
Computers & Operations Research 169 (2024) 106748

A
0
n

Contents lists available at ScienceDirect

Computers and Operations Research

journal homepage: www.elsevier.com/locate/cor

Scheduling jobs to minimize a convex function of resource usage✩

Tamás Kis ∗, Evelin Szögi
HUN-REN Institute for Computer Science and Control, Kende utca 13-17, Budapest, 1111, Hungary
Department of Mathematics, Loránd Eötvös University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary

A R T I C L E I N F O

Keywords:
Scheduling
Load balancing
Convex optimization
Network flows

A B S T R A C T

Given a finite set of jobs and a common resource. Each job has the same processing time 𝑝, alongside an
individual release date and deadline, and utilizes either zero or one unit from the resource. A schedule
specifies a star time for each job, and it determines the resource usage over time. The objective is to minimize
a separable convex function of the resource usage. Prior to our work, the existing body of research only
tackled the scenario where 𝑝 = 1. We explore three variations of this fundamental problem, accompanied
by applications drawn from existing literature. In the first variant, all jobs require one unit of the resource
each. In the second and third variants, there are 𝑚 parallel machines, and at most 𝑚 jobs may be processed
concurrently at any given moment. Furthermore, in the second variant, each job has a unit processing time,
and may require either 0 or 1 unit of the resource. In the third case, there are 𝜈 distinct resource types each
linked with a convex function, and each job requires precisely one of these resources types. The jobs have
a uniform processing time 𝑝 and possess agreeable release dates and deadlines. For each of these cases, we
introduce novel polynomial-time algorithms designed to determine optimal solutions.
1. Introduction

This paper delves into variants of the scheduling problem outlined
as follows: A set of 𝑛 jobs = {𝐽1, 𝐽2, … , 𝐽𝑛} is considered, alongside
a shared resource required by some subset of these jobs. Each job 𝐽𝑖
is characterized by a release date 𝑟𝑖, a deadline 𝑑𝑖, and a resource
requirement 𝜇𝑖 ∈ {0, 1}. All jobs share a uniform processing time 𝑝.
A schedule specifies a starting time 𝑆𝑖 for each job 𝐽𝑖, and is deemed
feasible, if the condition 𝑟𝑖 ≤ 𝑆𝑖 ≤ 𝑑𝑖 − 𝑝 is met for each job 𝐽𝑖.

The goal is to find a feasible schedule , which minimizes a convex
function 𝑓 ∶ R≥0 → R of the load of the resource throughout the
scheduling horizon, i.e.,

min
 ∫

𝑑max

𝑟min

𝑓 (𝓁 (𝑡))𝑑𝑡,

where 𝑟min = min𝑖 𝑟𝑖 is the earliest release date and 𝑑max = max𝑖 𝑑𝑖 is the
last deadline, and 𝓁 (𝑡) is the load of the resource at time point 𝑡 in
schedule , i.e., 𝓁 (𝑡) = |{𝑖 | 𝑆𝑖 ≤ 𝑡 ≤ 𝑆𝑖 + 𝑝, 𝜇𝑖 = 1}|.

A variant of this problem, where 𝑝 = 1, 𝜇𝑖 = 1 for all 𝐽𝑖 ∈ , and
for each job 𝐽𝑖 a subset of time slots 𝐷𝑖 ⊂ Z+ is given, rather than
an interval [𝑟𝑖, 𝑑𝑖], is known as the load balancing problem and it has
been extensively studied by several authors, see e.g., Hajek (1990),
Harvey et al. (2006) and Burcea et al. (2016). As it is established in

✩ This research has been supported by the TKP2021-NKTA-01 NRDIO, Hungary grant on ‘‘Research on cooperative production and logistics systems to support
a competitive and sustainable economy’’.
∗ Corresponding author at: HUN-REN Institute for Computer Science and Control, Kende utca 13-17, Budapest, 1111, Hungary.

E-mail addresses: kis.tamas@sztaki.hu (T. Kis), szogi.evelin@sztaki.hu (E. Szögi).

all these papers, this special case has some very nice properties: (i)
there always exists a universally optimal solution , which is optimal
for any convex function 𝑓 of the load 𝓁 , and (ii) if a schedule is
not optimal, then there exists a pair of time slots 𝑡0, 𝑡1 ∈ Z, such that
𝓁 (𝑡0) ≥ 𝓁 (𝑡1)+2 alongside a subset of jobs which can be rescheduled.
This rescheduling results in a decrease of one in the load of time slot 𝑡0,
an increase of one in the load of time slot 𝑡1, while the workload of the
other time slots remains unchanged. The convexity of 𝑓 ensures that
the objective function value of the new schedule is smaller than that
of . While it might seem logical to adapt the methodologies utilized
in the 𝑝 = 1 scenario to instances where 𝑝 > 1, such a direct transfer is
not possible. To begin with, the two properties observed in the 𝑝 = 1
case do not hold when 𝑝 > 1 (see Section 3), indicating a fundamentally
distinct problem structure. The algorithms devised for the 𝑝 = 1 case
heavily rely on concepts such as the legal graph and legal paths, which
indicate potential job reassignments improving the current schedule.
However, when 𝑝 > 1, it seems hopeless to establish analogous versions
of legal graphs and legal paths. Hence, there is a need for new ideas and
methodologies to efficiently solve the problem when 𝑝 > 1.

The above scheduling problem can be extended to parallel machine
problems, where each job has to be assigned to a machine, and the jobs
assigned to the same machine have to be sequenced. The latter problem
vailable online 24 June 2024
305-0548/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.cor.2024.106748
Received 9 November 2023; Received in revised form 9 June 2024; Accepted 19 Ju
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ne 2024

https://www.elsevier.com/locate/cor
https://www.elsevier.com/locate/cor
mailto:kis.tamas@sztaki.hu
mailto:szogi.evelin@sztaki.hu
https://doi.org/10.1016/j.cor.2024.106748
https://doi.org/10.1016/j.cor.2024.106748
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2024.106748&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

𝑐
d
w
j
m
f
r
f
𝑓
a
a
o

w
P
1
i

p

was introduced by Błażewicz (1979), where all jobs have processing
time 𝑝 = 1, and require 0 or 1 unit of a common resource of capacity
. In a feasible solution the jobs are scheduled between their release
ates and deadlines, and at most 𝑚 jobs are processed concurrently,
here 𝑚 is the number of the parallel machines. Moreover, at most 𝑐

obs of resource requirement 1 are processed in parallel at any given
oment. Blazewicz described a proprietary polynomial time algorithm

or deciding whether a feasible schedule exists. This problem can be
eformulated as a scheduling problem with a separable convex cost
unction. We define a piecewise-linear convex function 𝑓 as follows:
(𝑥) = 0 for 𝑥 ≤ 𝑐 and 𝑓 (𝑥) = 𝑥−𝑐 for 𝑥 ≥ 𝑐. It is easy to see that there is
feasible schedule in which at most 𝑐 jobs with resource requirement 1
re scheduled concurrently if and only if there exists a feasible schedule
f cost 0 w.r.t function 𝑓 .

In this paper, we deal with three variants of the scheduling problem
ith non-preemptive jobs, all of processing time 𝑝:
roblem 𝑃1. All jobs require one unit of the common resource, i.e., 𝜇𝑖 =
for each job 𝐽𝑖, and the joint processing time 𝑝 is an arbitrary positive

nteger.
We will show by way of an example that unlike in the load balancing

roblem with 𝑝 = 1, for general 𝑝, there is no universally optimal
solution (Section 3). Furthermore, improving a non-optimal schedule
may be far more complicated than in the case with unit length jobs. We
will reduce the problem to a minimum cost circulation problem with
convex cost functions on the arcs in an appropriately defined network,
which permits the application of efficient combinatorial methods for
finding optimal solutions (Section 4).
Problem 𝑃2. The jobs have unit processing times, integer release dates
and deadlines, and require 0 or 1 unit of a common resource. In
addition, there are 𝑚 parallel machines, which can process at most
𝑚 jobs concurrently, and each job must be assigned to precisely one
machine.

We describe a network-flow based method with convex cost func-
tions on the arcs in Section 5. As a by-product, our method can also
answer the decision problem of Błażewicz (1979).
Problem 𝑃3. There is a constant number of 𝜈 resource types 𝑅1,… ,
𝑅𝜈 , and each 𝑅𝑘 is associated with a convex cost function 𝑓𝑘, 𝑘 =
1,… , 𝜈. There are 𝑚 parallel machines, which can process at most 𝑚 jobs
concurrently. Each job 𝐽𝑖 has the same processing time 𝑝, it requires
one unit from exactly one resource type 𝜇𝑖 ∈ {1,… , 𝜈}, and has to be
assigned to precisely one machine. The goal is to find a schedule
respecting the above constraints and minimizing the objective function

min

𝜈
∑

𝑘=1
∫

𝑑max

𝑟min

𝑓𝑘(𝓁
𝑘 (𝑡))𝑑𝑡,

where 𝓁
𝑘 (𝑡) = |{𝑖 | 𝑆𝑖 ≤ 𝑡 ≤ 𝑆𝑖 + 𝑝, 𝜇𝑖 = 𝑘}|.

In Section 6, we give dynamic programming based algorithms to
solve 𝑃3 in two special cases: the release dates and deadlines of the
jobs are agreeable, or the set of jobs can be partitioned into a constant
number of subsets with this property.

Finally, we mention that this work is an extended version of Szögi
and Kis (2023).

2. Related work

We have already summarized the most relevant results on load
balancing and deadline scheduling of jobs on parallel machines using a
bounded capacity resource in the introduction. In the following we fo-
cus on parallel machine scheduling problems with equal job processing
times.

Brucker and Kravchenko (2008) investigate the problem where
equal-length jobs have to be scheduled on 𝑚 identical parallel ma-
chines. For each job, a release date and a deadline is given. They
present a polynomial time algorithm that finds a feasible schedule and
minimizes the weighted sum of the completion times. Their method is
2

based on an integer programming formulation of the problem, solving
the linear relaxation and rounding the solution appropriately. A similar
problem is considered by Kravchenko and Werner (2009), but the time
interval between the earliest release date and the latest deadline is
divided into several smaller intervals, and for each of them, the number
of available machines is given. They present a linear programming
approach to find a feasible schedule that minimizes the maximum
number of machines used by the jobs. In Simons (1983), Simons con-
siders a problem where 𝑛 unit-time jobs are given with rational release
dates and deadlines, and they have to be scheduled on 𝑚 machines.
A polynomial time algorithm is devised that finds a feasible schedule,
if one exists, which minimizes both the makespan and the sum of
job completion times. Since the integrality of the release dates and
deadlines is not assumed, the same algorithm works if the jobs have
the same but not necessarily unit processing time. Simons and Sipser
(1984) consider a scheduling problem, where 𝑛 unit-length jobs have
to be scheduled on 𝑚 machines. Each job has several feasible intervals
with integral endpoints in which it can be processed. They give a
polynomial time algorithm that finds a feasible schedule, if one exists,
and in this case, a feasible schedule that minimizes the makespan or the
sum of the completion times can be obtained as well. While the case
with unit processing time is manageable, they prove NP-hardness for a
slightly different variant of the problem. If the length of each job is 2,
the problem is NP-hard even if each job has only two feasible intervals.
Baptiste (2000) investigates the problem, where 𝑛 equal-length jobs are
given, each of them associated with a release date and deadline. The
jobs have to be scheduled on 𝑚 identical parallel machines, where 𝑚 is
a constant. Baptiste gives a method using dynamic programming that
finds a feasible solution minimizing ∑𝑛

𝑖=1 𝑓𝑖(𝐶𝑖), where the functions 𝑓𝑖
are non-decreasing and for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑓𝑖 − 𝑓𝑗 is monotonous.
Baptiste et al. (2004) consider several scheduling problems of open
complexity status, where the jobs share the same processing time. They
devise new polynomial time algorithms to many of these problems,
some of them derived from well-known scheduling algorithms and
some of them involving new techniques. We refer the reader to the
survey (Kravchenko and Werner, 2011) for further results.

Drótos and Kis (2011) study the following resource leveling prob-
lem. Given 𝑚 machines, a finite set of renewable resources, and 𝑛
jobs, each of which pre-allocated to one of the machines. The jobs
have individual processing times, release dates, deadlines and resource
requirements. One has to determine the starting times of the jobs such
that the jobs processed on the same machine do not overlap, and
the sum of some convex functions of the loads of the resources is
minimized. The authors prove that if the starting times of all jobs on
all but one machines are fixed, the problem is NP-hard. However, if
the ordering of jobs on the remaining machine is also given, then a
polynomial time algorithm exists. They also give a heuristic method as
well as an exact branch-and-bound algorithm for solving the problem.

