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Notes on Input Design: From Multi-Sine Design
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Abstract—We show that a class of optimal input design
problems have only discrete spectral measures as solu-
tions. If we fix any finite set of possible frequencies then
a randomized version of the resulting convex problem
has a unique (sparse) solution with probability 1. We also
propose a data-driven approach to optimal input design via
virtual off-line estimators that coincide with the optimized
PE estimator modulo a negligible error, both for open loop
and closed loop systems.

Index Terms—Closed loop systems, data-driven
modeling, performance evaluation, system identification.

I. INTRODUCTION

INPUT design for linear stochastic control systems is of
fundamental importance in many industrial control systems,

see [1] for an excellent survey. Remarkably, input design has
become central also in machine learning, see [2]. Considering
a family of linear stochastic control systems with input u,

parameterized by θ, a central issue of input design is to
minimize the expected loss in a performance index J(θ) due
to uncertainty, incurred by replacing the true parameter by its
estimate θ̂N , subject to constraints on the input. A preliminary
problem is to optimize the information matrix M, depending
linearly on the spectral measure of u. It is readily seen that
this is a convex problem with a unique solution, see (16) and
Section II. Thus, the input design problem can be reduced to
a generalized moment problem of finding a spectral measure
d�u(·) such that it generates Mu via (13) below. This approach
has been pursued in [3].
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For practical reasons significant attention has been paid to
finding sub-optimal solutions by restricting the search space
to a convex set of feasible spectral measures with a density,
depending linearly on a parameter η belonging to a compact,
convex set in a Euclidean space. A benchmark example is
the set of spectral measures of FIR (Finite Impulse Response)
processes, with the feasible parameters being the coefficients
of the half spectra, constrained by LMI-s (Linear Matrix
Inequalities), as first introduced in [4].

In the case of closed loop systems, allowing a LTI
(Linear Time Invariant) feedback K, a preliminary convex
optimization problem over the pairs of spectral density and
cross spectra, (�u,�ue), as variables can be formulated,
see [5]. Elaborating this idea K itself can be treated as
an additional design parameter. A smart way of describing
the pairs (�u,�ue) is obtained by using the Youla-Kuc̆era
parameterization of K, leading to a linear parameterization,
see [6] for an advanced exposition. A remarkable feature
of closed loop identification is that feedback reduces the
asymptotic covariance matrix of the estimate of the signal
transfer function, see [7].

In this letter we revisit the problem of multi-sine input
design, recently attracting renewed interest, see [8]. Our
starting point is that the optimization problem can be redefined
as a convex optimization problem over the space of spectral
measures d�u(.) with discrete spectrum subject to energy
constraints. In turn, the latter can be approximated with arbi-
trary prescribed accuracy by a convex design problem over the
space of spectral measures d�u(.) with support on a fixed set
of frequencies. We will establish the remarkable fact that the
relaxed version of this problem, obtained by adding the energy
constraint multiplied by a freely chosen Lagrange-multiplier,
has a unique solution w.p.1 (with probability 1) when the
weights are chosen randomly according to a probability law
that has a density. This sub-optimal spectral measure can be
readily realized by a multi-sine.

An additional issue to be considered is what was called the
“Achilles’ heel of optimal input design” in [1], namely the fact
that the optimization problem depends on the true system. This
paradox has actually been resolved in [9] for ARMAX systems
exited by inputs generated by a FIR filter, with a full-scale
technical analysis relying on advanced results on recursive
estimation given in [10]. In Section IV we reformulate and
extend the basic idea of the above paper. The key tool is
the definition of a virtual off-line estimator, having a very
accurate characterization. Although we can not compute it in
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practice, its on-line approximation, obtained along the lines
of [11], [12], is computable leading to an adaptive input design
method. This data-driven approach is presented first for open
loop system. However, it readily generalizes to closed loop
systems with a θ -dependent feedback loop, obtained for some
optimal control problem, yielding the optimal spectral density
for the external excitation. As far as we can see our approach
is a digression from the main-stream literature, in which the
transfer function of the feedback loop is a design variable for
the input design problem itself.

