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a b s t r a c t

Available methods for identification of stochastic dynamical systems from input–output data generally
impose restricting structural assumptions on either the noise structure in the data-generating system
or the possible state probability distributions. In this paper, we introduce a novel identification
method of such systems, which results in a dynamical model that is able to produce the time-
varying output distribution accurately without taking restrictive assumptions on the data-generating
process. The method is formulated by first deriving a novel and exact representation of a wide
class of nonlinear stochastic systems in a so-called meta-state–space form, where the meta-state can
be interpreted as a parameter vector of a state probability function space parameterization. As the
resulting representation of the meta-state dynamics is deterministic, we can capture the stochastic
system based on a deterministic model, which is highly attractive for identification. The meta-state–
space representation often involves unknown and heavily nonlinear functions, hence, we propose an
artificial neural network (ANN)-based identification method capable of efficiently learning nonlinear
meta-state–space models. We demonstrate that the proposed identification method can obtain models
with a log-likelihood close to the theoretical limit even for highly nonlinear, highly stochastic systems.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The framework of stochastic dynamical systems and (hidden)
arkov models is a well-respected field of study with many
owerful results and application areas (Paul & Baschnagel, 1999).
rom model predictive control with uncertain stochastic dynam-
cs and probabilistic constraints (Mesbah, 2016), till filtering with
alman variants up to particle filters (Wills & Schön, 2023),
eneral stochastic models have been extensively applied in many
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SA-77/2021). Views and opinions expressed are however those of the author(s)
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European Research Council Executive Agency. Neither the European Union nor
the granting authority can be held responsible for them. The material in this
paper was partially presented at The 2023 European Research Network System
Identification (ERNSI), September 24–27, 2023, Stockholm, Sweden. This paper
was recommended for publication in revised form by Associate Editor Dario Piga
under the direction of Editor Alessandro Chiuso.

✩ Implementation of the proposed approach is available in the toolbox:
ttps://github.com/GerbenBeintema/metaSI, while the software for the examples
onsidered in this paper can be found at: https://github.com/GerbenBeintema/
etaSS-code-repo.
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practical applications from the process industry to aerospace
engineering. As often the relations governing the system behavior
are only partly known in practice, estimation of a reliable model
of the dynamics from measured input–output (IO) data has been
a central question of research (Paul & Baschnagel, 1999).

For the case, when the dynamics are Linear-time-invariant
(LTI), identification algorithms have been developed to accom-
plish this by estimating both a process model and a noise model.
Examples of such methods include subspace approaches (Larimore,
1990; Van Overschee & De Moor, 1994; Verhaegen & Dewilde,
1992) and prediction error methods, resulting in IO models with
autoregressive with exogenous input (ARX), moving average ARX
(ARMAX), output-error (OE), and Box–Jenkins (BJ) noise struc-
tures or state–space models, e.g., with an innovation noise struc-
ture (Ljung, 1999). In comparison, most nonlinear-time-invariant
(NLTI) identification algorithms are highly restrictive on the noise
structures which are allowed to be present in the system. The
noise models are mostly limited to nonlinear ARX (NARX) and
nonlinear OE (NOE) models in the input–output representation
case (Schoukens & Ljung, 2019), and innovation noise structures
in the state–space case (Van Wingerden & Verhaegen, 2009).
These noise models are commonly considered as one of their
advantages is that they allow estimation of the noise corrupt-
ing the data, under the assumption that the data-generating
system itself falls into these model classes. When considering
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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ighly-structured models, such as block-oriented models, specific
tructured nonlinear noise models have been also considered (Ha-
enblad, Ljung, & Wills, 2008; Schoukens, Bai, & Rolain, 2012;
choukens & Tiels, 2017).
Kernel-based methods such as regularization networks, sup-