Many authors investigate online load balancing problems. In e.g.
Shaikhet et al. (2013), Liu et al. (2020) and Chau et al. (2021),
online energy management problems are studied. Shaikhet et al. (2013)
propose an on-line scheduling algorithm for demands with stochastic
energy demands and stochastic malleability constraints and prove that
the presented algorithm is asymptotically optimal and runs in linear
time. Liu et al. (2020) consider the online, non-preemptive problem
involving jobs with arbitrary processing times and resource require-
ments. The convex function to be minimized is 𝑓 (𝑥) = 𝑥𝛼 , where 𝛼 > 1
is a constant. The authors devise an online algorithm based on online
dynamic speed scaling methods. Chau et al. (2021) study a problem
in demand response management in a smart grid. A sequence of jobs
arrives online to be scheduled within their time windows on unrelated
parallel machines. These machines could represent different resources
in a smart grid or distinct electrical sub-networks. Each machine is
linked with an energy-power function, and the goal is to determine a
non-migrative schedule that minimizes the total energy consumption.
When the energy-power functions adhere to the form 𝑓 (𝑥) = 𝑥𝛼 ,

𝛼
the authors provide an 𝛼 -competitive algorithm. They also propose

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

d
𝐽

a
s
o
p
o
s
t
a
c
e

b

4

i
p
p
p
t
f
W
e
o
a
(

4

t

a
a

a 2𝛼-approximation algorithm for the offline setting, which involves
unit-time jobs, constant power requests and identical machines with
identical energy-power functions.

In Stewart et al. (2023), the authors investigate the problem of
scheduling precedence related tasks on parallel processors with vari-
able speeds. If two precedence related tasks are scheduled on distinct
processors, a positive communication time is necessary between the
completion of the predecessor task and the start of the successor task.
The authors consider a bi-objective version of the problem aiming
to minimize both the makespan and the energy consumption in a
Pareto-efficient manner. The survey of Xie et al. (2022) discusses three
kind of scheduling methods involving energy: energy-efficient paral-
lel scheduling, energy-aware parallel scheduling and energy-conscious
parallel scheduling algorithms. The authors divide the algorithms into
five groups: heuristic, meta-heuristic, integer programming, machine
learning and game-theory algorithms. They also discuss in detail the
computing system architectures and power and energy models.

3. Properties of optimal solutions

In the introduction we emphasized that the load balancing problem
with joint job processing time 𝑝 = 1 admits a universally optimal
solution, i.e., one which is optimal for any convex cost function. The
following example shows that for 𝑝 > 1 this is not the case by
providing two different convex functions with two different unique
optimal solutions.

Example 1. There are 9 jobs, where 𝐽1 and 𝐽2 have release dates
𝑟1 = 𝑟2 = 0 and deadlines 𝑑1 = 𝑑2 = 5, and 𝐽3 through 𝐽8, have release
ates 𝑟3 = ⋯ = 𝑟8 = 5 and deadlines 𝑑3 = ⋯ = 𝑑8 = 10. Furthermore, job
9 has release date 𝑟9 = 0 and deadline 𝑑9 = 14. The processing time of

all the jobs is 𝑝 = 5. Notice that in a feasible schedule, the place of jobs
𝐽1,… , 𝐽8 is fixed: 𝐽1 and 𝐽2 are processed from 0 to 5, and 𝐽3,… , 𝐽8
re processed from 5 to 10. The feasible schedules differ only in the
tarting time of 𝐽9. Firstly, we want to minimize the function 𝑓1(𝑥) = 𝑥2

f the load. It is not difficult to check that in the optimal solution, 𝐽9 is
rocessed in the interval [9, 14]. Let 𝑆1 denote this solution, and the cost
f 𝑆1 is 5 ⋅22+4 ⋅62+72+4 ⋅12 = 217. We get a feasible, but not optimal
olution by processing 𝐽9 in [0, 5]. Let 𝑆2 denote the solution we get in
his way. The cost of 𝑆2 with respect to 𝑓1 is 5 ⋅ 32 + 5 ⋅ 62 = 225 > 217,
nd indeed, 𝑆2 is not an optimal solution w.r.t. 𝑓1. Now consider the
onvex function 𝑓2(𝑥) = 0 for 𝑥 ≤ 6, and 𝑓2(𝑥) = 𝑥 − 6 for 𝑥 ≥ 6. It is
asy to show that 𝑆2 is the only optimal solution w.r.t. 𝑓2.

The example above suggests that the approaches for 𝑝 = 1 may not
e straightforwardly generalized for 𝑝 > 1.

. A combinatorial approach for problem 𝑷𝟏

We first give a convex programming formulation for problem 𝑃1
n Section 4.1. Then, we sketch a method for solving the convex
rogram in Section 4.2. For efficient implementation, we show that the
roblem can be equivalently described as a minimum-cost circulation
roblem in a network with piecewise-linear convex cost functions on
he arcs (Section 4.3), and then how to determine an optimal solution
or our scheduling problem from an optimal circulation (Section 4.4).

e also implemented our method and conducted some computational
xperiments on randomly generated test instances (Section 4.5). Based
n the above results, we propose a new combinatorial algorithm for
parallel machine scheduling problem with one additional resource

Section 4.6).

.1. Initial problem formulation

Firstly, we introduce additional notation. Let = {𝐼1, 𝐼2,… , 𝐼𝐿} be
he set of all different time slots of length 𝑝 in
3

𝑛
⋃

𝑖=1

(

{[𝑟𝑖 + 𝑘𝑝, 𝑟𝑖 + 𝑘𝑝 + 𝑝] | 𝑘 ∈ Z, 𝑟min ≤ 𝑟𝑖 + 𝑘𝑝 ≤ 𝑑max − 𝑝}

∪ {[𝑑𝑖 + 𝑘𝑝, 𝑑𝑖 + 𝑘𝑝 + 𝑝] | 𝑘 ∈ Z, 𝑟min ≤ 𝑑𝑖 + 𝑘𝑝 ≤ 𝑑max − 𝑝}
)

.

(1)

We assume that the left endpoint of 𝐼𝑘 is smaller than that of 𝐼𝑘+1 for
all 𝑘 = 1,… , 𝐿 − 1. The following lemma states an important property
about the structure of an optimal schedule, and it generalizes Lemma
3 of Baptiste (2000).

Lemma 1. There always exists an optimal schedule, where each job is
processed in one of the intervals in .

Proof. Suppose the statement of the lemma does not hold for a problem
instance. Let ∗ be an optimal schedule such that the number of jobs
which are not scheduled in some time slots in is minimal. Let ′ be
the subset of all those jobs that are not scheduled in some time slots in
 by ∗.

Let 𝛿 ∈ R𝑛+1 be a vector representing the load of the resource in ∗,
that is, for 𝓁 ∈ {0,… , 𝑛}, 𝛿(𝓁) equals the total size of time intervals in
which the load of the resource is 𝓁. Clearly, ∑𝑛

𝓁=0 𝓁 ⋅ 𝛿(𝓁) = 𝑛 ⋅ 𝑝, and
the cost of ∗ is ∑𝑛

𝓁=0 𝑓 (𝓁)𝛿(𝓁).
Let 𝜖 > 0 be the smallest value such that starting all the jobs in ′

by 𝜖 time earlier, or later, at least one of the jobs in ′ is scheduled in
time slot 𝐼 ∈ . Let 1 be the resulting schedule. Such a shift induces
vector 𝛾 ∈ R𝑛+1 such that 𝛿 + 𝛾 represents the load of the resource in

schedule 1.
The costs of the schedules ∗ and 1 are related in the following

way:

𝑐𝑜𝑠𝑡(1) = 𝑐𝑜𝑠𝑡(∗) + 𝛥,

where 𝛥 =
∑𝑛

𝓁=0 𝑓 (𝓁)𝛾(𝓁).
Since ∑𝑛

𝓁=0 𝓁 ⋅ 𝛾(𝓁) = 0 must hold, 𝛿 − 𝛾 also represents the
resource usage of some feasible schedule 2, namely, the one obtained
by shifting all jobs in ′ in the opposite direction by 𝜖. The costs of ∗

and 2 are related in the following way:

𝑐𝑜𝑠𝑡(2) = 𝑐𝑜𝑠𝑡(∗) − 𝛥.

Unless 𝛥 = 0, this implies that ∗ is not optimal. Hence, 𝛥 = 0, and
1 is an optimal schedule in which some jobs in ′ are scheduled in a
time slot in , which contradicts the choice of ∗. □

Let = {𝑐0, 𝑐1,… , 𝑐𝐻} be the ordered set of all different left and
right endpoints of 𝐼1, 𝐼2,… , 𝐼𝐿 such that 𝑐0 = 𝑟min and 𝑐𝐻 = 𝑑max. Let
𝐾ℎ denote the interval [𝑐ℎ−1, 𝑐ℎ] for ℎ = 1,… ,𝐻 .

For any subset 𝑋 of the jobs, let 𝑁(𝑋) consist of all those time
slots 𝐼𝑘 ∈ , which are feasible for at least one of the jobs in 𝑋, that
is, 𝑁(𝑋) = {𝐼𝑘 |𝐼𝑘 ⊆ [𝑟𝑖, 𝑑𝑖] for some 𝐽𝑖 ∈ 𝑋}. We say that 𝑁(𝑋) is
connected, if there exist 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝐿 such that 𝑁(𝑋) = {𝐼𝑎, … , 𝐼𝑏},
see Fig. 1 for an illustration.

Let denote those subsets 𝑋 of such that 𝑁(𝑋) is connected.
In our formulation we have the following three types of variables:

• 𝑥𝑘: the number of jobs processed in time slot 𝐼𝑘;
• 𝑏𝑋 : the number of jobs scheduled in the time slots 𝑁(𝑋);
• 𝑡ℎ: the number of jobs processed in interval 𝐾ℎ, that is, 𝑡ℎ =
∑

𝐼𝑘⊃𝐾ℎ
𝑥𝑘.

Consider the following mathematical program:

minimize
𝐻
∑

ℎ=1
|𝐾ℎ|𝑓 (𝑡ℎ) (2a)

s.t.
∑

𝐼𝑘∈𝑁(𝑋)
𝑥𝑘 − 𝑏𝑋 = 0, for all 𝑋 ∈ (2b)

𝑏𝑋 ≥ |𝑋|, for all 𝑋 ∈ (2c)

(𝐼𝑃) ∶ 𝑏 = 𝑛 (2d)

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi
Fig. 1. Suppose we have jobs 𝐽1, 𝐽2 and 𝐽3. Time slots 𝐼1 and 𝐼2 are feasible for 𝐽1, time slots 𝐼3, 𝐼4 and 𝐼5 are feasible for 𝐽2 and time slots 𝐼4 and 𝐼5 are feasible for 𝐽3. Then
for 𝑋 = {𝐽1 , 𝐽3}, 𝑁(𝑋) is not connected and for 𝑋 = {𝐽2 , 𝐽3}, 𝑁(𝑋) is connected.
i
a
i

P
(
(
t
r
𝐾
s

t
a
t
t
(

4

1
i
e
f
o

i

L
s

P
s
i

o

∑

𝑘∶𝐼𝑘⊇𝐾ℎ

𝑥𝑘 − 𝑡ℎ = 0, for each interval 𝐾ℎ (2e)

𝑥𝑘 ≥ 0, for all 𝑘 = 1,… , 𝐿 (2f)

𝑥𝑘 ∈ Z, for all 𝑘 = 1,… , 𝐿. (2g)

Note that |𝐾ℎ| = 𝑐ℎ − 𝑐ℎ−1, while |𝑋| denotes the cardinality of 𝑋. In
order to show that (𝐼𝑃) is a proper formulation for problem 𝑃1, we
define the bipartite graph 𝐺(𝑥,𝑏,𝑡) = (𝑉 ∪ 𝑉 , 𝐸) for a feasible solution
(𝑥, 𝑏, 𝑡) of (𝐼𝑃). For each job 𝐽 ∈ , 𝑉 contains a unique node 𝑣𝐽 ,
and for each time slot 𝐼𝑘 ∈ , 𝑉 contains 𝑥𝑘 nodes 𝑣(1)𝑘 ,… , 𝑣(𝑥𝑘)𝑘
corresponding to 𝐼𝑘. For each job 𝐽𝑖 and 𝐼𝑘 ⊂ [𝑟𝑖, 𝑑𝑖], 𝐸 contains the
edge (𝑣𝐽𝑖 , 𝑣

(𝓁)
𝑘) for 𝓁 = 1,… , 𝑥𝑘. Since ∑𝐿

𝑘=1 𝑥𝑘 = 𝑛 by (2b) and (2d),
|𝑉 | = |𝑉 | = 𝑛.