II. TECHNICAL PRELIMINARIES

To be specific, we consider a discrete time single input
single output linear stochastic control system with input
u, external noise e and output y, defined in the range
−∞ < n < +∞

y = Hu
(
θ∗, q−1

)
u + He

(
θ∗, q−1

)
e. (1)

Here Hu and He are rational functions of the backward shift
operator q−1 of fixed degrees, depending on a parameter θ.

We assume θ ∈ D ∈ R
p, where D is an open domain. The

true parameter will be denoted by θ∗. The associated transfer
functions are obtained when replacing q−1 by e−iω.

Condition 1: The transfer function Hu(θ) is stable, and
He(θ) is stable and inverse stable for all θ ∈ D. Moreover,
they are three-times continuously differentiable functions of
θ. In addition, we assume that the input is delayed 1 unit.

The smoothness condition imposed on Hu(θ) and He(θ) is
interpreted via a state-space realization, see also [13].

Condition 2: The input process u = (un) and the noise
process e = (en), with −∞ < n < +∞, are jointly w.s.st.
(wide sense stationary) stochastic processes. Moreover, (en)

is a martingale difference process with respect to (w.r.t.) an
increasing family of σ -algebras (Fn) such that

E
[
en|Fn−1

] = 0 and E

[
e2

n|Fn−1

]
= σ 2 a.s. (2)

Finally we assume that u is orthogonal to e, written as u⊥e.
For the basic concepts of the theory of w.s.st. processes and

system identification see [14], [15], and [16]. It follows that e
is the innovation process of y − Hu(θ∗, q−1)u.

The spectral distribution measure of u is denoted by
d�u(ω), with −π ≤ ω ≤ π . Since it is symmetric, its
restriction to [0, π ], with d�u({0}) and d�u({π}) halved, is
denoted by d�u(ω).

A multi-sine input u is defined as

un :=
t∑

k=1

σk2 cos(ϕk + ωkn) (3)

where 0 ≤ ωk ≤ π are different, and the random phases ϕk
are independent and uniformly distributed in [ − π, π ]. Thus
d�u(·) is discrete, assigning the energy σ 2

k to each frequency.
To fix notations for the description of the off-line PE

(prediction error) estimator of θ∗ define for any θ ∈ D the
assumed innovation process ε(θ) as the w.s.st. process

ε(θ) = He(θ)−1(y − Hu(θ)u
)
, (4)

defined for −∞ < n < ∞. Assuming the observations are
collected for 1 ≤ n ≤ N the (idealized) off-line PE method of
θ∗ is then obtained by minimizing the cost function

VN(θ) := 1

2

N∑
n=1

ε2
n(θ). (5)

The solution will be denoted by θ̂N . A precise definition,
taking into account the possibility of no solution or multiple
solutions, can be obtained along the lines of [13]. In practice
the w.s.st. process ε(θ) is approximated by a process defined
via (4) with un = yn = 0 for n ≤ 0. The asymptotic cost
function associated with the PE method is then

W(θ) := 1

2
Eε2

n(θ). (6)

The Hessian of W(θ) for θ = θ∗ is given by

M = M
(
θ∗) := ∂2

∂θ2
W(θ)θ=θ∗ = Eεθn

(
θ∗)ε�

θn

(
θ∗), (7)

where εθn(θ) denotes the gradient of εn(θ) w.r.t. θ, considered
to be a column vector. The system or θ∗ is locally identifiable
if M is positive definite, written as M ∈ R

p×p
+ .

Condition 3: The system (1) is locally identifiable if the
input u is a w.s.st. orthogonal process, independent of e.
Equivalently, there exists a multi-sine input (3), independent
of e, such that M is non-singular (see Proposition 1).

Precise conditions for the non-singularity of M are given
in [17]. The existence of an asymptotic covariance matrix of
θ̂N is established under a variety of conditions in the literature,
see [16]. To ease reference we state two yet unpublished
results that can be obtained by straightforward extensions
of [13, Th. 2.1]. For the concept of L-mixing, an extremely
useful extension of what was defined as exponentially stable
processes in [18], see [19].

