LLMs poses significant challenges due to their com-
plexity and resource requirements. Recent advancements in
frameworks like GPipe [3], ByteTransformer [4], Megatron-
LM [19], LightSeq2 [52], and CoLLiE [53] have made
significant strides in addressing these challenges:
Distributed Training: As LLMs become increasingly

complex, training them on a single device becomes imprac-
tical. Megatron-LM [19] and CoLLiE [53] address this
by employing distributed training algorithms that partition
the model across multiple GPUs. This approach enables
parallel processing and significantly accelerates training
times. By distributing the workload, these frameworks
mitigate the memory bottlenecks that arise when trying to
train massive models on single devices.
Efficiency and Speed: Efficiency and speed are critical

for the practical deployment of LLMs. LightSeq2 [52]

enhances training speed through system-level optimizations
such as layer-specific kernels and mixed-precision training,
which improve GPU utilization and reduce memory usage.
Similarly, ByteTransformer [4] is designed to accelerate
transformer models, particularly for variable-length inputs
in NLP tasks, thereby improving performance and reducing
latency.
Memory Management: Efficient memory allocation is

crucial for training large models. CoLLiE [53] addresses
memory constraints in LLM training through a comprehen-
sive strategy. It implements 3D parallelism to effectively
distribute memory across training machines and GPUs. This
approach allows CoLLiE to train large language models even
in environments with limited resources.
Fine-Tuning and Performance: CoLLiE [53] also focuses

on enhancing specific capabilities of LLMs through PEFT
methods. These methods allow models to be fine-tuned for
particular tasks or user instructions without compromising
their overall performance. This targeted improvement is vital
for developing models that can adapt to specific application
needs while maintaining high general performance.

B. LLM TRAINING KEY FINDINGS
The advancements in these frameworks have led to several
significant findings:
GPipe: Demonstrates the successful training of a large

multilingual transformer model, achieving superior results
compared to smaller, individually trained models [3].
ByteTransformer: Outperforms existing frameworks in

terms of performance for BERT-like transformers on various
benchmarks [4].
Megatron-LM: Enabled the training of LLMs with billions

of parameters, achieving SOTA results on numerous NLP
tasks while providing high throughput [19].
LightSeq2: Accelerates transformer model training by

up to 308%, showcasing substantial performance improve-
ments [52].
CoLLiE: Introduces collaborative training methodologies

that improved efficiency and effectiveness in training large
models like LLaMA-65B, exploring ways to enhance specific
functionalities without impacting overall performance [53].

C. LLM INFERENCE CHALLENGES
Efficient inference of LLMs is critical for their practical
application, as these models are computationally expensive
due to their size and complexity. In this section, we will
discuss and explore the challenges and key findings of various
frameworks and libraries designed to enhance the efficiency
of LLM inference.
Computational Expense: The massive size and complex

architecture of LLMs make traditional inference methods
inefficient, especially on resource-constrained devices.
Balancing Speed, Accuracy, and Resource Utilization:

Achieving an optimal balance between these factors are
crucial for real-world deployment of LLMs.
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D. LLM INFERENCE KEY FINDINGS
Hardware Specialization: Frameworks like Splitwise [63]
improve inference by separating compute-intensive and
memory-intensive phases onto different machines with spe-
cialized hardware. This targeted approach optimizes resource
usage and enhances performance.
Resource Optimization: FlexGen [17] employs techniques

such as I/O scheduling, compression, and distributed process-
ing to efficiently utilize resources across CPUs, GPUs, and
disk storage. This holistic resource management approach
significantly improves inference efficiency.
Algorithmic Optimizations: Libraries like EET [62] and

LightSeq [61] implement custom algorithms and advanced
memory management techniques to accelerate inference on
GPUs. These optimizations reduce latency and improve
throughput, making LLM inference more practical for real-
time applications.
Heterogeneous Platforms: NLP-Fast [58] leverages differ-

ent hardware platforms, including CPUs, GPUs, and FPGAs,
by identifying performance-critical operations and applying
targeted optimizations. This flexibility allows for efficient
inference across various hardware configurations.
Distributed Inference: PETALS [60] facilitates collabora-

tive inference and fine-tuning of LLMs across a network,
enabling scalable and efficient resource utilization. This
approach allows for distributed processing, which is essential
for handling large-scale inference tasks.