ort vector machines, and Gaussian regression offer another class
f system identification approaches, both in the LTI and NLTI
ases, with a robust mathematical framework and direct esti-
ation of model uncertainty (Chiuso & Pillonetto, 2019). Such
ethods have been applied in system identification under various
oise assumptions, e.g., white process noise under full-state mea-
urement (Deisenroth & Rasmussen, 2011; Eleftheriadis, Nichol-
on, Deisenroth, & Hensman, 2017), innovation noise (Shakib,
óth, Pogromsky, Pavlov, & van de Wouw, 2020), and equation-
rror noise (Pillonetto, Quang, & Chiuso, 2011). Kernel methods
an theoretically be extended to most model and process noise
tructures by appropriate selection of the involved kernels, how-
ver, currently, there exists no general systematic approach for
ppropriate kernel construction when the noise dynamics are
nknown (Chiuso & Pillonetto, 2019). While conceptually kernel
election could be automatized with for instance genetic pro-
ramming (Khandelwal, Schoukens, & Tóth, 2023), the involved
omputational effort could be overwhelming for many practical
dentification problems.

Another method is the identification of probabilistic state–
pace models through expectation maximization (Schön, Wills, &
inness, 2011) using particle and smoothing filters. This method
oes not impose major restrictions on either the noise or the
odel structure, however, it can have a significant computa-

ional cost due to the Monte Carlo nature of such particle-based
pproaches.
In this paper, we contribute to resolving the current challenges

n stochastic dynamical system identification by proposing a so-
alled meta-state–space representation of the dynamics and an
dentification algorithm to estimate it from data. In contrast to
revious work, the meta-state–space representation is directly
pplicable to a wide range of nonlinear stochastic systems and
t provides an exact representation where the meta-state can
e seen as a state probability function space parameterization.
n attractive property of the meta-state is that it fully rep-
esents the complete distribution of the original state, but its
volution, i.e., the meta-state transition function, is determin-
stic. Remarkably, the latter allows to capture of the stochastic
rocess representation via a deterministic model, capable of de-
cribing the evolution of the complete probability density function
PDF) of the state trajectories as a response to an input se-
uence. Furthermore, since the output PDF is a function of the
tate PDF, the meta-state–space representation is also able to de-
cribe the PDF of the output trajectories. As the meta-state–space
epresentation of a stochastic process often involves unknown
nd heavily nonlinear functions, we propose an artificial neural
etwork (ANN)-based identification method that, by exploiting
he universal approximator capabilities of ANNs, is capable of
earning such meta-state–space models efficiently directly from
ata. This provides a general approach for data-driven modeling
f stochastic systems well beyond the capabilities of the cur-
ent state-of-the-art without any severe structural restriction or
imiting assumption.

To summarize, the main contributions of the paper are:

• Showing that a wide class of nonlinear stochastic systems
have a meta-state–space representation;

• Formulation of a stochastic system identification algorithm
based on meta-state–space models and using only measured
IO data;

• Solving the identification problem by a computationally effi-
cient ANN-based parameterization and estimation approach.
2

This paper is structured as follows, Section 2 introduces and
proves the existence of the meta-state–space representation. In
Section 3, we formulate the identification problem of stochastic
systems via meta-state–space models using only IO data and pro-
pose a solution to it by an ANN-based approach. This is followed
by Section 4, where capabilities of the proposed identification
method are demonstrated on a challenging stochastic nonlinear
system identification problem where the resulting estimation
performance is found to be close to the theoretical limit. Lastly,
conclusions on the achieved results and future research directions
are provided in Section 5.

2. The meta-state–space representation

Consider a discrete-time nonlinear stochastic system with pro-
cess and measurement noise described by

xt+1 = fx(xt , ut , vt ), yt = hx(xt , ut , et ), (1a)

where xt represents the state which is a random variable taking
values from X ⊆ Rnx with initial condition x0 described by the
PDF px0 : X → R+, ut ∈ U ⊆ Rnu is a known input signal for
simplicity of derivation (deterministic sequence or sample-path
realization of an input process), yt represents the output which
s a random variable taking values from Y ⊆ Rny and t ∈ Z+

0 is
he discrete time. The output is corrupted by some i.i.d. stationary
easurement noise e with PDF pe : Rne → R+. Furthermore, the
tate transition is also corrupted by some i.i.d. stationary process
oise v with PDF pv : Rnv → R+. Both e and v are considered
o be independent of u. Lastly, fx : X × U × Rnv → X and
x : X×U×Rne → Y are bounded functions of the state-transition
nd output functions respectively.
The system described by the state–space (SS) representation (1)

an be equivalently represented in the form of state-transition
robabilities and conditional output probabilities, i.e., a hidden
arkov model or probabilistic state–space representation:
F(xt+1 |xt , ut ) = ∫ p(xt+1 |xt , ut , vt )p(vt )dvt , (2a)