Theorem 1: Assume Conditions 1, 2 and 3, and let M(θ∗)
be non-singular. In addition, let (u, e) be L-mixing w.r.t. a
family of pairs of σ -algebras (Fn,F+

n ). Then

θ̂n − θ∗ = −M
(
θ∗)−1

N∑
n=1

εθn
(
θ∗)en + rN (8)

where rN = OM(N−1), indicating that the Lp-norms of rN
decay with rate O(N−1) for all p ≥ 1. It follows that

�θθ := lim
n→∞ N1/2

(
θ̂n − θ∗)(θ̂n − θ∗)T = σ 2M

(
θ∗)−1

.

An extension of this theorem for multi-sine inputs, which
are far from being mixing in any sense, can be easily obtained,
noting that if u is a multi-sine, independent of e, then the
products of processes of the form D(q−1)u and D(q−1)e satisfy
a law of large numbers with controlled rate.

The Hessian M, modulo a constant multiplier, is the
information matrix. To capture the effect of u onto M(θ∗)
consider the gradient process (εθn(θ

∗)). Equation (4) gives

εθ

(
θ∗) = −He(θ∗)−1(

Hu
θ

(
θ∗)u + He

θ

(
θ∗)e), or (9)

εθ

(
θ∗) = Du(θ∗)u + De(θ∗)e, (10)

with Du(θ∗) and De(θ∗) given by

Du(θ∗, e−iω) = −He(θ∗, e−iω)−1
Hu

θ

(
θ∗, e−iω), (11)
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De(θ∗, e−iω) = −He(θ∗, e−iω)−1
He

θ

(
θ∗, e−iω). (12)

Taking into account that u⊥e, we get M = Mu + Me where
Mu and Me are given via the expressions:

Mu = 2
∫ π

0
�
(

Du(e−iω)Du�(eiω)) d�u(ω), (13)

Me =
∫ π

0
De(e−iω)De�(eiω) dω · σ 2, (14)

where the r.h.s. of (13) is a Riemann-Stieltjes integral. Here the
transfer functions Du(e−iω) := Du(θ∗, e−iω) and De(e−iω) :=
De(θ∗, e−iω) are explicitly known.

The set of feasible matrices Mu is defined via (13) with
d�u(ω) being arbitrary subject to (s.t.) constraint as follows.
Let w(ω), ω ∈ [0, π ] be a bounded, continuous function, for
which w(ω) ≥ w0 > 0 for all ω ∈ [0, π ] holds, and impose

∫ π

0
w(ω) d�u(ω) ≤ K. (15)

The set of spectral distribution measures d�u(·), satisfying
the above the weighted energy constraint, is a compact convex
set in the weak topology. Since the matrices Mu are obtained
from d�u(·) via a continuous linear operator (13), they also
constitute a compact, convex set of symmetric, non-negative
definite matrices Mu ⊂ R

p×p.

Assume that the performance index J(θ) is sufficiently
smooth in θ . Let its Hessian at θ = θ∗ be denoted by P.

Obviously P� = P ≥ 0. Assume that P is positive definite.
The objective of the input design then is to minimize the
asymptotic value of the normalized performance degradation
limN NE(J(θ̂N) − J(θ∗)). The primary input design problem
is then to optimize the information matrix M via

min
Mu∈Mu

tr
((

Mu + Me)−1P
))

, (16)

with tr(M−1P) defined as +∞, if M ≥ 0 is singular.
It is easily seen that M → M−1 is strictly convex on R

p×p
+

w.r.t. the usual ordering of symmetric matrices. It follows that
tr(M−1P) is a strictly convex function of M ∈ R

p×p
+ . It is

readily seen that the optimization problem (16) has a unique
solution in Mu, to be denoted by Mu∗. The question remains
how to construct a spectral distribution measure d�u∗(·) or
input u∗ that would generate Mu∗.