Recall that a matching in a bipartite graph is a subset of node-
disjoint edges. A matching is perfect if it covers all the nodes. We will
prove the following result:

Theorem 1. If (𝑥, 𝑏, 𝑡) is an optimal solution to (𝐼𝑃), then 𝐺(𝑥,𝑏,𝑡) admits
a perfect matching and any perfect matching in 𝐺(𝑥,𝑏,𝑡) corresponds to an
optimal schedule. Conversely, any optimal schedule induces an optimal
solution (𝑥, 𝑏, 𝑡) to (𝐼𝑃).

For any 𝑋 ⊆ , let 𝑉𝑋 denote the set of nodes {𝑣𝐽 | 𝐽 ∈ 𝑋}, and
𝑁(𝑉𝑋) the set of time slot nodes adjacent to any node in 𝑉𝑋 in 𝐺(𝑥,𝑏,𝑡).
Then, the constraints in (2b) and (2c) ensure that for any subset of jobs
𝑋 ∈ , 𝑁(𝑉𝑋) ≥ |𝑉𝑋 |. The following result shows that this condition
holds for all nonempty subsets of the nodes, not only for those in .

Lemma 2. Let (𝑥, 𝑏, 𝑡) be a feasible solution to (𝐼𝑃). Then, for every
nonempty subset 𝑋 of the jobs , |𝑁(𝑉𝑋)| ≥ |𝑉𝑋 |.

Proof. Let 𝑋 ⊆ be arbitrary subset of the jobs and let 𝑉𝑋 denote
the corresponding subset of nodes in 𝑉 . Let 𝑁(𝑉𝑋) ⊆ 𝑉 denote the
nodes that are adjacent to at least one node in 𝑉𝑋 . Then 𝑁(𝑉𝑋) can be
partitioned into 𝑁(𝑉𝑋1

), 𝑁(𝑉𝑋2
),… , 𝑁(𝑉𝑋𝑟

) such that 𝑋 = 𝑋1 ∪𝑋2⋯ ∪
𝑋𝑟, the 𝑋𝑙 are disjoint and 𝑁(𝑋𝑙) is connected for each 𝑙 = 1,… , 𝑟.
Since (𝑥, 𝑏, 𝑡) is a feasible solution to (𝐼𝑃), |𝑁(𝑉𝑋𝑖

)| ≥ |𝑉𝑋𝑖
| holds for all

𝑖 = 1, 2,… 𝑟, and |𝑁(𝑉𝑋)| ≥ |𝑉𝑋 | follows. □

The following result is well-known.

Theorem 2 (Hall’s Condition for Bipartite Graphs). Given a bipartite graph
with bipartition 𝐴,𝐵, there is a matching of size |𝐴| if and only if every
subset 𝑆 ⊆ 𝐴 is connected to at least |𝑆| vertices in 𝐵.

Lemma 3. Let (𝑥, 𝑏, 𝑡) be a feasible solution to (𝐼𝑃). Then 𝐺(𝑥,𝑏,𝑡) admits
a perfect matching.

Proof. The statement follows from Lemma 2 and from Hall’s
condition. □

Now we will map feasible solutions of (𝐼𝑃) to feasible schedules of
4

the same cost and vice versa. t
Algorithm 1 Calculation of optimal schedule
Require: 𝑛 ≥ 1, 𝑝 ≥ 1, {𝑟𝑖, 𝑑𝑖} for 𝑖 = 1,… , 𝑛, function 𝑓 .
Ensure: Optimal schedule .
1: Solve (𝐼𝑃), and let (𝑥, 𝑏, 𝑡) be an optimal solution.
2: Define the graph 𝐺(𝑥,𝑏,𝑡), and find a perfect matching 𝑀 in it.
3: Construct schedule by assigning the jobs to the time slots as

specified by 𝑀 .

Lemma 4. For any feasible solution (𝑥, 𝑏, 𝑡) of (𝐼𝑃), there is a feasible
schedule, where 𝑥𝑘 jobs are processed in time slot 𝐼𝑘 and the load of the
nterval 𝐾ℎ is 𝑡ℎ. Conversely, from every feasible schedule, where the jobs
re scheduled in the time slots of , one can obtain a solution (𝑥, 𝑏, 𝑡) of
dentical cost for (𝐼𝑃) satisfying (2b)–(2g).

roof. To prove the first part of the lemma, suppose (𝑥, 𝑏, 𝑡) satisfies
2b)–(2g). Then by Lemma 3, 𝐺(𝑥,𝑏,𝑡) admits a perfect matching 𝑀 . If
𝑣𝐽 , 𝑣𝐼) ∈ 𝑀 , schedule job 𝐽 in time slot 𝐼 . Then for any 𝐼𝑘 ∈ ,
he number of jobs processed in 𝐼𝑘 is the number of nodes in 𝑉
epresenting 𝐼𝑘 which is exactly 𝑥𝑘. 𝑡ℎ represents the load of interval
ℎ in the solution by Eq. (2e), therefore, the load of 𝐾ℎ is 𝑡ℎ in the

chedule.
To show the second part, let denote a feasible schedule. For all

ime slots 𝐼𝑘 ∈ , let 𝑥𝑘 denote the number of jobs processed in 𝐼𝑘,
nd for each interval 𝐾ℎ, ℎ = 1,… ,𝐻 , let 𝑡ℎ denote the number of jobs
hat are executed during 𝐾ℎ. For an arbitrary 𝑋 ∈ , let 𝑏𝑋 denote the
otal number of jobs that are processed in the time slots of 𝑁(𝑋). Then
𝑥, 𝑏, 𝑡) satisfies (2b)–(2g) and it has the same cost as . □

As a corollary to Lemma 4 we get Theorem 1.

.2. Solution method

By Theorem 1, we can solve the scheduling problem by Algorithm
. Since finding a perfect matching in a bipartite graph can be done
n polynomial time (Ahuja et al., 1993), it remains to solve (𝐼𝑃)
fficiently. In the remainder of this section, we sketch our approach
or solving (𝐼𝑃) in polynomial time by a combinatorial method based
n network flows.

Firstly, we observe that the size of (𝐼𝑃) can be polinomially bounded
n the size of the input.

emma 5. The size of the linear system (2b)–(2g) is polynomial in the
ize of the input.

roof. To prove that the size of system (2b)–(2g) is polynomial in the
ize of the input, it is enough to show that the number of constraints
n (2c) and (2e) is polynomial in the input size. Observe that 𝐿 = || =
(𝑛2). All 𝑋 ∈ can be constructed the following way. For each pair
f intervals (𝐼𝑘, 𝐼𝓁) with 𝑘 ≤ 𝓁 consider the set 𝑋 of those jobs 𝐽𝑖 such
hat 𝑟 is not before the left endpoint of 𝐼 and 𝑑 is not after the right
𝑖 𝑘 𝑖

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

a
𝓁
t
𝑠

𝑤

i
𝑏
t
m
M
w
−

a

𝑤

S
|

𝑤

I
a

𝑤

T

(

L

T
𝑀

P
i
𝑎
𝑦
i
a
n
s

𝐿

endpoint of 𝐼𝓁 . Then 𝑋 ∈ if and only if 𝑁(𝑋) = {𝐼𝑗 | 𝑘 ≤ 𝑗 ≤ 𝓁}. It
follows that the size of is (𝐿2). There are 𝐻 intervals 𝐾ℎ and the
endpoints of each of them coincide with endpoints of time slots in ,
hence, 𝐻 = (𝐿) and the number of constraints in (2e) is polynomial
in the input size. □

Since we are only interested in the values of 𝑓 at integer loads only,
we can replace 𝑓 with a piecewise-linear convex function 𝑓 with integer
break points, where 𝑓 (𝑧) = 𝑓 (𝑧) for all 𝑧 ∈ Z≥0. Furthermore, one can
assume that the first break point of 𝑓 is at 0 and the last one is at most
𝑛, since there are 𝑛 jobs. It is not difficult to see that for such an 𝑓 , the
optimal value of (𝐼𝑃) coincides with the optimal value of

(𝐼𝑃𝑊 𝐿) ∶ minimize
∑

ℎ
|𝐾ℎ|𝑓 (𝑡ℎ)

s.t. (2b) − (2g).

In fact, the matrix of (2b)–(2f) is totally unimodular, see Lemma 6
and Corollary 1, which permits to get rid of the integrality condi-
tion (2g) by a result of Meyer. Meyer (1977) showed that an opti-
mization problem with a separable piecewise-linear convex cost func-
tion with integer break points, and a totally unimodular constraint
matrix always admits an integer optimal solution. This means that
in (IPWL), constraint (2g) can be omitted, while preserving integer
optimal solutions:

(𝑃𝑊 𝐿) ∶ minimize
∑

ℎ
|𝐾ℎ|𝑓 (𝑡ℎ)

s.t. (2b) − (2f).

Karzanov and McCormick (1997) describe efficient polynomial time
algorithms for minimizing a separable convex cost function over the
linear space 𝑀𝑥 = 0, provided 𝑀 is a totally unimodular matrix. More
specifically, for every coordinate 𝑥𝑒 of 𝑥, there is a convex function
𝑤𝑒 ∶ R → R. If 𝐸 is the set of coordinates of 𝑥, the problem is to find 𝑥
such that 𝑀𝑥 = 0, while ∑

𝑒∈𝐸 𝑤𝑒(𝑥𝑒) is minimized. It is assumed that
{𝑥 ∶ 𝑀𝑥 = 0} contains a non-zero point and the minimization problem
has a finite optimal solution. The authors show how to solve the
problem efficiently for different classes of convex functions, assuming
there is an oracle that solves the following problems:

1. given a point 𝑟 ∈ R, return 𝑐⊢𝑒 (𝑟) and 𝑐⊣𝑒 (𝑟), where 𝑐⊢𝑒 (𝑟) and 𝑐⊣𝑒 (𝑟)
are the right and left derivatives of 𝑤𝑒 at 𝑟. The convexity of 𝑤𝑒
implies the existence of the right and left derivatives;

2. given a slope 𝑠 ∈ R, return a point 𝑟 with 𝑐⊣𝑒 (𝑟) ≤ 𝑠 ≤ 𝑐⊢𝑒 (𝑟).

In the case of piecewise-linear convex functions, such an oracle is easy
to implement.

Karzanov and McCormick (1997) propose two different algorithms
for solving such problems: the Minimum Mean Canceling Method
(MMCM) and the Cancel and Tighten method. Both methods are
iterative, and in the most general case, both algorithms solve a linear
program in each iteration. Although the number of iterations is polyno-
mial in the size of the input, the running time is not as impressive due
to solving linear programs. However, when {𝑥 ∶ 𝑀𝑥 = 0} is the space of
circulations in a graph 𝐺 (that is, 𝑀 is the node-edge incidence matrix
of 𝐺), then there is no need to solve linear programs, and each iteration
of the Cancel and Tighten algorithm takes (|𝐸(𝐺)| log |𝑉 (𝐺)|) time,
and the total number of iterations is (|𝑉 (𝐺)| log(|𝑉 (𝐺)|𝐶)), where 𝐶
denotes the absolutely largest finite slope. The impressive running time
motivates the question whether our problem can be reformulated as a
minimum cost circulation problem in a network with piecewise-linear
convex cost functions on the arcs.

4.3. Reformulation as a circulation problem in a network

First of all, observe that in the objective function of (𝑃𝑊 𝐿), we
have convex functions only for variables 𝑡ℎ, and the system has lower
5

or upper bound constraints for variables 𝑥𝑘 and 𝑏𝑋 . The function s
corresponding to 𝑡ℎ is |𝐾ℎ|𝑓 (⋅). The breakpoints of 𝑓 (⋅) are 0, 1,… , 𝑛,
nd the slopes between these breakpoints are 𝑠𝓁 = 𝑓 (𝓁) − 𝑓 (𝓁 − 1) for
= 1,… , 𝑛, noting that 𝑠1 ≤ 𝑠2 ≤ ⋯ ≤ 𝑠𝑛, since 𝑓 is convex (if 𝑠𝓁 = 𝑠𝓁+1

hen 𝑏𝓁 is not a real breakpoint, but it is not a problem). Define 𝑠ℎ,𝓁 as
ℎ,𝓁 = |𝐾ℎ|(𝑓 (𝓁) − 𝑓 (𝓁 − 1)) for ℎ = 1,… ,𝐻 , 𝓁 = 1,… , 𝑛. Then we have

ℎ(𝑧) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

|𝐾ℎ|𝑓 (0) + 𝑠ℎ,1𝑧 if 0 ≤ 𝑧 ≤ 1
|𝐾ℎ|𝑓 (1) + 𝑠ℎ,2(𝑧 − 1) if 1 ≤ 𝑧 ≤ 2
…
|𝐾ℎ|𝑓 (𝑛 − 1) + 𝑠ℎ,𝑛(𝑧 − 𝑛 + 1) if 𝑛 − 1 ≤ 𝑧.