= ∫ δ(xt+1−fx(xt , ut , vt ))p(vt )dvt ,

pH(yt |xt , ut ) = ∫ p(yt |xt , ut , et )p(et )det , (2b)
= ∫ δ(yt −hx(xt , ut , et ))p(et )det ,

here δ is the Dirac delta function and p denotes the correspond-
ng PDFs. For clarity of the derivation, we will adapt the following
otation to indicate state and output probabilities at time t ∈ Z+

0 :
x
t (x) ≜ p(xt ), pyt (y) ≜ p(yt ).

his notation allows us to express all future probability distribu-
ions pxt (x) and pyt (y) given an initial state distribution px0(x) =

(x0) and input signal using the Chapman–Kolmogorov equations
Paul & Baschnagel, 1999):

x
t+1(x) =

∫
pF(x|x′, ut )pxt (x

′)dx′, (3a)

pyt (y) =

∫
pH(y|x′, ut )pxt (x

′)dx′. (3b)

e can also use functional operator notation to rewrite this in
he following form
x
t+1 = F (pxt , ut ), (4a)

pyt = H(pxt , ut ). (4b)

ntroduce ud
τ = [u⊤(τ ) u⊤(τ + 1) · · · u⊤(τ + d)]⊤. Using this

otation and (4), we can describe the state and output distribu-
ion evolution as
x

= F t (px, ut−1), (5a)
t 0 0
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pyt = H(F t (px0, u
t−1
0 ), ut ), (5b)

here F t is defined in a recurrent manner as
t (px0, u

t−1
0 ) ≜ F (F t−1(px0, u

t−2
0 ), ut−1), (6a)

F 0(px0) ≜ px0. (6b)

In terms of (5), we can characterize all possible state distributions
that can happen along the solution trajectories of (1):

SX
= {F t (px0, u

t−1
0 ) |px0 ∈ SX

0 , ut−1
0 ∈ Ut , t ≥ 0} (7)

where SX
0 are all initial state distributions of interest and Ut

⊆

{{u0, u1, . . . , ut} | ui ∈ U ⊆ Rnu , t ≥ i ≥ 0} is the set of all
allowed input trajectories. Lastly, SY is defined in a similar way
for the output distributions.

To derive the meta-state–space representation, we require
that SX is parameterizable in terms of the following definition.

Definition 1 (Uniquely Parameterizable PDF Set). A set of probabil-
ity density functions SX is called uniquely parameterizable of order
nz if there exists an injective mapping M : SX

→ Rnz . Hence, the
inverse M† exists on the co-domain of M given SX.

Now we have all the ingredients to show the existence of the
Meta-State–Space (MSS) representation by the following theorem:

Theorem 2 (Meta-State–Space Representation). Assume that the
set of probability functions SX formed by (1) is uniquely param-
eterizable of order nz according to Definition 1. Then, there exist
fz : Rnz ×Rnu → Rnz , hz : Rnz ×Rnu → SY and z0 ∈ Rnz such that

zt+1 = fz(zt , ut ), (8a)

pxt = M†(zt ), (8b)

pyt = hz(zt , ut ), (8c)

for all t ≥ 0, all px0 ∈ SX
0 , and all u ∈ U∞.

Proof. We provide the proof by induction:
Initial condition: px0 = M†(z0) by setting z0 = M(px0).
Induction step: If pxt = M†(zt ), then

pxt = M†(zt ) (apply F )
F (pxt , ut ) = F (M†(zt ), ut ) (use (4a))

pxt+1 = F (M†(zt ), ut ) (apply M†M RHS)
pxt+1 = M†(M(F (M†(zt ), ut ))  

fz(zt ,ut )

)

nd thus pxt+1 = M†(zt+1) holds with

zt+1 = fz(zt , ut ) ≜ M(F (M†(zt ), ut )).

utput case: By applying M†:

pyt = H(pxt , ut ) = H(M†(zt ), ut ) ≜ hz(zt , ut ). ■

A way to understand this proof is by viewing Fig. 1 which
shows that zt+1 = fz(zt , ut ) = M(F (M†(zt ), ut )) by the properties
of set mappings.