III. MULTI-SINE INPUT DESIGN

The matrices �(Du(e−iω)Du�(eiω)), defining Mu via (13),
are elements of the vector-space of real, symmetric matrices of
dimension s := p(p+1)/2. The following result was essentially
stated for the case of w(·) ≡ 1, in [20, Ch. 3.2, Th. 1]:

Proposition 1: Let Mu ∈ Mu be defined in terms of
d�u(·), satisfying (15) with equality, via (13). Then there exist
at most s + 1 frequencies 0 ≤ ωk ≤ π and energy levels
αk ≥ 0, k = 1, . . . , s + 1, such that

Mu = 2
s+1∑
k=1

αk�
(

Du(e−iωk
)
Du�(eiωk

))
, (17)

s+1∑
k=1

αkw(ωk) =
∫ π

0
w(ω) d�u(ω) = K. (18)

For extremal points of Mu just s frequencies suffice.

The above fact is a folklore in the literature on input
design. The proof is based on Carathéodory’s theorem, and
is given in [20] for the case w(·) ≡ 1,. The general case
is readily obtained by introducing the measure d�

u
(ω) =

w(ω) d�u(ω)/K, and rewriting (13) as

Mu = 2
∫ π

0

K

w(ω)
�
(

Du(e−iω)Du�(eiω)) d�
u
(ω).

For extremal points of Mu the discrete representation (17)
is not only a possibility but in some cases a must. Adapting
the arguments of [20, Ch. MA3, Th. 2]. we get:

Theorem 2: Let d�u∗(·) be a spectral measure defining an
extremal point of Mu, denoted by Mu∗. Then there exists a
p × p matrix �∗ such that

L(ω) := tr�∗�
(

Du(e−iω)Du�(eiω))+ w(ω) ≥ 0 (19)

for all 0 ≤ ω ≤ π , and the set of the points of increase of
d�u∗(·) is a subset of the solutions of L(ω) = 0.

The theorem is a kind of infinite-dimensional Karush-Kuhn-
Tucker condition, see Lemma 1.

Corollary 1: Let w(·) be a piece-wise rational function of
eiω. Then any optimal spectral measure d�u∗(·) is discrete,
supported by a finite number of frequencies.

Proof of Theorem 2: Adapting the argument in [20, p.
45] we obtain that Mu∗ is in the boundary of the convex,
closed set Mu. Thus, there exists a matrix �̃ and a number
c �= 0 such that tr�̃Mu ≤ c for any matrix Mu ∈ Mu and
tr�̃Mu∗ = c. Using the definition (13) of Mu we can write the
above condition as∫ π

0

(
tr�̃�

(
Du(e−iω)Du�(eiω

)
− c

K
w(ω)

)
d�u(ω) ≤ 0

for any d�u(·), for which
∫ π

0 w(ω) d�u(ω) = K holds.
Since the function w(·) is strictly positive, it follows that
tr�̃�(Du(e−iω)Du�(eiω) − c

K w(ω) ≤ 0 for ω ∈ [0, π ]. Setting
� = −K

c �̃ we obtain
∫ π

0 L(ω) d�u(ω) ≥ 0 for any d�u(·),
with equality for d�u∗(ω), implying the claim.

Since Mu∗ ∈ Mu is in the boundary of Mu Proposition 1
implies that it can be generated via a multi-sine of at most s
terms, see (3). The matrix

Mu = 2
s∑

k=1

αk�
(

Du(e−iωk
)
Du�(eiωk

))
, (20)

is linear in the αk-s, and hence, for a fixed set of ωk
frequencies, the cost function tr(M−1P) is convex in the αk-s.
Unfortunately, it is a non-convex function in the frequencies
ωk, k = 1, . . . , s.

A sub-optimal solution to this can be obtained by taking a
large t, and a set of equidistant frequencies denoted by � =
{ωk:0 ≤ ωk ≤ π, k = 1, . . . , t}, and considering

Mu = 2
t∑

k=1

αk�
(

Du(e−iωk
)
Du�(eiωk

))
. (21)

The convex set of matrices Mu generated by (21),
s.t. the energy constraint will be denoted by Mu(�).