E. LLM DEPLOYMENT AND SERVING CHALLENGES
Deploying and serving LLMs in real-world applications
presents several challenges. This section explores these
challenges, key findings from recent advancements, and
future directions for making LLM deployment and serving
more efficient and accessible.
Memory Limitation: LLMs often exceed the memory

capacity of a single GPU, complicating their deployment and
serving in practical applications.
Scalability: Handling multiple user requests simultane-

ously requires efficient scaling solutions to manage the large
and complex models effectively.
Variability of Input: LLM performance can be inconsistent

when dealing with input sequences of varying lengths, neces-
sitating dynamic memory allocation strategies to maintain
efficiency.
Ease of Deployment: Integrating complex LLM serving

systems into existing workflows can be challenging, par-
ticularly for researchers and practitioners without extensive
expertise in the field.

F. LLM DEPLOYMENT AND SERVING KEY FINDINGS
PagedAttention (vLLM): This algorithm breaks down the
KV cache into manageable blocks, minimizing wasted
memory and enabling efficient sharing across requests.
This is a significant improvement for processing large
LLMs [67].

Efficient GPU Utilization (TurboTransformers): Utilizes
techniques like parallel GPU kernels and dynamic batch
scheduling to optimize performance on GPUs, resulting in
faster inference for transformer-based models [11].
System-Level Optimizations (LightSeq2): Demonstrates

how system-level optimizations within the training process
can significantly improve training speed and efficiency,
translating to faster deployment of LLMs [52].

G. HARDWARE OPTIMIZATION IN LLM
Optimizing hardware for LLM involves overcoming memory
limitations and improving utilization. Key findings include
efficient memory management, hardware-aware optimiza-
tion, and model parallelism. Future research should focus on
efficient offloading strategies and advanced mixed precision
training.

H. SCALABILITY AND RELIABILITY OPTIMIZATION IN
HARDWARE SYSTEMS
Achieving scalable and reliable hardware systems requires
balancing complexity with reliability. Techniques like
SWARM parallelism and ZeRO-Offload [20] improve fault
tolerance and scalability. Future research should develop
advanced fault tolerance mechanisms and optimize for new
hardware.

These advancements collectively enhance the efficiency,
scalability, and accessibility of LLM training, inference,
deployment, and serving, paving the way for more powerful
language models.

X. CONCLUSION AND FUTURE DIRECTIONS
This SLR investigated optimization and acceleration tech-
niques for LLMs. We identified the challenges associated
with training, inference, and system serving for LLM with
billion or trillion parameters. We presented a structured
taxonomy of optimization techniques alongside a com-
prehensive analysis of recent libraries and frameworks.
Following the PRISMA statement, we meticulously analyzed
65 relevant studies published between 2017 and December
2023. Our proposed taxonomy provides a roadmap for
researchers to navigate the diverse landscape of optimization
strategies and select the most suitable approaches for their
specific tasks. Additionally, the review of libraries and
frameworks empowers researchers to efficiently train and
deploy LLMs, accelerating progress in real-world applica-
tions. Furthermore, the inclusion of two in-depth case studies
demonstrates practical approaches to optimizing model
training and enhancing inference efficiency, highlighting how
resource limitations can be addressed while maintaining
performance.

While recent advancements in LLM frameworks and
optimization techniques are promising, further research is
crucial to unlock their full potential.We identified several key
areas for future exploration, focusing on enhanced efficiency,
scalability, and flexibility for LLMs.
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A. OPTIMIZATION FOR RESOURCE-CONSTRAINED
ENVIRONMENTS
Hybrid Processing: Develop hybrid processing techniques,
where computation is split between GPUs and CPUs to
optimize memory usage and computational load.
Efficient Offloading Mechanisms: Extend the capabilities

of models like FlexGen [17] and DeepSpeed Inference [5]
by refining offloading techniques. This includes better
utilization of CPU,GPU, andNVMememory to handle larger
models with fewer resources.
Resource-Aware Scheduling: Implement intelligent

scheduling mechanisms that consider the specific resource
constraints of the hardware, optimizing the allocation of
GPU, CPU, and memory resources for different types of
tasks.

B. MEMORY AND COMPUTATION OPTIMIZATION
Advanced Memory Management: Implement various tech-
niques like dynamic catching, memory recycling, and
efficient layer normalization (as presented in ByteTrans-
former [4] and LightSeq2 [52]) to overcome the memory
overhead problem.
Mixed-Precision Training In order to significantly reduce

training time and resource consumption without sacrificing
accuracy, develop robust mixed-precision methods (like
Megatron-LM [19] and LightSeq2 [52]).
Dynamic Input Handling: Focusing on variable-length

inputs, like ByteTransformer [4], is seen as a promising
area for improvement in ML, especially for NLP tasks that
often deal with data of varying lengths. By developing more
advanced algorithms to handle these inputs and minimize
unnecessary computations, frameworks could achieve signif-
icant performance gains in NLP.