With this, we have shown the existence of an MSS represen-
tation of the system described by (1) in the form:

zt+1 = fz(zt , ut ), (9a)

p(yt |zt , ut ), (9b)

where p(yt |zt , ut ) is given by hz(zt , ut ). A graphical illustration
of the evolution of the meta-state and its relation to the time-
variation of the original state distribution is given in Fig. 2. The
3

Fig. 1. Both SX and the meta-state–space with mapping M and inverse mapping
M† are visualized, showing that a transition from zt to zt+1 can be computed
in two ways by following either the blue or the red path and thus zt+1 =

fz(zt , ut ) = M(F (M†(zt ), ut )).

Fig. 2. A graphical representation of the evolution of a PDF of the state according
to (3) and the evolution of the meta-state in terms of (9). This figure shows
that meta-state vectors zt can represent the state distribution pxt through the
apping M .

SS representation is especially suited for system identification
ince (9) is similar to the nonlinear SS representation of a de-
erministic system which has been studied extensively in the
iterature.

emark 3. Existence of an MSS, depends on the assumption
hat SX is uniquely parameterizable of order nz according to
efinition 1. Hence it is an important question if such a parame-
erization exists or not for general nonlinear stochastic systems.
t is well known that distributions in general can be uniquely
efined in terms of their moments, which means that MSSs with
otentially infinite order nz always exist. Higher-order moments
ave a diminishing role, and hence, often only a subset of the
oments and thus finite nz is enough to provide an accurate
haracterization of SX. Additionally, there exist many universal
pproximators which can describe function spaces to arbitrary
ccuracy with increasing order nz. For example, the difference
ecomes arbitrarily small with increasing the number of parti-
les (Del Moral, 1997) or increasing the number of components
n a Gaussian mixture (Goodfellow, Bengio, & Courville, 2016).
hese approaches have been exploited in particle filtering (Schön
t al., 2011) and Markov-chain Monte-Carlo methods (Chua, Ca-
andra, McAllister, & Levine, 2018) to provide state-filtering and
stimation for general stochastic systems. Hence the motivation
or the existence of MSS models of (1) with finite nz in an exact
r approximative sense is based on the same considerations.
owever, characterization of the minimal order nz of unique
arameterizations of SX for a given (1) and its boundedness are
pen questions and are outside the scope of the current paper.

. Identification by meta-state–space learning

In this section, we will exploit the existence of MSS represen-
ations of stochastic systems in the form of (1) to formulate an ef-
icient data-driven modeling approach of such systems within the
eta-state–space setting by using maximum a posteriori (MAP)
stimation.
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.1. The identification problem

ata set: An input sequence {ut}
N
t=1, either generated as the

ampling of an input process or as a deterministic sequence,
nd unknown initial state x0 are applied on the system given
y (4) and an output realization {y∗

t }
N
t=1 is recorded. These two

sequences are used to create the input-output dataset:

UN = {u1, u2, . . . , uN}, (10a)

YN = {y∗

1, y
∗

2, . . . , y
∗

N}. (10b)

Model structure: To identify (1), estimation of the meta-state
dynamics (9) in terms of a parameterized model

ẑt+1 = fθ (ẑt , ut ), (11a)

pθ (ŷt | ẑt , ut ), (11b)

is considered, where fθ : Rnz ×Rnu → Rnz and pθ is a conditional
DF, both parameterized in terms of θ ∈ Rnθ . Furthermore, the
nitial state ẑ1 is also considered to be a parameter.
Identification criterion: Estimation of θ ∈ Θ ⊆ Rnθ and the initial
state ẑ1 ∈ Rnz are considered in terms of maximization of the
posteriori likelihood over Θ ×Rnz . Since the currently considered
formulation of the meta-state–space representation cannot ex-
press the joint distribution of the output, e.g., p(y1, y2 |u1, u2) we
im to maximize the product of the posteriori of each individual
erm as