With this notation our input design problem (16) reduces
to the problem with Mu ∈ Mu being replaced by
Mu ∈ Mu(�).
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To capture the effect of the approximation replacing Mu by
Mu(�) in the primary input design problem (16) note that any
Mu ∈ Mu is defined by a Riemann-Stieltjes integral, given
by (13), in which the integrand is continuously differentiable
and the total mass of the measure d�u(·) on [0, π ] is bounded,
due to the energy constraint (15) and the condition w(ω) ≥
w0 > 0 for all ω. It readily follows that any Mu ∈ Mu can
be approximated by an Mud ∈ Mu(�) with an error of the
order 1/t, inducing an error of the same order of magnitude
in approximating the optimal value.

Letting dk := Du(e−iωk) and wk = w(ωk) we thus get the
following convex optimization problem:

min
α≥0

tr

⎡
⎣
(

2�
t∑

k=1

αkdkd
�
k + Me

)−1

P

⎤
⎦ (22)

s.t.
t∑

k=1

αkwk ≤ K. (23)

The formulation of the the Karush-Kuhn-Tucker condition
for (22) – (23) is of didactic interest in light of Theorem 2:

Lemma 1: Let α∗ be an optimal solution of (22) – (23).
Then there exists a p × p, symmetric negative definite matrix
�∗, and Lagrange multipliers λ∗ ≥ 0 and μ∗

k ≤ 0 such that

tr
[
�∗�

(
dkd

�
k

)]
+ λ∗wk + μ∗

k = 0, (24)

for all k = 1, . . . , t and α∗
k > 0 implies μ∗

k = 0.

Proof: Let the cost function in (22) be denoted by F(α).

Let λ∗ ≥ 0 be the Lagrange multiplier corresponding (23) and
let μ∗

k ≤ 0 be the Lagrange multipliers corresponding to the
constraints αk ≥ 0. Let

M = M(α) = 2�
t∑

k=1

αkdkd
�
k + Me. (25)

The gradient of the cost function F(α) is then as follows:

∂

∂αk
F(α) = 2tr

[
−M−1�

(
dkd

�
k

)
M−1P

]
. (26)

Letting � = �(α) := −2M−1PM−1 we can write:

∂

∂αk
F(α) = tr

[
��

(
dkd

�
k

)]
. (27)

Setting �∗ = �(α∗), the Karush-Kuhn-Tucker condition,
implying also μ∗

kα
∗
k = 0, gives the claim.

For a fixed a set of equidistant ωk-s let us consider a
relaxation of the problem defined in (22)-(23) with γ > 0,

min
α≥0

tr

⎡
⎣
(

2�
t∑

k=1

αkdkd
�
k + Me

)−1

P

⎤
⎦+ γ

t∑
k=1

αkw(ωk).

Let α∗ be an optimal solution of this relaxed problem,
and let �+ = {ωk:α∗

k > 0}. Then the Karush-Kuhn-Tucker
conditions, with minor modifications of Lemma 1, imply for
ω ∈ �+

tr
[
�
(

Du(e−iω)Du(
eiω)�)�∗]+ γ w(ω) = 0. (28)

Let us introduce the notation for the vectorized matrices

vec�
(

Du(e−iω)Du(
eiω)�) =: �(ω). (29)

Lemma 2: The relaxed optimization problem has a solution
such that the vectors {�(ωk), ωk ∈ �+} are linearly indepen-
dent. In particular, |�+| ≤ s.

Proof: Let I+ = {k:α∗
k > 0}. If the vectors {�(ωk), ωk ∈

�+} are linearly dependent, then there exists a nontrivial linear
combination

∑
k∈I+ βk�(dkd

�
k ) = 0, where we can assume

|βk| < α∗
k for all k ∈ I+. Adding and subtracting this linear

combination from the optimal one that cost function cannot
decrease. Thus

∑
k∈I+ βkw(ωk) = 0. Taking α∗

k +λβk for some
appropriate λ we can achieve that α∗

k + λβk = 0 for some
k = l while ensuring α∗

k + λβk ≥ 0 for all other k ∈ I+, thus
reducing the size of �+. Repeating this procedure will yield
the desired optimal solution.