It is not difficult to show that we get an equivalent problem by
ntroducing convex cost functions 𝑤𝑘 and 𝑤𝑋 for the variables 𝑥𝑘 and
𝑋 and moving the lower and upper bound constraints to 𝑤𝑘 and 𝑤𝑋
he following way. We define the symbol 𝐾 = +∞ with the following
eaning. For any 𝑥 > 0, 𝐾 ⋅𝑥 = 𝐾, 𝐾 ⋅𝑥 = −𝐾 for any 𝑥 < 0, and 𝐾 ⋅0 = 0.
oreover, 𝐾 + 𝑥 = 𝐾 for any real number 𝑥. In the computations,
e will only compare a real number 𝑥 to 𝐾, and we only need that
𝐾 < 𝑥 < 𝐾.

Since we want a variable 𝑥𝑘 to be non-negative, 𝑤𝑘 has a breakpoint
t 0 and the slope before 0 is −𝐾 and the slope after 0 is 0, that is

𝑘(𝑧) =

{

−𝐾𝑧 if 𝑧 ≤ 0
0 if 𝑧 ≥ 0.

imilarly, if 𝑋 ≠ , 𝑤𝑋 has a breakpoint at |𝑋| and the slope before
𝑋| is −𝐾 and after |𝑋| is 0, i.e.,

𝑋 (𝑧) =

{

−𝐾(𝑧 − |𝑋|) if 𝑧 ≤ |𝑋|

0 if 𝑧 ≥ |𝑋|.

f 𝑋 = , 𝑤𝑋 has a breakpoint at 𝑛 and the slope before 𝑛 is −𝐾 and
fter 𝑛 it is 𝐾, that is

 (𝑧) =

{

−𝐾(𝑧 − 𝑛) if 𝑧 ≤ 𝑛
𝐾(𝑧 − 𝑛) if 𝑧 ≥ 𝑛.

herefore, (𝑃𝑊 𝐿) can be reformulated as

minimize
𝐿
∑

𝑘=1
𝑤𝑘(𝑥𝑘) +

∑

𝑋∈
𝑤𝑋 (𝑏𝑋) +

𝐻
∑

ℎ=1
𝑤ℎ(𝑡ℎ)

s.t.
𝑃𝑊 𝐿2) ∶

∑

𝐼𝑘∈𝑁(𝑋)
𝑥𝑘 − 𝑏𝑋 = 0 for all 𝑋 ∈ ;

∑

𝑘∶𝐼𝑘⊇𝐾ℎ

𝑥𝑘 − 𝑡ℎ = 0 for all intervals 𝐾ℎ.

The following lemma plays a crucial role in our method.

emma 6. Let 𝑀 denote the matrix of the following system:
∑

𝐼𝑘∈𝑁(𝑋)
𝑥𝑘 − 𝑏𝑋 = 0 for all 𝑋 ∈ ;

∑

𝑘∶𝐼𝑘⊇𝐾ℎ

𝑥𝑘 − 𝑡ℎ = 0 for all intervals 𝐾ℎ.

hen there exists a network 𝐷 = (𝑉 ,𝐸) and a tree 𝑇 = (𝑉 ,𝐸′) such that
𝖳 is the corresponding network matrix.

roof. Observe that 𝑀 can be written as 𝑀 = (𝐴,−𝐼), where 𝐴 ∈ R𝑎×𝐿

s an interval matrix and −𝐼 ∈ R𝑎×𝑎 is a negative identity matrix, where
= ||+𝐻 is the number of constraints in (2b) and (2e). Therefore, if
is a column of 𝑀𝖳, then 𝑦 has some 1 entries in consecutive positions

n the first 𝐿 coordinates, and in the remaining 𝑎 coordinates, 𝑦 has
unique −1 entry. All other coordinates of 𝑦 are 0. We construct a

etwork 𝐷 = (𝑉 ,𝐸) and a spanning tree 𝑇 = (𝑉 ,𝐸′) with 𝐸′ ⊂ 𝐸 and
how that each edge in 𝐸 ⧵ 𝐸′ corresponds to a column of 𝑀𝖳.

Let 𝑃 = 𝑣0 → 𝑣1 → ⋯ → 𝑣𝐿 denote a directed path of length
, where the 𝑘th edge 𝑣𝑘−1 → 𝑣𝑘 represents the 𝑘th 𝑝-length time
lot 𝐼𝑘, and we say it corresponds to variable 𝑥𝑘. At the beginning,

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

𝑉

f

𝐶
r

p
t
ℎ

𝑤

𝑤

a

𝑤

w

P

(

R
t
e
b
s
h
a

m
n
𝑤
f
t
a
w

s

Fig. 2. Network 𝐷. Thin arcs correspond to non-tree edges, thick arcs are the edges
of 𝑇 .

= {𝑣0, 𝑣1,… , 𝑣𝐿} and 𝐸 = 𝐸′ = {(𝑣𝑖−1, 𝑣𝑖), 𝑖 = 1,… , 𝐿}. Then we
add new nodes and edges to 𝐷 = (𝑉 ,𝐸) and 𝑇 = (𝑉 ,𝐸′) the following
way: we take all constraints from (2b) and (2e) one by one, and for each
of them, we connect nodes representing the first and the last time slot
in the constraint with a new path of length 2. More precisely, consider
constraints in (2b) and suppose equation ∑

𝐼𝑘∈𝑁(𝑋) 𝑥𝑘 − 𝑏𝑋 = 0 is one
of them. We add a new node to 𝑉 denoted by 𝑣𝑏𝑋 . Let 𝑋1 denote the
index of the first time slot and 𝑋2 the index of the last time slot in
𝑁(𝑋). We add edges (𝑣𝑋1−1, 𝑣𝑏𝑋) and (𝑣𝑏𝑋 , 𝑣𝑋2

) to 𝐸. We extend the set
of tree edges 𝐸′ with the first new edge (𝑣𝑋1−1, 𝑣𝑏𝑋), and we say that
the tree edge (𝑣𝑋1−1, 𝑣𝑏𝑋) corresponds to the variable 𝑏𝑋 . The other new
edge (𝑣𝑏𝑋 , 𝑣𝑋2

) becomes a non-tree edge. We proceed similarly with the
equations in (2e) of the form ∑

𝐼𝑘⊇𝐾ℎ
𝑥𝑘 − 𝑡ℎ = 0. That is, we connect

the first and the last time slot in {𝐼𝑘 | 𝐼𝑘 ⊇ 𝐾ℎ} with a 2-length path
containing two new edges and extend tree 𝐸′ with the first new edge
in the same way as before. Fig. 2 illustrates the network constructed
this way. It is not difficult to check that a column in 𝑀𝖳 corresponding
to a constraint from (2b) or (2e) is represented by a non-tree edge in
the network. □

Corollary 1. The matrix of (2b)–(2f) is totally unimodular.

Proof. It is known that a matrix 𝐴 is totally unimodular if and only if
the matrix [𝐴𝖳,−𝐴𝖳, 𝐼,−𝐼]𝖳 is totally unimodular (see e.g., Schrijver’s
book (Schrijver, 1998), page 268). In our case the matrix 𝐴 consists
of the left-hand-side of the Eqs. (2b) and (2e), which by Lemma 6
is totally unimodular. Since the matrix of (2b)–(2f) is a submatrix of
[𝐴𝖳,−𝐴𝖳, 𝐼,−𝐼]𝖳, it is totally unimodular. □

The tree edges of 𝐷 corresponding to variables 𝑥𝑘, 𝑏𝑋 and 𝑡ℎ are
denoted by 𝑒𝑥𝑘 , 𝑒𝑏𝑋 and 𝑒𝑡ℎ , respectively. A non-tree edge derived from
a constraint of type (2b) is denoted by 𝑒𝑋 and a non-tree edge derived
6

rom a constraint of type (2e) is denoted by 𝑒ℎ. We will dualize the
problem and solve the dual problem instead of the original primal
formulation. To this end, we need dual variables for non-tree edges
represented by the rows of 𝑀 . For a non-tree edge 𝑒𝑋 , let 𝑧𝑋 denote the
corresponding dual variable and for a non-tree edge 𝑒ℎ, the correspond-
ing dual variable is 𝑧ℎ. For non-tree edges 𝑒𝑋 and 𝑒ℎ, let 𝐶(𝑒𝑋) and
(𝑒ℎ) denote the tree edges in the corresponding fundamental cycles,1

espectively.
To express the dual problem of (𝑃𝑊 𝐿2) as a network circulation

roblem, we introduce the following piecewise-linear functions. Recall
he definition of the values 𝑠ℎ,𝓁 at the beginning of this section. For
= 1,… ,𝐻 , we have

∗
ℎ(𝑧) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

0, if 𝑧 ≤ 𝑠ℎ,1,
𝑧 − 𝑠ℎ,1, if 𝑠ℎ,1 ≤ 𝑧 ≤ 𝑠ℎ,2,
−𝑠ℎ,1 + 𝑠ℎ,2 + 2(𝑧 − 𝑠ℎ,2) if 𝑠ℎ,2 ≤ 𝑧 ≤ 𝑠ℎ,3,
…
−
∑𝑟−1

𝑖=1 𝑠ℎ,𝑖 + (𝑟 − 1)𝑠ℎ,𝑟 + 𝑟(𝑧 − 𝑠ℎ,𝑟), if 𝑠ℎ,𝑟 ≤ 𝑧 ≤ 𝑠ℎ,𝑟+1,
…
−
∑𝑛−1

𝑖=1 𝑠ℎ,𝑖 + (𝑛 − 1)𝑠ℎ,𝑛 + 𝑛(𝑧 − 𝑠ℎ,𝑛), if 𝑧 ≥ 𝑠ℎ,𝑛.

If 𝑋 ≠ , let 𝑤∗
𝑋 be

∗
𝑋 (𝑧) = −|𝑋|𝑧, 0 ≤ 𝑧 ≤ 𝐾,

nd if 𝑋 = ,
∗
𝑋 (𝑧) = −𝑛𝑧, −𝐾 ≤ 𝑧 ≤ 𝐾,

here 𝐾 is a sufficiently large positive number.

roposition 1. The dual of (𝑃𝑊 𝐿2) is the convex program

minimize
∑

𝑋∈
𝑤∗

𝑋 (𝑧𝑋) +
𝐻
∑

ℎ=1
𝑤∗

ℎ(−𝑧ℎ)

s.t.
∑

𝑒𝑋∶𝑒𝑥𝑘∈𝐶(𝑒𝑋)
𝑧𝑋 +

∑

𝑒ℎ∶𝑒𝑥𝑘∈𝐶(𝑒ℎ)
𝑧ℎ + 𝜆𝑘 = 0,

𝐷 − 𝑃𝑊 𝐿2) 𝜆𝑘 ≥ 0, for all 𝑘 = 1,… , 𝐿

0 ≤ 𝑧𝑋 ≤ 𝐾, for all 𝑋 ∈ , 𝑋 ≠

− 𝐾 ≤ 𝑧 ≤ 𝐾.

For the proof, see Appendix.

emark 2. It is known (see e.g. Karzanov and McCormick (1997)) that
he dual 𝑓 ∗(⋅) of a piecewise-linear convex function 𝑓 (⋅) is obtained by
xchanging the slopes and breakpoints of 𝑓 , that is, the slopes of 𝑓 will
e the breakpoints of 𝑓 ∗ and the breakpoints of 𝑓 will be the slopes 𝑓 ∗,
ee Fig. 3 for an illustration. Note that our piecewise-linear functions
ave the same relationship: 𝑤∗

ℎ and 𝑤ℎ are dual functions, as are 𝑤∗
𝑋

nd 𝑤𝑋 .

Since the matrix of problem (𝑃𝑊 𝐿2) is the transpose of a network
atrix, (𝐷 − 𝑃𝑊 𝐿2) is a network circulation problem. However, a
otable issue arises in its objective function, where we encounter
∗
ℎ(−𝑧ℎ), indicating the substitution of the negative of 𝑧ℎ in the convex

unction 𝑤∗
ℎ. However, it is easy to overcome this issue by reversing the

ree edges 𝑒𝑡ℎ . Therefore, our final network has the same set of nodes
nd arcs as 𝐷, except that the arcs 𝑒𝑡ℎ are in opposite direction. Next,
e define lower and upper bounds for the edges, together with edge

1 Suppose we are given a network 𝐷 = (𝑉 ,𝐸) together with one of its
panning tree 𝑇 = (𝑉 ,𝐸′). By taking an edge 𝑒 ∈ 𝐸⧵𝐸′ and adding it to 𝐸′, the

resulting graph contains a unique cycle 𝐶(𝑒), which is called the fundamental
cycle of 𝑒 corresponding to the spanning tree 𝑇 .