θ, ẑ1]MAP = argmax
θ,ẑ1

p(θ, ẑ1,UN )
N∏

t=1

pθ (y∗

t | ẑt , ut ),

where p(θ, ẑ1,UN ) is a user-specified prior distribution. By log
and mean transformation, the MAP estimation problem of the
parameters of a meta-state model can be posed as the following
optimization problem:

min
θ,ẑ1

−
1
N

N∑
t=1

log(pθ (y∗

t | ẑt , ut )) −
1
N

log(p(θ, ẑ1,UN ))

s.t. ẑt+1 = fθ (ẑt , ut ), ∀t ∈ IN1 , (12)

where IN1 = [1,N] ⊂ Z. Similar to classical system identification,
minimizing a simulation cost can result in a good initial meta-
state ẑ1 since any error in it can result in a transient error
which increases the cost (Forgione, Mejari, & Piga, 2022). An
important observation is that this optimization problem neither
requires M to be defined nor will result in an estimate of M
which can be viewed as both an advantage and disadvantage. It is
advantageous since the optimal choice ofM is generally unknown
and thus would be challenging to choose a priori. However, it is
also disadvantageous since after estimation, it is unknown how
the meta-state relates to the true hidden state distribution. An
exception is when xt can be directly observed (i.e. yt = xt ), as in
this case pθ (xt | ẑt ), which corresponds to M†, is described by the
model estimate.

3.2. Neural meta-state–space estimator

This section aims to make the optimization problem given
by (12) computationally tractable for gradient-descent optimiza-
tion algorithms. Moreover, this section will introduce an effi-
cient way of parameterizing fθ and pθ using neural networks for
general modeling purposes.

Meta-state–space models can be considered under various
parameterizations of the meta-state transition function fθ and
utput distribution p (y|z, u). However, these functions can be
θ

4

rather complicated and heavily nonlinear, hence parameteriza-
tion by artificial neural networks is desirable due to their expres-
siveness and favorable computational aspects (Goodfellow et al.,
2016). We parameterize the mapping z+ = fθ (z, u) as a fully
connected feedforward neural network with a linear bypass and
n hidden layers which can be expressed recursively as:

ξ (0)
= [z⊤ u⊤

]
⊤, (13a)

(i+1)
= φ

(
A(i)ξ (i)

+ b(i)
)
, (13b)

z+ = A(n)ξ (n)
+ Alinξ

(0)
+ b(n), (13c)

where ξ (i)
∈ Rn(i)hidden are the hidden latent variables associated

with the layers, {Alin, A(0), b(0), . . ., A(nlayers), b(nlayers)} are the real-
valued network parameters with appropriate dimensions, and φ
is a static nonlinear activation function which is applied element-
wise. A good standard choice is the tanh activation function for φ
since it is effective for many deep learning and system identifica-
tion tasks (Beintema, Schoukens, & Tóth, 2023). However, other
activation functions such as ReLU, Gaussian etc. and their com-
bination for different layers can be more effective depending on
the problem at hand (e.g., ReLu for piece-wise linear problems),
see Goodfellow et al. (2016) for an overview.

Regarding pθ , a flexible parameterization for non-Gaussian
distributions is the mixture of Gaussian distributions (Bishop,
1994) based on which we consider

pθ (y|ξ ) =

np∑
i=1

wi,θ (ξ ) · N
(
y|µi,θ (ξ ), Σi,θ (ξ )

)
, (14)

where, ξ = [z⊤ u⊤
]
⊤, np is the number of Gaussian compo-

nents, wi,θ : Rnz+nu → [0, 1] with
∑np

i=1 wi,θ = 1, µi,θ :

Rnz+nu → Rny , and Σi,θ : Rnz+nu → Sny , where Sny is the set
of symmetric, positive definite matrices in Rny×ny . The weight
wj, mean µj and covariance matrix Σj functions are chosen as
fully connected feedforward ANNs with a similar structure as fθ .
To improve computational effectiveness we utilize ANNs with np
outputs such that only three neural networks are required to
parameterize the weights wθ , means µθ and covariance terms
Σθ . The validity of the probability distribution (i.e.