C. PARALLELISM AND DISTRIBUTION
Adaptive Parallelism: Develop more advanced techniques
that can dynamically adapt the parallelism strategy based on
the model size and hardware configuration. This includes
both data and model parallelism that can be adjusted on-the-
fly to optimize performance.
Distributed Training and Inference: Improve frameworks

like PETALS [60] and CoLLiE [53] to better leverage dis-
tributed and heterogeneous hardware resources for efficient
training and inference.

D. SCALABLE AND MODULAR ARCHITECTURE
Composable Frameworks: Design frameworks with modular
components, similar to NLP-Fast [58]. These components act
like building blocks for inference pipelines. Users can easily
swap or optimize individual components independently,
allowing for greater flexibility and customization.
Flexible APIs: Create user-friendly APIs, like those in

PETALS [60]. These APIs allow users to customize inference
and fine-tuning processes according to their specific needs
without having to make extensive changes to the underlying

framework. This provides greater control and adaptability for
different use cases.

E. PERFORMANCE OPTIMIZATION TECHNIQUES
Adaptive Algorithms: Develop algorithms that can adapt to
varying input sizes and sequences, optimizing both memory
allocation and computational load dynamically.
Custom Kernel Implementations: Continue to develop and

refine custom kernel implementations for key operations
like Softmax and LayerNorm to achieve better performance,
as seen in TurboTransformers [11]. This could also involve
hardware-specific optimizations for different GPU architec-
tures.

F. ADVANCED COMPRESSION AND QUANTIZATION
Sophisticated Compression Techniques:To reducemodel size
without significant accuracy loss instigate new methods for
both lossless and lossy compression going beyond FlexGen’s
4-bit quantization [17].
Dynamic Quantization: Develop dynamic quantization

techniques that adjust the precision of weights and activations
in real time based on the computational requirements and
available resources.

XI. LIMITATIONS
m In this section, we will present the limitations of our SLR.
Here, we acknowledge that while our review offers valuable
insights, it is essential to consider its scope and boundaries.
The limitations of our SLR can be stated as follows:
Timeframe: This SLR focused on studies published

between 2017 and December 2023. While this timeframe
deliberately captured a period of significant advancement
in LLM optimization techniques, it is acknowledged that
relevant research published before 2017 or after December
2023 might have been excluded. This could potentially limit
the comprehensiveness of the analysis, particularly regarding
foundational concepts or emerging advancements outside the
chosen timeframe.
Search Strategy: The chosen search queries might not have

encompassed all possible relevant terminology used in LLM
optimization research. This limitation could result in missing
out on studies that use different terminologies or keywords to
describe similar concepts and techniques.
Database Coverage: If the search excluded specific

databases that are highly relevant to LLM research, signif-
icant studies might have been overlooked. Comprehensive
database coverage is crucial to ensure the inclusion of all
pertinent research.

LIST OF ABBREVIATIONS
AdaLomo Low-Memory Optimization with Adaptive

Learning Rate
BART Bidirectional and Auto-Regressive Trans-

formers
BERT Bidirectional Encoder Representations from

Transformers
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BLOOM BigScience Large Open-science Open-
access Multilingual
Language Model

CD Coordinate Descent
EET Easy and Efficient Transformer
FPGA Field Programmable Gate Arrays
FPTQ Fine-Grained Post-Training Quantization
FT Faster Transformer
GLM General Language Model
GPT Generative Pre-trained Transformer
GPU Graphical Processing Unit
HAO Hardware-Aware Optimization
IR Information Retrieval
KV Key Value
LAMBADA LAnguage Modeling Broadened to Account

for Discourse Aspects
LLaMA Large Language Model Meta AI
LLM-QAT LLM-Quantization-Aware Training
LM Language Model
LOMO Low-Memory Optimization
LoRA Low-Rank Adaptation
MHA Multi-Head Attention
MoE Mixture-of-Experts
MMLU MassiveMultitask Language Understanding
NLP Natural Language Processing
NN Neural Network
OPT Open Pre-trained Transformer
PET Parameter Efficient Transformers
PetS Parameter-Efficient Transformers Serving
PEFT Parameter-Efficient Fine-Tuning
PIE PET Inference Engine
PLM Pre-trained Language Model
PRISMA Preferred Reporting Items for Systematic

Reviews
and Meta-Analyses

PTM Pre-Trained Model
PTQ Post-Training Quantization
SLR Systematic Literature Review
SWARM Stochastically Wired Adaptively Rebal-

anced Model
VAE Variational Autoencoder
W4A8 4-bit weights and 8-bit activations
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