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

c

Fig. 3. A piecewise-linear convex function and its dual.
osts. For a tree edge 𝑒𝑥𝑘 , let the lower bound for the flow value 𝜆𝑘
be 0 and there is no upper bound, while the cost is 0. For a tree edge
𝑒𝑏𝑋 , let the cost function be the piecewise-linear 𝑤∗

𝑋 and if 𝑋 ≠ , the
lower bound is 0 and the upper bound is 𝐾, and when 𝑋 = , the lower
bound is −𝐾 and the upper bound is 𝐾. For a tree edge 𝑒𝑡ℎ , we have
no lower or upper bounds and the cost function is the piecewise-linear
𝑤∗

ℎ. There are no lower or upper bounds for the flows on non-tree edges
𝑒𝑋 and 𝑒ℎ in 𝐷, and the cost function is 0. Then Proposition 2 follows
immediately.

Proposition 2. The minimum cost circulation problem defined above
is equivalent to the problem (𝐷 − 𝑃𝑊 𝐿2). The cost of a minimum cost
circulation is equal to the optimal value of (𝐷 − 𝑃𝑊 𝐿2).

The minimum cost circulation problem defined above can be solved
by the Cancel and Tighten method of Karzanov and McCormick (1997).
Remember that the number of iterations is (|𝑉 (𝐺)| log(|𝑉 (𝐺)|𝐶)), and
one iteration takes (|𝐸(𝐺)| log |𝑉 (𝐺)|) time. Observe that in our case
𝐶 = 𝑛, by the definition of 𝑤∗

ℎ and 𝑤∗
𝑋 , noting that 𝑋 ⊆ and 𝑛 = | |.

It can be assumed that contains at most 4𝑛 different 𝑝-length time slot
for each job. Hence, the number of constraints in (2b) and (2e) is (𝑛4).
Hence, |𝑉 (𝐺)| = (𝑛4) and |𝐸(𝐺)| = (𝑛4) in our case. Proposition 3
states the running time of the Cancel and Tighten method applied to
our network.

Proposition 3. Using the Cancel and Tighten algorithm presented
in Karzanov and McCormick (1997), (𝐷 − 𝑃𝑊 𝐿2) can be solved in
(𝑛8(log 𝑛)2) time.

4.4. Solution of the primal problem (𝑃𝑊 𝐿2)

By Proposition 2, an optimal solution to (𝐷 − 𝑃𝑊 𝐿2) can be
obtained by solving a minimum cost network circulation problem with
convex cost functions on the arcs, using an algorithm of Karzanov and
McCormick (1997). It remains to show how to determine the primal
optimal solution for (𝑃𝑊 𝐿2). Since the dual space of circulations is
the space of co-circulations, the optimal primal solution is represented
by an appropriate co-circulation. One can read out the following lemma
from Karzanov and McCormick (1997).

Lemma 7. Let 𝑥∗𝑒 , 𝑒 ∈ 𝐸 denote an optimal solution to the minimum
cost circulation problem. If ℎ𝑒, 𝑒 ∈ 𝐸 is a co-circulation satisfying 𝑐⊣𝑒 (𝑥

∗
𝑒) ≤

ℎ𝑒 ≤ 𝑐⊢𝑒 (𝑥
∗
𝑒) for all 𝑒 ∈ 𝐸, then ℎ𝑒, 𝑒 ∈ 𝐸 is an optimal solution to the dual

problem, where 𝑐⊣𝑒 and 𝑐⊢𝑒 are the corresponding left and right derivatives,
7

respectively.
Given an optimal solution 𝑥∗ of the minimum cost circulation
problem. Using Lemma 7, we can compute an optimal co-circulation
as follows. For 𝑒 ∈ 𝐸, let 𝑢𝑒 and 𝑣𝑒 denote the starting and ending
node of 𝑒, respectively. Then finding a co-circulation satisfying 𝑐⊣𝑒 (𝑥

∗
𝑒) ≤

ℎ𝑒 ≤ 𝑐⊢𝑒 (𝑥
∗
𝑒), 𝑒 ∈ 𝐸 is equivalent to finding node potentials 𝜋 satisfying

𝜋(𝑣𝑒)−𝜋(𝑢𝑒) ≤ 𝑐⊢𝑒 (𝑥
∗
𝑒) and 𝜋(𝑢𝑒)−𝜋(𝑣𝑒) ≤ −𝑐⊣𝑒 (𝑥

∗
𝑒) for all 𝑒 ∈ 𝐸. Such node

potentials 𝜋 can be found by a shortest path algorithm in the directed
graph we obtain by adding each edge 𝑒 ∈ 𝐸 to the graph in reverse
orientation as well. The edge lengths are 𝑐⊢𝑒 (𝑥

∗
𝑒) for the original graph

edges and −𝑐⊣𝑒 (𝑥
∗
𝑒) for the edges with reverse orientation. Since 𝑐⊢𝑒 (𝑥

∗
𝑒)

and 𝑐⊣𝑒 (𝑥
∗
𝑒) are integer values in our case, the optimal co-circulation

found by a shortest path algorithm is integer as well.

4.5. Preliminary computational results

We have implemented Algorithm 1 including the Cancel and
Tighten method in C++ for solving Problem 𝑃1 on randomly generated
problem instances. The goal of the computational tests was to evaluate
the impact of two problem parameters on the running time of the
method. The two parameters were the number of the jobs 𝑛, and
the ratio between the joint processing time and the size of the time
windows of the jobs, i.e, 𝑞 = 𝑝∕(𝑑𝑖 − 𝑟𝑖). We generated three problem
instances for each combination (𝑛, 𝑞) ∈ {20, 50, 100} × {0.1, 0.4}. The
joint job processing time was 𝑝 = 8. The time horizon spanned 100
time units, and for each job 𝐽𝑖 the release date and deadline satisfied
the constraint 𝑟𝑖 ≥ 0, 𝑑𝑖 = ⌈𝑟𝑖 + 𝑝∕𝑞⌉, and 𝑑𝑖 ≤ 100. We used the same
piecewise-linear convex function 𝑓 in all cases, where 𝑓 (0) = 0, 𝑓 has
breakpoints at 1, 2,… , 𝑛, and the slope after breakpoint 𝑖 is 𝑖.

The code was compiled with Visual Studio 2019, and the tests were
run on a notebook computer with Intel Core I7 processor and Windows
11. We summarize the computational results in Table 1. We provide
averages (rounded to the nearest integers) over 3 problem instances
for each combination of the parameters 𝑛 and 𝑞. In each case, we
supply the average number of nodes and edges of the network 𝐷, the
average number of iterations of the algorithm, the average CPU time,
and also the average optimum values. All values are rounded to the
nearest integer. As can be seen, the CPU time is strongly correlated
with the number of edges of the graph. On the other hand, the number
of iterations slightly increases with the number of jobs, but it is smaller
for the same number of jobs for 𝑞 = 0.4 than for 𝑞 = 0.1. In fact, this is
what we expected, since problem instances with a higher 𝑞 allow less
freedom in choosing when to start the jobs.

4.6. Application to a parallel machine scheduling problem to minimize the
total completion time of the jobs

In this subsection we show how to apply the techniques presented

earlier to a problem investigated by Brucker and Kravchenko (2008).

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

a
o

Table 1
Preliminary computational results for randomly generated inputs. 𝑛 is the number of the jobs and 𝑞 is the ratio of the job
length and the size of the time windows of the jobs.

𝑛 = 20 𝑛 = 20 𝑛 = 50 𝑛 = 50 𝑛 = 100 𝑛 = 100
𝑞 = 0.1 𝑞 = 0.4 𝑞 = 0.1 𝑞 = 0.4 𝑞 = 0.1 𝑞 = 0.4

Avg. number of graph nodes 87 86 92 89 92 92
Avg. number of graph edges 289 374 360 924 379 1785
Avg. number of iterations 1275 1102 1511 1293 1633 1493
Avg. optimal objective value 223 229 1028 1071 3685 3804
Avg. CPU time (ms) 36 58 52 74 59 135
e

5

p
t

⋃

G
t
o
t
W
i
𝐼

Given 𝑛 jobs with the same processing time 𝑝, each of them having a
release date and deadline. In addition, there are 𝑚 identical parallel
machines. In a feasible schedule each job is processed between its
release date and deadline on one of the machines, and at most 𝑚 jobs
re processed concurrently. The goal is to find a feasible schedule, if
ne exists, that minimizes ∑

𝐶𝑖, where 𝐶𝑖 denotes the completion time
of 𝐽𝑖.

We formulate the problem similarly to (𝐼𝑃). Recall the definitions
of the set of time slots , and set of intervals {𝐾ℎ}ℎ=1,…,𝐻 . Let 𝑐(𝐼𝑘)
denote the right endpoint of 𝐼𝑘 ∈ . Variables 𝑥𝑘, 𝑏𝑋 and 𝑡ℎ denote the
same quantities as in (𝐼𝑃).

minimize
𝐿
∑

𝑘=1
𝑐(𝐼𝑘)𝑥𝑘 (3a)

s.t.
∑

𝐼𝑘∈𝑁(𝑋)
𝑥𝑘 − 𝑏𝑋 = 0, for all 𝑋 ∈ (3b)

𝑏𝑋 ≥ |𝑋|, for all 𝑋 ∈ (3c)

(𝐼𝑃 ′) ∶ 𝑏 = 𝑛 (3d)
∑

𝑘∶𝐼𝑘⊇𝐾ℎ

𝑥𝑘 − 𝑡ℎ = 0, for each interval 𝐾ℎ (3e)

𝑡ℎ ≤ 𝑚, for all ℎ = 1,… ,𝐻 (3f)

𝑥𝑘 ≥ 0, for all 𝑘 = 1,… , 𝐿 (3g)

𝑥𝑘 ∈ Z, for all 𝑘 = 1,… , 𝐿. (3h)

The objective function (3a) is a linear function expressing the total
completion time of the jobs. The rest of the constraints are analogous to
that of (𝐼𝑃). The sole difference is the upper bound (3f) on the variables
𝑡ℎ, potentially causing (𝐼𝑃 ′) to become infeasible. When (𝐼𝑃 ′) is feasi-
ble, for any feasible solution (𝑥, 𝑏, 𝑡), we can construct a bipartite graph
𝐺(𝑥,𝑏,𝑡) = (𝑉 ∪ 𝑉 , 𝐸) following the method outlined in Section 4.1.
Analogously to Lemma 2, it can be shown that 𝐺(𝑥,𝑏,𝑡) possesses a perfect
matching, and Theorem 1 holds. Consequently, efficiently solving the
problem hinges on efficiently tackling (𝐼𝑃 ′). From Lemma 5, it follows
that the size of (𝐼𝑃 ′) is polynomial in the size of the input, and akin to
Lemma 6, we can show that the transpose of the matrix of the system
is a network matrix. Similarly to Corollary 1, we can prove that the
matrix of (3) is totally unimodular, hence, the LP relaxation is either
infeasible, or has an integer optimal solution. Since the cost functions
on the arcs are linear functions, the dual is a circulation problem with
linear arc costs. Hence, a minimum cost flow computation suffices to
find an optimal solution, or prove that no feasible solution exists.

5. A solution to problem 𝑷𝟐

This section is devoted to problem 𝑃2. We aim to schedule the jobs
on 𝑚 parallel machines in a way that the load of the resource is evenly
balanced. We deal only with the case, where the processing time of the
all jobs is 𝑝 = 1, but the resource requirement of the jobs can be 0
or 1. We prove that this problem can be solved by a single minimum
cost flow computation in a network with convex costs on the arcs in
Section 5.1. Then, we apply our formulation to the decision problem
of Błażewicz (1979) in Section 5.2.
8

Fig. 4. Network 𝐷′ for Problem 𝑃2, where jobs 𝐽1 and 𝐽2 require one resource unit
and jobs 𝐽3 and 𝐽4 require 0. The cost is measured by the convex function 𝑓 on three
dges, the remaining edges have zero cost.