Let I ⊂ {1, . . . , t} and let α�
I := (αk, k ∈ I) denote the

reduced parameter vector. Enforcing αk = 0 for k /∈ I, let
LI(αI) be the restricted cost function of the relaxed problem.

Lemma 3: Assume that {�(ωk), k ∈ I} are linearly inde-
pendent. Then the Hessian of LI(αI) is positive definite.

The proof is obtained considering the quadratic form
induced by the Hessian for v ∈ R

t, with Gk = 2�dkd
�
k

2tr

(
P1/2M−1

(
t∑

k=1

vkGk

)
M−1

(
t∑

l=1

vlGl

)
M−1P1/2

)
.

Restricting summation to k, l ∈ I+ gives the claim.
Theorem 3: Let the t-dimensional vector with components

wk := w(ωk) be chosen randomly according to a distri-
bution having a density in R

t. Then the relaxed problem
has a unique solution w.p.1, and the vectorized matrices
vec�(Du(e−iω)D

u
(eiω)

�
), ω ∈ �+ are linearly independent

w.p.1. In particular, we have |�+| ≤ s.
Proof: Let us take an optimal solution α∗ with �+ as

defined above. Let I ⊂ {1, . . . , t} be arbitrary and let �I :=
{ωk, k ∈ I} be the corresponding subset of frequencies. Note
that P(�+ = �I) ≤ P(�I ⊆ �+). Express the latter event
{�I ⊆ �+} via the Karush-Kuhn-Tucker condition as

(
vec�∗)��(ω) + γ w(ω) = 0 for ω ∈ �I . (30)

Arrange the column-vectors {�(ωk), k ∈ I} into a matrix SI,

and define w�
I := (w(ωk), k ∈ I). Write (30) as

(
vec�∗)�SI + γ w�

I = 0. (31)

If rankSI < |I|, i.e., the vectors {�(ωk), k ∈ I} are linearly
dependent, then its rows span a proper subspace L(SI) ⊂ R

|I|.
But the marginal distribution of the random vector wI has a
density in R

|I|, hence the event {wI ∈ L(SI)} has probability
0. Since the number of subsets I is finite, the second claim
follows.

To prove unicity, assume the contrary. Then, by convexity,
there is an interval of α-s such that the cost function is con-
stant, and optimal along this interval. Consider its midpoint,
say α∗ and let I := I

+ = {k:α∗
k > 0}, and �

+ = {ωk:k ∈ I
+}.

Then by the proven second claim of the theorem the vectors
{�(ωk), k ∈ I} are linearly independent w.p.1. Hence, by
Lemma 3 the Hessian of LI(αI) is positive definite. But this is
a contradiction, since LI(αI) being constant along an interval,
its Hessian has a zero eigenvalue.
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IV. A DATA-DRIVEN APPROACH

A shortcoming of the cited literature on input design is that
the optimal spectral measure of the input is determined under
the hypothesis that the true system parameter θ∗, is actually
known. To bypass this paradox we present the basics of a data-
driven method within a fairly general context, recapitulating
and extending the basic idea of [9].

The key idea is the construction of a data-driven virtual
off-line estimator, approximating the off-line PE estimator
of Section II, obtained with optimal input, with accuracy
OM(N−1). To be specific, consider a parametric family of
inputs

u(η) = F
(
η, q−1

)
f , (32)

where F is a rational, stable filter, such that |F|2 is linearly
parameterized by η ∈ C ⊂ R

r, where C is a closed, convex
set. E.g., F may be a FIR filter with η denoting the coefficients
of its half-spectra. f is an i.i.d. sequence of random variables,
independent of e, with finite moments of all order.