∫
pθ (y|ξ )dy =

1 and pθ (y|ξ ) ≥ 0, ∀ξ ) is ensured by the given constraints
and enforced by choosing appropriate activation functions on the
last layer of each neural network as discussed in Appendix A.
This type of distribution parameterization is also called a Mixture
Density Network (Bishop, 1994). The considered parameterization
is sufficient to describe any PDF function under the limit of
np → ∞ since a weighted sum of normal distributions is a
universal approximator (Bishop, 1994; Goodfellow et al., 2016).
Using a Mixture Density Network is advantageous since the log-
likelihood as in (12) can be computed in an efficient manner.
Lastly, mitigation of floating point errors/instabilities is essential
and is also discussed in Appendix A.

The computational cost and optimization stability of prob-
lem (12) can be greatly enhanced by adopting a multiple shooting
formulation (Bock, 1981). Following the multiple shooting ap-
proach of Beintema et al. (2023) for conventional nonlinear state–
space estimation, we are able to reduce the computational com-
plexity by using independent subsections of the available data.
Based on these, we can recast (12) as the following optimization
problem:

min
θ

−

N−T+1∑
t=1

T−1∑
k=kburn

log(pθ (y∗

t+k |zt+k |t , ut+k)), (15a)

s.t. zt+k+1 |t = fθ (zt+k |t , ut+k), ∀k ∈ IT−1
0 (15b)

zt |t = 0, ∀t ∈ IN−T+1
1 (15c)
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Table 1
The MSS model, cost and optimization parameters.
nlayers nhidden nz np kburn T Learn rate Batch size

2 64 3 30 10 30 10−3 2048

in which we also assume a uniform prior. For simplicity of the
implementation and computational feasibility, we set the initial
state zt|t in each section to be fixed to zero in (15). This choice
might result in a mismatch with the optimal initial meta-states
and thus a transient error can be present. By including a small
burn time kburn the effect of this transient error is greatly reduced
n the case of fading memory systems. This formulation also
llows for the use of powerful batch optimization such as Adam
Kingma & Ba, 2015) by not summing over all possible t .

The proposed model structure and estimation method possess
number of important hyperparameters, which can be chosen
ased on the following guidelines:

• A key hyperparameter is the order of the meta-state–space
model nz. As mentioned in Remark 3, nz should be chosen
such that Definition 1 is satisfied with the desired level of
user-defined accuracy with, for instance, cross-validation.

• The number of Gaussian components np should be chosen in
a similar manner, but our observations suggest that np = 20
has been a sufficient baseline choice for all the datasets that
we have considered.

• The kburn and T can be chosen using n-step-error figures
as described in Beintema et al. (2023). Hence, kburn should
be chosen larger than the transient observed in the n-step-
error figure and T a few times that transient length for stable
systems.

Other well-known modeling guidelines, for instance descr-
bed in Beintema et al. (2023), still hold.

. Simulation studies

To demonstrate the capabilities of the proposed method, con-
ider the following nonlinear stochastic system

t+1 = α(xt , et )xt + ut , (16a)

yt = xt , (16b)

here α(xt , et ) = 0.3 + 0.7e−(xt+et )2 which satisfies |α(xt , et )| ≤

to ensure stability. The process noise et is i.i.d with uniform
istribution p(et ) = U(et | − 0.5, 0.5).
We generate three separate datasets for training, validation

nd testing, employing a white input sampled from a zero-mean
ormal distribution with a standard deviation of 2 (i.e. ut ∼

(ut |0, 2)). The training and validation set consists of 300k and
0k sample points respectively with x0 = 0 as the initial state.
he test set consists of 5000 trajectories of 4100 samples each,
here the first 100 samples are discarded to exclude transient
ffects. These test trajectories all use the same input realization
t , but different noise realizations et from the considered dis-
ribution. These trajectories allow us to compare the model and
ystem output distributions.
The MSS model, cost and optimization parameters can be

iewed in Table 1 which shows that fθ is parameterized with a
hidden layer neural network with 64 nodes per layer with tanh
ctivation functions as described in (13). To parameterize pθ , we
tilize a Gaussian mixture model as in (14) where w.,θ , µ.,θ and
.,θ are neural networks with the same structure as fθ . To train the
eta-state–space model, we utilize the multiple-shooting-based

oss function given by (15) since it scales well to the large training
5

Fig. 3. Probability density histograms of the system output under different noise
realizations compared with the predicted output distribution of the meta-state–
space model. Since the model output distribution is parameterized as a weighted
sum of normal distributions, these weighted components are also displayed.