.1. A network flow formulation to solve 𝑃2

In order to describe a network flow representation of the scheduling
roblem, we define the time slots for the jobs. Let ′ = {𝐼1,… , 𝐼𝐿′} be
he set of all different unit-length time slots in the set
𝑛

𝑖=1

{

[𝑟𝑖 + 𝑘, 𝑟𝑖 + 𝑘 + 1] | ∀ 𝑘 ∈ Z

s.t. 0 ≤ 𝑘 ≤ min{𝑛 − 1, 𝑑𝑖 − 𝑟𝑖 − 1}
}

.

iven that 𝑟𝑖 and 𝑑𝑖 are assumed to be integers in problem 𝑃2, for any
wo distinct indices 𝑘 ≠ 𝑘′, the intersection of 𝐼𝑘 and 𝐼𝑘′ is either empty
r comprises a single integer number. Note that for each job it suffices
o consider only the first 𝑛 unit-length time slots, since there are 𝑛 jobs.

e define the network 𝐷′ as follows. For every job there is a job node
n 𝐷′. For simplicity, the job nodes are denoted by 𝐽1,… , 𝐽𝑛. For each
𝑘 ∈ ′, there are two time slot nodes in 𝐷′ denoted by 𝐼1𝑘 and 𝐼2𝑘 .

Furthermore, there is a source node 𝑠 and a sink node 𝑡. From 𝑠, there
is an arc to every job node of capacity 1. If 𝐽𝑖 requires 1 unit of the
resource, that is, 𝜇𝑖 = 1, then there are arcs from 𝐽𝑖 to all the nodes 𝐼1𝑘
such that 𝐼𝑘 is feasible for 𝐽𝑖. When 𝜇𝑖 = 0, there are arcs from 𝐽𝑖 to
all the nodes 𝐼2𝑘 , such that 𝐼𝑘 is feasible for the job. All these arcs have
infinite capacity. For all 𝐼𝑘 ∈ , there is an arc from 𝐼1𝑘 to 𝐼2𝑘 of infinite
capacity, and the cost function on the arc is 𝑓 . The cost function on all
other arcs is 0. Moreover, there is an arc from 𝐼2𝑘 to 𝑡 of capacity 𝑚. See
Fig. 4 for an illustration.

Proposition 4. The optimal feasible schedules are in one-to-one corre-
spondence with the integral minimum cost feasible flows, where the total
flow leaving 𝑠 is 𝑛.

Despite of 𝐷′ having convex costs on some edges, a similar network
having only linear costs can be constructed, and the problem can be
solved by any minimum cost network flow algorithm.

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

5
i

f
S
f
i
f
a
i
N
L
s
f

P
b
n

c
t
1
a

6

t
n
T
a
n
a
t
h

w
a
t
s
f
p
m
a

t
𝜌
𝑟

s
a
t
𝐽

Fig. 5. The load is fixed until time point 𝑡, since any further jobs are scheduled later than 𝑡.
o
S
d

p
o

L
a

P
a
𝓁
w
e
𝑘
a

6

m
i
m
j
t
i

j
t
L
u
r

n
𝐼

a
l
𝑆
i

d
o
c

.2. Application to a scheduling problem with a resource of bounded capac-
ty

By choosing the convex function 𝑓 properly, one can decide the
easibility problem considered by Błażewicz (1979) as described in
ection 1. If 𝑐 denotes the resource capacity, then let 𝑓 denote the
ollowing piecewise-linear function: 𝑓 (𝑥) = 0 if 𝑥 ≤ 𝑐 and 𝑓 (𝑥) = 𝑥 − 𝑐
f 𝑥 ≥ 𝑐, where 𝑐 is the capacity of the resource. Then there exists a
easible schedule using 𝑚 machines, where each job is processed in
time slot between its release date and deadline if and only if there

s feasible flow of zero cost in the previously constructed network 𝐷′.
otice that it is not necessary to solve a flow problem with arc costs.
et the network 𝐷′′ be obtained from 𝐷′ by removing all arc costs and
etting the capacity of the arcs from 𝐼1𝑘 to 𝐼2𝑘 to 𝑐. Then we have the
ollowing result.

roposition 5. The scheduling problem of Błażewicz (1979) with a
ounded capacity resource admits a feasible solution if and only of the
etwork 𝐷′′ admits a feasible 𝑠 − 𝑡 flow of value 𝑛.

Given that finding a feasible 𝑠−𝑡 flow with a value of 𝑛 in a network
an be reduced to a maximum-flow problem in the same network, and
he latter problem can be solved in polynomial time (Ahuja et al.,
993), the scheduling problem of Błażewicz (1979) can be solved by
single maximum-flow computation in polynomial time.

. Solution to 𝑷 𝟑 in special cases

In this section, we devise dynamic programming based algorithms
o determine optimal solutions to 𝑃 3 when there are only a constant
umber of machines, and the jobs satisfy some additional conditions.
o simplify the presentation, we assume that there are 2 resource types
nd 2 machines, but our approach can be extended to any constant
umber of resource types and machines. We denote by 1 the subset of
ll those jobs that require resource type 𝑅1 and by 2 the subset of all
hose jobs that require resource type 𝑅2. We say that the jobs 𝐽𝑖 and 𝐽𝑗
ave agreeable deadlines if 𝑟𝑖 ≤ 𝑟𝑗 implies 𝑑𝑖 ≤ 𝑑𝑗 .

First, we show how to find an optimal schedule in polynomial time
ith dynamic programming if the jobs in 1 have agreeable deadlines
nd the jobs in 2 have agreeable deadlines. It is easy to see that under
his condition there is an optimal schedule, where the jobs in 1 are
cheduled in non-decreasing release date order, and the same holds
or the jobs in 2. This observation plays a key role in our dynamic
rogram. First we describe the algorithm for the case with only two
achines and two resource types, then we show how to generalize the

lgorithm for a constant number of machines and resource types.
Second, we weaken the agreeable deadlines assumption. Suppose

he job set can be covered by 𝜌 disjoint job chains 𝐶1,… , 𝐶𝜌, where
is a constant number, chain 𝐶𝑖 = {𝐽 𝑖

1, 𝐽
𝑖
2,… , 𝐽 𝑖

|𝐶𝑖|
} is a set of jobs with

𝑖
1 ≤ 𝑟𝑖2 ≤ ⋯ ≤ 𝑟𝑖

|𝐶𝑖|
and 𝑑𝑖1 ≤ 𝑑𝑖2 ≤ ⋯ ≤ 𝑑𝑖

|𝐶𝑖|
, all jobs in 𝐶𝑖 require the

ame resource, 𝐶𝑖 ∩ 𝐶𝑗 = ∅ if 𝑖 ≠ 𝑗, and ⋃𝜌
𝑖=1 𝐶𝑖 = . Observe that if 𝐽

nd 𝐽 ′ are two jobs in the same chain and 𝐽 precedes 𝐽 ′ in the order,
hen there is an optimal schedule where 𝐽 is scheduled no later than
′

9

. We will show that if the jobs can be covered by a constant number t
f chains, an optimal solution can be computed in polynomial time, see
ection 6.2. The proposed dynamic program is an extension of the one
evised for the case with agreeable deadlines.

Finally, we generalize Lemma 1, which is needed to ensure a
olynomial time complexity of our methods. Recall the definition (1)
f the set of time slots in Section 4.

emma 8. There exists an optimal schedule for the problem P3 in which
ll jobs are scheduled in some time slot of .

roof. (sketch) Firstly, we introduce a new resource 𝑅0 along with
function 𝑓0 such that 𝑓0(𝓁) = 0 for 𝓁 ≤ 𝑚, and 𝑓0(𝓁) = +∞ for
> 𝑚. Moreover, each job 𝐽𝑖 requires 𝑅0 in addition to 𝑅𝜇𝑖 . Then,

e apply the proof technique of Lemma 1 with the extension that for
ach resource type 𝑅𝑘 there is a distinct resource load function 𝛿𝑘,
∈ {0,… , 𝜈}. With these extensions, the proof follows the same steps

s that of Lemma 1. □

.1. Jobs with agreeable deadlines

In this subsection we give a polynomial time algorithm that deter-
ines an optimal schedule in case of problem instances where jobs

n 1 and jobs in 2 have agreeable deadlines, respectively. As it was
entioned before, in this case there is an optimal schedule, where the

obs in 1 and the jobs in 2 are scheduled in non-decreasing order of
heir release dates, respectively. Therefore, we will schedule the jobs
n 1 as well as in 2 in non-decreasing release date order.

We build a schedule step-by-step. In each step, we assign the next
ob from 1 or 2 to the end of the schedule, i.e. to a feasible time slot
hat does not start earlier than the time slot of the job scheduled last.
et 𝑡 be the starting time of the last scheduled job. Then the total cost
p to time 𝑡 can be computed, and will not change by scheduling the
emaining jobs after time point 𝑡.

Our dynamic program builds a directed acyclic graph, where the
odes represent partial schedules with the same attributes. Node 𝑆(𝐽 1,
1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) corresponds to the set of all partial schedules, where:

• 𝐼1 and 𝐼2 are the last occupied time slots on the two machines.
We assume 𝐼1 is not later than 𝐼2;

• 𝐽 1 is the job in 𝐼1, and 𝐽 2 is the job in 𝐼2 (𝐼1 is feasible for 𝐽 1

and 𝐼2 is feasible for 𝐽 2);
• The first 𝑖1 jobs from 1 and the first 𝑖2 jobs from 2 are sched-

uled.

We introduce a dummy job 𝐽∅ which does not require any resource
nd an ‘‘earliest’’ time slot 𝐼0, where the right endpoint of 𝐼0 is the
eft endpoint of the first real time slot 𝐼1. This way, the state 𝑆0 =
(𝐼0, 𝐽∅, 𝐼0, 𝐽∅, 0, 0) represents the empty schedule, and if one machine

s empty, we set 𝐼1 = 𝐼0 and 𝐽 1 = 𝐽∅.
For partial schedules represented by 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2), we can

etermine the latest time point 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) such that the load
f the schedules until the time point 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) does not
hange anyhow we schedule the remaining jobs in time slots later

1 2 1 2
han 𝐼 and 𝐼 . Since 𝐼 is not later than 𝐼 , this time point can

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

t
t
i
1
𝑆

Fig. 6. Fix cost increment between 𝑡1 and 𝑡2 if 𝐽 ∈ 1.
be determined as 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) = max{left endpoint of 𝐼2, right
endpoint of 𝐼1}, see Fig. 5.

For a node 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2), we construct the outgoing edges
the following way. First, take the next job 𝐽 from 1 or 2, and
ake all of its feasible time slots 𝐼 , where 𝐼 does not start earlier
han 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2). We schedule 𝐽 in 𝐼 , and the resulting state
s 𝑆(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1 + 1, 𝑖2), if 𝐽 ∈ 1 and it is 𝑆(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1, 𝑖2 +
), if 𝐽 ∈ 2. It remains to determine the value of the arc from
(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) to 𝑆(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1 + 1, 𝑖2) or 𝑆(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1, 𝑖2 +

1). It can be computed as the cost of the load between time points
𝑡1 = 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) and 𝑡2 = 𝑡(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1 + 1, 𝑖2) or 𝑡2 =
𝑡(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1, 𝑖2+1), since this is the fix cost increment when assigning
a new job 𝐽 to time slot 𝐼 . When 𝐽 is taken from 1, the cost increment
can be computed as

𝑓1(2) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼2 ∩ 𝐼| + 𝑓1(1) ⋅ |[𝑡1, 𝑡2] ∩ (𝐼2 − 𝐼)|, if 𝐽 2 ∈ 1,

𝑓1(1) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼| + 𝑓2(1) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼2|, if 𝐽 2 ∈ 2,

and if 𝐽 ∈ 2, it is

𝑓1(1) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼2| + 𝑓2(1) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼|, if 𝐽 2 ∈ 1,

𝑓2(2) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼2 ∩ 𝐼| + 𝑓2(1) ⋅ |[𝑡1, 𝑡2] ∩ (𝐼2 − 𝐼)|, if 𝐽 2 ∈ 2.

See Figs. 6 and 7 for an illustration.
If 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) represents partial schedules where all jobs

are scheduled, i.e. 𝑖1 = |1| and 𝑖2 = |2|, we connect it to a terminal
state 𝑆𝑇 . The value of the arc is the cost of any schedule represented by
𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) between time point 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) and the
right endpoint of 𝐼2. It is an easy observation that this cost is equal
for all schedules represented by 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2). Let 𝑡2 denote the
right endpoint of the time slot 𝐼2 and let 𝑡1 = 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2). Then
the arc value is the following:

𝑓1(1) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼2|, if 𝐽 2 ∈ 1, and
𝑓2(1) ⋅ |[𝑡1, 𝑡2] ∩ 𝐼2|, if 𝐽 2 ∈ 2.