Consider the system dynamics (1) with u = u(η), η ∈ C:

y(η) = Hu
(
θ∗, q−1

)
u(η) + He

(
θ∗, q−1

)
e. (33)

Define, for θ ∈ D, the assumed innovation process ε(θ, η)

ε(θ, η) = He(θ)−1(y(η) − Hu(θ)u(η)
)
. (34)

Renaming the cost function of the PE estimator defined in (5)
as VN(θ, η) let θ̂N(η) and M(θ∗, η) denote the corresponding
off-line PE estimator and information matrix, respectively.
Assume that for θ ∈ D, as true systems parameter, the optimal
input design problem has a unique solution η∗(θ), such
that η∗(·) is three-times continuously differentiable. Then the
virtual off-line PE estimator of θ∗ is obtained by minimizing
the cost function

VN(θ, ∗) := VN
(
θ, η∗(θ)

) = 1

2

N∑
n=1

ε2
n

(
θ, η∗(θ)

)
. (35)

The solution is denoted by θ̂N(∗). This estimator is virtual
in the sense that it is not practical, since VN(θ, ∗) can not
be evaluated for two different values of θ. Nevertheless, we
proceed with its analysis along the lines of Section II.

Noting that ε(θ∗, η) = en for all η, we get ∂
∂η

ε(θ∗, η) = 0

for all η. Setting εθ0,n(θ, η) := ∂
∂θ

εn(θ, η), we conclude:

∂

∂θ
εn
(
θ, η∗(θ)

) = εθ0,n
(
θ, η∗(θ)

)
. (36)

It follows that for the Hessian of the asymptotic cost function
associated with the above virtual PE method, given as,

W(θ, ∗) := W
(
θ, η∗(θ)

)
:= 1

2
Eε2

n

(
θ, η∗(θ)

)
, (37)

evaluated at θ∗, we have, with self-explanatory notation,

M
(
θ∗, ∗) = M

(
θ∗, η∗(θ∗)

)
. (38)

Once again referring to [13, Th. 2.1] we get by its straight-
forward extension, in analogy with Theorem 1.

Theorem 4: Let u(η) be given by (32). Assume
Conditions 1, 3, and let M(θ∗, ∗) be non-singular. Then

θ̂n(∗) − θ∗ = −M
(
θ∗, ∗)−1

N∑
n=1

εθ0,n
(
θ∗, η∗(θ∗)

)
en + rN,

where rN = OM(N−1), implying the strong approximation:

θ̂n(∗) = θ̂n
(
η∗(θ∗))+ OM

(
N−1

)
. (39)

In particular, the asymptotic covariance matrix of θ̂n(∗) is

�θθ (∗) = σ 2M∗(θ∗, ∗)−1 = σ 2M∗(θ∗, η∗(θ∗))−1
.

Thus the virtual estimator θ̂n(∗) is optimal from the per-
spective of input design. The asymptotic estimation problem
in the spirit of [12] is defined by the algebraic equation

∂

∂θ
W(θ, ∗) = Eεθ0,n

(
θ, η∗(θ)

)
εn
(
θ, η∗(θ)

) = 0. (40)

Following the ideas of [11], extended in [12], a computable

recursive PE estimator ˆ̂
θN(∗) can be constructed.

The viability of the proposed approach for data-driven
input design has been demonstrated, with all technical details
included, in [9] for the case of ARMAX systems exited with
inputs u generated by a FIR filter.

To conclude this section we briefly describe the extension
of the above approach to closed loop systems. Consider a class
of linear stochastic control systems with excitation v:

yc(θ ′) = Hu
(
θ∗, q−1

)
uc(θ ′)+ He

(
θ∗, q−1

)
e (41)

uc(θ ′) = −K
(
θ ′, q−1

)
yc(θ ′)+ v. (42)

Here v is an external excitation independent of e. We consider
the practical scenario when the true parameter θ∗ is unknown
and we use its tentative value θ ′ in the feedback loop. The
feedback loop or K(θ, q−1) is designed by optimizing a
performance criterion for any assumed θ showing up in Hu

and He. Thus if we had a prior estimate θ̂ of θ∗ we would set
θ ′ = θ̂ . Write (41) - (42) as

yc(θ ′) = Hcu(θ∗, θ ′) v + Hce(θ∗, θ ′)e, (43)

with Hcu(θ∗, θ ′) and Hce(θ∗, θ ′) denoting the closed loop
filters. The role of the dither v, being independent of e, is thus
identified with that of the input u in open loop identification.
Thus, pretending the knowledge of θ∗ (and knowing θ ′) we
can proceed with any of the open loop input design methods.