dataset. We use the Adam optimizer and the following hyper-
parameters, input–output normalization, early stopping using the
validation set, kburn = 10, T = 30, np = 30, batch size of
048 and a learning rate of 10−3. Lastly, using cross-validation we
ound that the model accuracy expressed in mean log-likelihoods
s 1.525, 1.674 and 1.678 for nz = 2, 3 and 4 respectively. Hence,
ncreasing the meta-state dimension beyond nz = 3 does not
rovide significant increase in model accuracy and thus nz = 3 is
hosen.
The resulting meta-state model is analyzed by using both qual-

tative and quantitative comparisons. The qualitative comparison
ims to investigate if the produced probability distribution of the
utput trajectories of the model well represents the probability
istribution of the output trajectories of the considered stochastic
ystem. Using the 5000 test trajectories, we can construct a
robability density histogram of the system output over time
nd compare it to the output distributions given by the model at
pecific time instances. This comparison can be viewed in Fig. 3
hich shows a striking resemblance between the probability
ensity histogram of the test set and the output distributions
iven by the model. Not only the mean and the variance have
een captured by the model, but also smaller features such as
umps as seen in the third row at y = 0.8 are present in the
istogram. With this, we have shown that the evolution of the
eta-state zt can indeed describe the distributions of yt using a

qualitative comparison.
Numerically quantifying the model quality in a probabilistic

setting is done by using the mean log-likelihood on the test set
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Table 2
The mean model output log-likelihood (17) over the test set for the nonlinear
stochastic system given by (16).
Model/Baseline Mean log-likelihood

Gaussian (µy, σy) −2.18
Gaussian (µy,t , σy,s) 1.04
Gaussian (µy,t , σy,t ) 1.56
Meta-state–space model 1.67
Upper limit 1.73

with S = 5000 test sequences:

1
NS

N∑
t=1

S∑
i=1

log p(y∗(i)
t |zt ) (17)

where (i) indicates the ith trajectory. To ease the interpretation
of this quantity, we included a comparison of 3 baselines and
an estimated theoretical upper limit. The following baselines are
considered (see Appendix C for details);

(1) Gaussian (µy, σy): has a static mean and a static standard
deviation. Comparison with this baseline gives an indi-
cation that the results are better than a static Gaussian
model.

(2) Gaussian (µy,t , σy,s): has a dynamic mean and a static stan-
dard deviation. This baseline represents a model which is
able to perfectly capture the mean variation of the out-
put, but assumes a static output noise. The performance
of this baseline is the upper limit of the performance of
conventional output error modeling methods like Fraccaro,
Kamronn, Paquet, and Winther (2017).

(3) Gaussian (µy,t , σy,t ); has a dynamic mean and a dynamic
standard deviation. This baseline represents a model which
is able to perfectly capture the mean variation of the out-
put, but assumes that the output noise is a state-dependent
Gaussian.

(4) Upper limit: it can be shown that for any model of the
stochastic system, the mean output log-likelihood will be
smaller or equal to the negative mean entropy of the out-
put signal (Vasicek, 1976), see Appendix B for details.

The computed mean log-likelihood of all four baselines to-
gether with the obtained meta-state–space model are presented
in Table 2. This table shows that the obtained model outperforms
all three baselines and is very close to the estimated upper
limit. This is a remarkable achievement since the meta-state–
space model is able to describe the data generated by challenging
stochastic dynamics using a deterministic state transition and a
stochastic output map. Hence, the existence of the meta-state–
space as derived in (9) opens up efficient identification methods
that directly estimate meta-state–space models. Furthermore, we
observe no major trends in the accuracy of the estimated model
with increasing prediction horizon. This identification method
and possible future extensions can greatly reduce the complexity
of the identification problem of stochastic dynamics.