For an illustration, see Fig. 8. If 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) represents partial
schedules where only one job is scheduled, i.e. 𝑖1 + 𝑖2 = 1, then there is
an arc from 𝑆0 to 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) with zero cost. Lemma 9 follows
from the construction of the digraph.
10
Lemma 9. Every directed path from 𝑆0 to 𝑆𝑇 corresponds to a feasible
schedule, where all jobs are scheduled, jobs in 1 and 2 are scheduled in
order of their release dates, and the cost of the schedule coincides with the
length of the path. For all feasible schedules that contain all jobs and
schedule jobs in 1 and 2 in order of their release dates, there is a directed
path from 𝑆0 to 𝑆𝑇 . The path represents a schedule equivalent to , and
the cost of the schedule and the length of the path are the same.

Next, we show that the size of the constructed digraph is polynomial
in the input size.

Lemma 10. The number of different 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) nodes is (𝑛6).

Proof. The number of different 𝐼1 values can be upper bounded by the
number of different time slots, which is (𝑛2). The same holds for the
number of different 𝐼2 values. The number of different (𝑖1, 𝑖2) pairs is
(𝑛2). If 𝑖1 and 𝑖2 is fixed, then there are four different possibilities for
𝐽 1 and 𝐽 2: 𝐽 1 is the (𝑖1 − 1)th and 𝐽 2 is the 𝑖1th job in 1, 𝐽 1 is the
(𝑖2 − 1)th and 𝐽 2 is the 𝑖2th job in 2, 𝐽 1 is the 𝑖1th job in 1 and 𝐽 2

is the 𝑖2th job in 2, or 𝐽 2 is the 𝑖1th job in 1 and 𝐽 1 is the 𝑖2th job
in 2. Therefore the number of different 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2) nodes is
(𝑛6). □

Observe that a similar dynamic program can be applied when we
have more than two, but constant number of machines. If the number
of machines is 𝑚, we have to record the last job on each machine
together with its time slot, 𝐽 𝑖 and 𝐼 𝑖, 𝑖 = 1,… , 𝑚. Again, we take
jobs one by one from 1 or 2 in release date order and schedule
them in a feasible time slot which is not earlier than 𝑡, where 𝑡 =
max{left endpoint of 𝐼𝑚, right endpoint of 𝐼1}. The construction of the
directed graph is similar as in the two machines case. The computation
of the arc costs is similar, one only has to consider the number of jobs
processed together for a time interval and using the same resource.
Thus, the size of the constructed directed graph is polynomial in 𝑛.

The problem can be further generalized by allowing more resources,
or allowing jobs using one unit from more resources during their
execution. If jobs from the same group, that is, jobs that require the
same subset of resources have agreeable deadlines, then there is an
optimal schedule where jobs from the same group are scheduled in

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

s

Fig. 7. Fix cost increment between 𝑡1 and 𝑡2 if 𝐽 ∈ 2.
Fig. 8. The computation of the remaining cost, when all jobs are scheduled.
c

release date order. Therefore, by maintaining the last job and last
occupied time slot on each machine alongside the number of scheduled
jobs from each group, a directed graph can be constructed and an
optimal schedule can be found by a shortest path computation from
the source node 𝑆0 to the terminal node 𝑆𝑇 . If the number of machines
and the number of different job groups are constants, the size of the
graph is bounded by a polynomial in 𝑛.

6.2. Constant number of chains

In this subsection, we assume that the set of jobs can be covered
by disjoint chains 𝐶1,…𝐶𝜌, where 𝜌 is a constant number. Similarly to
the agreeable deadlines case, we schedule jobs one by one in time slots
that are not earlier than the occupied ones, and the newly scheduled
job is the next job from one of the chains. More precisely, a state of the
dynamic program denoted by 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… , 𝑖𝜌) represents the
et of all partial schedules, where:

• 𝐼1 and 𝐼2 are the last occupied time slots on the machines,
assuming 𝐼1 is not later than 𝐼2;

• 𝐽 1 is the job in 𝐼1, and 𝐽 2 is the job in 𝐼2 (𝐼1 is feasible for 𝐽 1

and 𝐼2 is feasible for 𝐽 2);
• The first 𝑖1 jobs are scheduled from 𝐶1, the first 𝑖2 jobs are

scheduled from 𝐶 and so on.
11

2

Similarly to Section 6.1, we construct a directed graph with edge
osts, where the nodes correspond to partial schedules 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2,
𝑖1, 𝑖2,… , 𝑖𝜌). Then a shortest path from 𝑆0 to 𝑆𝑇 represents an opti-
mal schedule, where 𝑆0 denotes the empty state where no jobs are
scheduled, and 𝑆𝑇 denotes the final state.

Again, for partial schedules represented by 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… ,
𝑖𝜌), we can determine the latest time point 𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… , 𝑖𝜌)
until which the load does not change by scheduling new jobs in time
slots later than 𝐼1 and 𝐼2. This time point can be determined as
𝑡(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… , 𝑖𝜌) = max{left endpoint of 𝐼2, right endpoint
of 𝐼1}.

Determining the outgoing edges from a state 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,
… , 𝑖𝜌) goes analogously as in the agreeable deadlines case. We can
obtain a new state by choosing one of the chains where there is at
least one unscheduled job, let 𝐶𝑖 denote such a chain. Then by taking
the first unscheduled job 𝐽 according to the job order in 𝐶𝑖, together
with a feasible time slot 𝐼 that is no earlier than 𝐼2, the resulting state
is 𝑆(𝐽 2, 𝐼2, 𝐽 , 𝐼, 𝑖1,… , 𝑖𝑖 + 1,… , 𝑖𝜌). It remains to calculate the fix cost
increment introduced by scheduling 𝐽 in 𝐼 . Determining time points 𝑡1
and 𝑡2 and calculating the cost increment between them can be done
by the exact same formulas as in Section 6.1.

If 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… , 𝑖𝜌) represents schedules where all jobs
are scheduled, that is 𝑖1 = |𝐶1|, 𝑖2 = |𝐶2|, . . . , 𝑖𝜌 = |𝐶𝜌|, then there

1 1 2 2
is a directed edge from 𝑆(𝐽 , 𝐼 , 𝐽 , 𝐼 , 𝑖1, 𝑖2,… , 𝑖𝜌) to 𝑆𝑇 . Again, the

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi

s

b
n

I

𝑥
l

m

N
v

L
i

P
c

𝑏

𝑏

𝑥

s
t
b
s

(

cost of the edge can be determined the same way as in Section 6.1.
Then Lemma 11 is the analogous version of Lemma 9 and follows
immediately from the construction.

Lemma 11. Every directed path from 𝑆0 to 𝑆𝑇 corresponds to a feasible
chedule, where all jobs are scheduled, jobs in 𝐶1, 𝐶2, . . . , 𝐶𝜌 are scheduled

in order of their release dates, and the cost of the schedule coincides with
the length of the path. For all feasible schedules that contain all jobs and
schedule jobs in 𝐶1, 𝐶2, . . . , 𝐶𝜌 in order of their release dates, there is a
directed path from 𝑆0 to 𝑆𝑇 . The path represents a schedule equivalent to
, and the cost of the schedule and the length of the path are the same.

Lemma 12 shows the size of the constructed directed graph is
polynomial in the input size, therefore, the dynamic program can be
solved in polynomial time.

Lemma 12. The number of different 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… , 𝑖𝜌) nodes
is (𝜌2𝑛4+𝜌).

Proof. The number of different 𝐼1 or 𝐼2 values can be upper bounded
y the number of different time slots, which is (𝑛2), therefore, the
umber of different 𝐼1, 𝐼2 pairs is (𝑛4). The number of different

(𝑖1, 𝑖2,… , 𝑖𝜌) tuples is (𝑛𝜌). If 𝑖1, 𝑖2,… , 𝑖𝜌 are fixed, the number of
different possibilities for 𝐽 1 and 𝐽 2 is 𝜌, if both of them are in the same
chain, and it is 𝜌(𝜌 − 1), if they are in different chains. Therefore the
number of different 𝑆(𝐽 1, 𝐼1, 𝐽 2, 𝐼2, 𝑖1, 𝑖2,… , 𝑖𝜌) nodes is (𝜌2𝑛4+𝜌). □

Similarly to Section 6.1, the dynamic program can be extended for
the case where the number of machines is a constant 𝑚 ≥ 2, and it can
be further generalized by allowing more resources or jobs using one
unit from more than one distinct resources. If the number of distinct job
groups is a constant and each group can be partitioned into a constant
number of chains, the problem can be solved by a polynomial time
dynamic program as well.

7. Conclusions

In this paper we have considered three variants 𝑃1, 𝑃2 and 𝑃3 of
scheduling jobs while minimizing a convex function of the resource
usage of the jobs. We devised polynomial time algorithms to problems
𝑃1 and 𝑃2: 𝑃1 can be reduced to a minimum cost circulation problem
with convex cost functions on the edges and it can be solved by
the algorithm of Karzanov and McCormick (1997), while 𝑃2 can be
modeled by a minimum cost network flow problem. We also provided
polynomial time algorithms based on dynamic programming for some
special cases of 𝑃3.

A possible direction for future research is to determine the compu-
tational complexity of problem 𝑃3 in the general case.

CRediT authorship contribution statement

Tamás Kis: Writing – review & editing, Writing – original draft,
Supervision, Software, Methodology, Formal analysis, Conceptualiza-
tion. Evelin Szögi: Writing – review & editing, Writing – original draft,
Software, Methodology, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
12

No data was used for the research described in the article. o
Appendix. Proof of Proposition 1

We derive the dual of (𝑃𝑊 𝐿2) by first rewriting it as a linear
program. Then by using LP duality, we obtain the dual linear program.
After that, we show that the dual linear program can be rewritten as
a problem with linear constraints and with a piecewise-linear convex
cost function. Finally, we show that the matrix of the problem is the
network matrix corresponding to network 𝐷 defined in Section 4.3.

We can model the piecewise-linear functions 𝑤𝑋 , 𝑤𝑘 and 𝑤ℎ by
new variables and linear constraints the following way. For 𝑤𝑋 , we
introduce two variables 𝑦1𝑋 and 𝑦2𝑋 and the constraints

𝑏𝑋 = |𝑋| − 𝑦1𝑋 + 𝑦2𝑋 ,

𝑦1𝑋 ≥ 0, 𝑦2𝑋 ≥ 0.

In the objective function, the term 𝑤𝑋 (𝑏𝑋) is replaced by 𝐾𝑦1𝑋 if 𝑋 ≠ ,
and it is 𝐾𝑦1𝑋 + 𝐾𝑦2𝑋 if 𝑋 = , where 𝐾 = +∞ was defined in 4.3. In
this way we ensure that in an optimal integral solution 𝑏𝑋 is at least
|𝑋|, if 𝑋 ≠ , and 𝑏𝑋 is exactly | | = 𝑛, if 𝑋 = .

For the 𝑤ℎ functions, we use variables 𝑦1ℎ,… , 𝑦𝑛ℎ, and

𝑡ℎ = 𝑦1ℎ + 𝑦2ℎ +⋯ + 𝑦𝑛ℎ,

𝑦1ℎ ≥ 0, 𝑦2ℎ ≥ 0, … , 𝑦𝑛ℎ ≥ 0

𝑦1ℎ ≤ 1, 𝑦2ℎ ≤ 1, … , 𝑦𝑛ℎ ≤ 1.

n the objective, the term 𝑤ℎ(𝑡ℎ) is replaced by 𝑦1ℎ𝑠ℎ,1+𝑦
2
ℎ𝑠ℎ,2+⋯+𝑦𝑛ℎ𝑠ℎ,𝑛.

We simply remove the 𝑤𝑘(𝑥𝑘) terms from the objective, and add
𝑘 ≥ 0 to the problem as a constraint. Then the resulting linear program
ooks as follows:

inimize
∑

𝑋∈ ,𝑋≠
𝐾𝑦1𝑋 + (𝐾𝑦1 +𝐾𝑦2) +

𝐻
∑

ℎ=1
(𝑦1ℎ𝑠ℎ,1 + 𝑦2ℎ𝑠ℎ,2 +⋯ + 𝑦𝑛ℎ𝑠ℎ,𝑛)

s.t.
∑

𝐼𝑘∈𝑁(𝑋)
𝑥𝑘 − 𝑏𝑋 = 0,

𝑏𝑋 = |𝑋| − 𝑦1𝑋 + 𝑦2𝑋 ,

(𝐿𝑃) ∶ 𝑦1𝑋 ≥ 0, 𝑦2𝑋 ≥ 0 for all 𝑋 ∈ ;
∑

𝑘∶𝐼𝑘⊇𝐾ℎ

𝑥𝑘 − 𝑡ℎ = 0,

𝑡ℎ = 𝑦1ℎ + 𝑦2ℎ +⋯ + 𝑦𝑛ℎ,

0 ≤ 𝑦1ℎ ≤ 1,

⋮

0 ≤ 𝑦𝑛ℎ ≤ 1 for all intervals 𝐾ℎ;

𝑥𝑘 ≥ 0 for all 1 ≤ 𝑘 ≤ 𝐿.

ote that if 𝑦1𝑋 is positive for any 𝑋 ∈ , then the objective function
alue is 𝐾 by the arithmetic defined in Section 4.3.

emma 13. There is a one-to-one correspondence between the optimal
nteger solutions of (𝑃𝑊 𝐿2) and that of (𝐿𝑃).

roof. Let (𝑥∗, 𝑏∗, 𝑡∗) be an optimal integer solution to (𝑃𝑊 𝐿2). By the
hoice of 𝐾, (𝑥∗, 𝑏∗, 𝑡∗) satisfies constraints
∗
𝑋 ≥ |𝑋|, for all 𝑋 ∈ , 𝑋 ≠ ,
∗
 = 𝑛,
∗
𝑘 ≥ 0, for all 𝑘 = 1,… , 𝐿,

ince otherwise the objective value of (𝑥∗, 𝑏∗, 𝑡∗) is strictly greater than
he objective value of any integer solutions satisfying the constraints
y the definition of symbol 𝐾. Therefore, (𝑥∗, 𝑏∗, 𝑡∗, 𝑦∗) with 𝑦∗ = 0 is a
olution to (𝐿𝑃) with the same objective value.