Following (32) assume that v is generated by

v(η) = F
(
η, q−1

)
f , (44)

yielding the input and output processes uc(θ ′, η) and yc(θ ′, η).

For fixed θ ′, η the off-line PE estimator of θ∗ is obtained via
the assumed innovation process defined by

εc(θ, θ ′, η
) = He(θ)−1(yc(θ ′, η

)− Hu(θ)uc(θ ′, η
))

.

The off-line PE estimator is then defined as the solution of

min
θ∈D

N∑
n=1

εc2
n

(
θ, θ ′, η

)
, (45)
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Fig. 1. The two optimal frequencies for b = 3.0 and ωc = 3π
4 .

to be denoted by θ̂N(θ ′, η), which can be analyzed along
the lines of Section II. For any θ, θ ′ let the solution of the
input design problem be denoted by η∗(θ, θ ′). We redefine
the assumed innovation process by enforcing θ ′ = θ and η =
η∗(θ, θ ′). Thus we define a virtual closed loop off-line PE
estimator, as in [21], which can be considered as the off-line
mirror-image of an adaptive control algorithm optimized for
the asymptotic covariance matrix of θ̂N(θ∗, η), by

min
θ∈D

N∑
n=1

εc2
n

(
θ, θ, η∗(θ, θ)

)
. (46)

Let the solution be denoted by θ̂N(∗, ∗). Noting that
εc(θ∗, θ ′, η) = en for all θ ′, η, the partial derivatives of
εc(θ∗, θ ′, η) w.r.t. θ ′, η are 0, and hence the gradient of the
cost function or rather (∂/∂θ)εc

n(θ, θ, η∗(θ, θ))θ=θ∗ is easily
computed. Thus, in analogy with Theorem 4 we get the strong
approximation result

θ̂n(∗, ∗) = θ̂n
(
θ∗, η∗(θ∗))+ OM

(
N−1

)
, (47)

amounting to the fact that θ̂n(∗, ∗) is optimal both from control
and input design perspective.

V. EXPERIMENTAL RESULTS

We have tested our algorithm for finding the optimal multi-
sine on a system modeling a lightly damped oscillator with
complex poles re±iϕ and amplification b. Thus we have

Hu
(

z−1
)

= b

1 − 2r cos(ϕ)z−1 + r2z−2
. (48)

Fixing r = 0.95, we let the phase vary uniformly in [0, π ],
while b varied in the interval [3, 10]. The transfer function He

is defined by its stable zeros and poles yielding

He
(

z−1
)

= 1 + c1z−1 + c2z−2

1 + d1z−1 + d2z−2
= 1 + 0.6z−1 − 0.07z−2

1 − 0.866z−1 + 0.25z−2
.

Thus we have p = 7 parameters: r, ϕ, b and c1, c2, d1, d2,
implying s = p(p + 1)/2 = 28. For the weight function w(·)
we use a sigmoid-type functions taking their values between
0.1 and 1.0, setting their medians equal to three possible cut-
off frequencies ωc equal to π

4 , π
2 , 3π

4 . We let t = 5s = 140.

We solved the relaxed problem with P = I, and γ = 0.1
In all experimental scenarios a sparse solution was obtained
with a maximum of 4 optimal frequencies. In Fig. 1, we
present a typical result with two optimal frequencies assuming
a moderate SNR (signal-to-noise ratio) b = 3.0, and using a
weight function with broad band-pass width: ωc = 3π

4 .

VI. DISCUSSION

A nice project for future research may be the extension of
Theorem 2 to input design problems admitting frequency-wise
specifications, introduced in [22]. A second problem of interest
may be the clarification if the proposed data-driven approach
of Section IV is applicable for multi-sine design. Extension of
our results to vector-valued multi-sine design along the lines
of [23] may be also of interest. Finally, the authors thank
to Hakan Hjalmarsson for inspiring this letter, while visiting
HUN-REN SZTAKI in 2021.
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