5. Conclusion

A novel meta-state–space identification method has been in-
troduced which is able to identify general nonlinear stochastic
systems with an accuracy close to the theoretical limit as shown
in the simulation study. The identification method is formulated
based on a meta-state–space representation of the system which
can be interpreted as a description of the deterministic evolution
of a parameter vector of a state distribution parameterization,

called the meta-state. Identification based on this representation

6

is effective since the meta-state transition function is determin-
istic and in the considered example the proposed method could
achieve accuracy close to the theoretical limit.

By the current formulation, the estimated meta-state models
allow only to express the output probability distributions of the
type p(yt |ut

0). However, we suspect that the meta-state can be
extended for other prediction objectives. For instance, by the
inclusion of a subspace encoder (Beintema et al., 2023) it is
potentially possible to obtain accurate n-step ahead predictors
such as p(yn+t |un+t

0 , yn0) which would be useful for model-based
control with chance constraints. Furthermore, by the inclusion of
a Kalman measure update in the meta-state–space, it is poten-
tially possible to obtain the joint probability distributions p(yn0|u

n
0)

which would be useful for filtering and observer tasks.

Appendix A. Mixture density network parameterization

Obtaining a valid mixture of Gaussians given by (14) requires
that the weights are

∑
i wi = 1 and wi > 0 and that σi > 0. This

s enforced by utilizing proper activation functions as described
elow. Furthermore, floating-point errors are minimized for a
uccessful implementation.
To compute wi in (14), it is suggested to use the following

elations

˜ i = ANNi
θw(z), (A.1)

i =
exp(w̃i)∑
j exp(w̃j)

=
exp(w̃i − maxk(w̃k))∑
j exp(w̃j − maxk(w̃k))

. (A.2)

dditionally, it is suggested to use

σ̃i = ANNi
θσ (z), (A.3)

σi = exp(σ̃i), (A.4)

i = ANNi
θµ(z), (A.5)

here ny = 1 with Σi = σ 2
i is considered for simplicity. Lastly,

e compute the log probability as follows

ri ≜ log(wi) + log (N(y|µi, σi)) , (A.6)

og(pθ (y|z)) = log

(∑
i

exp(ri)

)
, (A.7)

= max
k

(rk) + log

(∑
i

exp
(
ri − max

k
(rk)
))

.

ere the max outside of the log reduces floating point errors
hich could prevent convergence of the optimization. Applica-
ion of the max-operator is well-known to improve numerical
loating point stability, for instance, this has been the reason
or the introduction of softmax activation functions in machine
earning (Karpathy et al., 2016).

ppendix B. Mean log-likelihood upper limit

It is well-known that the Kullback–Leibler (KL) divergence is
ero if the given distribution q(yt ) is equal to the target distribu-
ion p(yt ):

KL(p, q) =

∫
p(yt ) log

(
p(yt )
q(yt )

)
dyt , (B.1)

=

∫
p(yt ) log (p(yt )) dyt  

negative differential entropy

−

∫
p(yt ) log (q(yt )) dyt  

cross entropy

,

where the cross entropy is equal to our performance measure
using sampling of p(y ). This also shows that the upper bound is
t
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he negative mean entropy of p(yt ). However, since an analytical
expression for p(yt ) is unavailable in practice, we cannot compute
the differential entropy directly and will need to estimate it using
the data samples. Many methods exist for computing entropy
from samples. For this purpose, we employ the often applied
method proposed by Alizadeh Noughabi (2015), Vasicek (1976)
to estimate the mean differential entropy.

Appendix C. Estimation of the Gaussian baselines

Parameters of the Gaussian baseline models, discussed in Sec-
tion 4, are obtained using the following equations:

µy =
1
NS Σ

N
t=1Σ

S
i=1y

∗(i)
t , (C.1)

µy,t =
1
S Σ

S
i=1y

∗(i)
t , (C.2)

σ 2
y =

1
NS Σ

N
t=1Σ

S
i=1(y

∗(i)
t − µy)2, (C.3)

σ 2
y,s =

1
NS Σ

N
t=1Σ

S
i=1(y

∗(i)
t − µy,t )2, (C.4)

σ 2
y,t =

1
S Σ

S
i=1(y

∗(i)
t − µy,t )2. (C.5)
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