Let (𝑥∗, 𝑏∗, 𝑡∗, 𝑦∗) be an optimal integer solution to (𝐿𝑃). Then
𝑥∗, 𝑏∗, 𝑡∗) satisfies the constraints above and 𝑦∗ = 0, otherwise the

∗ ∗ ∗ ∗
bjective value of (𝑥 , 𝑏 , 𝑡 , 𝑦) is at least 𝐾, and the objective value

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi
of any other integer solution with 𝑦∗ = 0 is strictly less by the choice of
𝐾. Therefore (𝑥∗, 𝑏∗, 𝑡∗) is a solution to (𝑃𝑊 𝐿2) with the same objective
value.

Therefore, the optimal integer solutions of (𝑃𝑊 𝐿2) and that of (𝐿𝑃)
are in one-to-one correspondence. □

Next, we determine the dual problem of (𝐿𝑃). Recall the definitions
of 𝑒𝑥𝑘 , 𝑒𝑏𝑋 , 𝑒𝑡ℎ , 𝑒𝑋 , 𝑒ℎ, 𝐶(𝑒𝑋), and 𝐶(𝑒ℎ) from Section 4.3. The dual linear
program of (𝐿𝑃) is the following:

maximize
∑

𝑋∈
𝜆𝑋 |𝑋| −

𝐻
∑

ℎ=1
(𝜆1ℎ + 𝜆2ℎ +⋯ + 𝜆𝑛ℎ)

s.t.
∑

𝑒𝑋∶𝑒𝑥𝑘∈𝐶(𝑒𝑋)
𝑧𝑋 +

∑

𝑒ℎ∶𝑒𝑥𝑘∈𝐶(𝑒ℎ)
𝑧ℎ + 𝜆𝑘 = 0,

𝜆𝑘 ≥ 0 for all 1 ≤ 𝑘 ≤ 𝐿,
∑

𝑒𝑋∶𝑒𝑏𝑋 ∈𝐶(𝑒𝑋)
(−𝑧𝑋) + 𝜆𝑋 = 0,

𝜆𝑋 ≤ 𝐾 for all variables 𝑋 ∈ ;

− 𝜆𝑋 ≤ 0 for all variables 𝑋 ∈ , 𝑋 ≠ and
− 𝜆 ≤ 𝐾;

∑

𝑒ℎ∶𝑒𝑡ℎ∈𝐶(𝑒ℎ)
(−𝑧ℎ) + 𝜆ℎ = 0,

− 𝜆ℎ − 𝜆1ℎ ≤ 𝑠ℎ,1,

− 𝜆ℎ − 𝜆2ℎ ≤ 𝑠ℎ,2,

…

− 𝜆ℎ − 𝜆𝑛ℎ ≤ 𝑠ℎ,𝑛,

𝜆1ℎ, … , 𝜆𝑛ℎ ≥ 0 for all 1 ≤ ℎ ≤ 𝐻.

It will be convenient to rewrite this as a minimization problem:

minimize −
∑

𝑋∈
𝜆𝑋 |𝑋| +

𝐻
∑

ℎ=1
(𝜆1ℎ + 𝜆2ℎ +⋯ + 𝜆𝑛ℎ)

s.t.
∑

𝑒𝑋∶𝑒𝑥𝑘∈𝐶(𝑒𝑋)
𝑧𝑋 +

∑

𝑒ℎ∶𝑒𝑥𝑘∈𝐶(𝑒ℎ)
𝑧ℎ + 𝜆𝑘 = 0,

𝜆𝑘 ≥ 0 for all 1 ≤ 𝑘 ≤ 𝐿,
∑

𝑒𝑋∶𝑒𝑏𝑋 ∈𝐶(𝑒𝑋)
(−𝑧𝑋) + 𝜆𝑋 = 0,

𝜆𝑋 ≤ 𝐾 for all variables 𝑋 ∈ ;

(𝐷 − 𝐿𝑃) − 𝜆𝑋 ≤ 0 for all variables 𝑋 ∈ , 𝑋 ≠ and
− 𝜆 ≤ 𝐾;

∑

𝑒ℎ∶𝑒𝑡ℎ∈𝐶(𝑒ℎ)
(−𝑧ℎ) + 𝜆ℎ = 0,

− 𝜆ℎ − 𝜆1ℎ ≤ 𝑠ℎ,1,

− 𝜆ℎ − 𝜆2ℎ ≤ 𝑠ℎ,2,

…

− 𝜆ℎ − 𝜆𝑛ℎ ≤ 𝑠ℎ,𝑛,

𝜆1ℎ, … , 𝜆𝑛ℎ ≥ 0 for all 1 ≤ ℎ ≤ 𝐻.

Now we determine the optimal values of 𝜆1ℎ, 𝜆
2
ℎ,… , 𝜆𝑛ℎ, based on

the value of 𝜆ℎ, and show how to decrease the number of variables
in (𝐷 − 𝐿𝑃) by introducing piecewise-linear convex functions.

Consider variables 𝜆1ℎ, 𝜆
2
ℎ,… , 𝜆𝑛ℎ. Each of them appears in two in-

equalities, that is, for 𝜆𝑖ℎ, we have

−𝜆ℎ − 𝜆𝑖ℎ ≤ 𝑠ℎ,𝑖,
𝑖

13

𝜆ℎ ≥ 0.
Equivalently, we have

𝜆𝑖ℎ ≥ −𝜆ℎ − 𝑠ℎ,𝑖,

𝜆𝑖ℎ ≥ 0.

If −𝜆ℎ < 𝑠ℎ,1, then it can be assumed that 𝜆1ℎ = 𝜆2ℎ = ⋯ = 𝜆𝑛ℎ in
an optimal solution to (𝐷 − 𝐿𝑃). In this case, the contribution to the
objective function is 𝜆1ℎ+𝜆

2
ℎ+⋯+𝜆𝑛ℎ = 0. Now define 𝑠ℎ,𝑛+1 as 𝑠ℎ,𝑛+1 = ∞

and suppose that for an index 2 ≤ 𝑖 ≤ 𝑛 + 1, we have

𝑠ℎ,𝑖−1 ≤ −𝜆ℎ ≤ 𝑠ℎ,𝑖,

then in an optimal solution

𝜆1ℎ = −𝜆ℎ − 𝑠ℎ,1,

𝜆2ℎ = −𝜆ℎ − 𝑠ℎ,2,

⋮

𝜆𝑖−1ℎ = −𝜆ℎ − 𝑠ℎ,𝑖−1,

𝜆𝑖ℎ = 𝜆𝑖+1ℎ = ⋯ = 𝜆𝑛ℎ = 0.

The contribution to the objective function is

𝜆1ℎ + 𝜆2ℎ +⋯ + 𝜆𝑛ℎ = (−𝜆ℎ − 𝑠ℎ,1) + (−𝜆ℎ − 𝑠ℎ,2) +⋯ + (−𝜆ℎ − 𝑠ℎ,𝑖−1)

=
𝑖−2
∑

𝑗=1
𝑗(𝑠ℎ,𝑗+1 − 𝑠ℎ,𝑗) + (𝑖 − 1)(−𝜆ℎ − 𝑠ℎ,𝑖−1).

Remember the definition of 𝑤∗
ℎ and 𝑤∗

𝑋 from Section 4.3. If we omit the
variables 𝜆1ℎ, 𝜆

2
ℎ,… , 𝜆𝑛ℎ together with inequalities in which one of them

appears, and in the objective we replace ∑𝐻
ℎ=1(𝜆

1
ℎ𝑠ℎ,1+𝜆

2
ℎ𝑠ℎ,2+⋯+𝜆𝑛ℎ𝑠ℎ,𝑛)

by ∑𝐻
ℎ=1 𝑤

∗
ℎ(−𝜆ℎ), using the observations above, the optimal value of 𝜆ℎ

and its contribution to the objective is the same in the two formulations.
We continue with variables 𝜆𝑋 . If −

∑

𝑋∈ 𝜆𝑋 |𝑋| is replaced by
∑

𝑋∈ 𝑤∗
𝑋 (𝜆𝑋) in the objective function, the problem does not change.

Summarizing the observations above, the problem can be concisely
expressed as

minimize
∑

𝑋∈
𝑤∗

𝑋 (𝑧𝑋) +
𝐻
∑

ℎ=1
𝑤∗

ℎ(−𝑧ℎ)

s.t.
∑

𝑒𝑋∶𝑒𝑥𝑘∈𝐶(𝑒𝑋)
𝑧𝑋 +

∑

𝑒ℎ∶𝑒𝑥𝑘∈𝐶(𝑒ℎ)
𝑧ℎ + 𝜆𝑘 = 0,

(𝐷 − 𝑃𝑊 𝐿2) 𝜆𝑘 ≥ 0, for all 𝑘 = 1,… , 𝐿

0 ≤ 𝑧𝑋 ≤ 𝐾, for all 𝑋 ∈ , 𝑋 ≠

− 𝐾 ≤ 𝑧 ≤ 𝐾.

Notice that the lower and upper bounds for 𝑧𝑋 and 𝑧 coincide with
the left and right endpoints of the domain of 𝑤∗

𝑋 and 𝑤∗
 . Using the

observations above, Lemma 14 follows immediately.

Lemma 14. The optimal solutions to (𝐷 − 𝐿𝑃) are in one-to-one
correspondence with the optimal solutions to (𝐷 − 𝑃𝑊 𝐿2).

The above arguments prove that the convex program (𝐷 − 𝑃𝑊 𝐿2)
is indeed the dual of (𝑃𝑊 𝐿2).

References

Ahuja, R.K., Magnanti, T.L., Orlin, J.B., 1993. Network Flows. Prentice-Hall, Inc., New
Jersey.

Baptiste, P., 2000. Scheduling equal-length jobs on identical parallel machines. Discrete
Appl. Math. 103 (1), 21–32. http://dx.doi.org/10.1016/S0166-218X(99)00238-3.

Baptiste, P., Brucker, P., Knust, S., Timkovsky, V.G., 2004. Ten notes on equal-
processing-time scheduling. Q. J. Belgian French Italian Oper. Res. Soc. 2, 111–127.
http://dx.doi.org/10.1007/s10288-003-0024-4.

Błażewicz, J., 1979. Deadline scheduling of tasks with ready times and resource
constraints. Inform. Process. Lett. 8 (2), 60–63. http://dx.doi.org/10.1016/0020-
0190(79)90143-1.

Brucker, P., Kravchenko, S., 2008. Scheduling jobs with equal processing times and
time windows on identical parallel machines. J. Sched. 11, 229–237. http://dx.

doi.org/10.1007/s10951-008-0063-y.

http://refhub.elsevier.com/S0305-0548(24)00220-X/sb1
http://refhub.elsevier.com/S0305-0548(24)00220-X/sb1
http://refhub.elsevier.com/S0305-0548(24)00220-X/sb1
http://dx.doi.org/10.1016/S0166-218X(99)00238-3
http://dx.doi.org/10.1007/s10288-003-0024-4
http://dx.doi.org/10.1016/0020-0190(79)90143-1
http://dx.doi.org/10.1016/0020-0190(79)90143-1
http://dx.doi.org/10.1016/0020-0190(79)90143-1
http://dx.doi.org/10.1007/s10951-008-0063-y
http://dx.doi.org/10.1007/s10951-008-0063-y
http://dx.doi.org/10.1007/s10951-008-0063-y

Computers and Operations Research 169 (2024) 106748T. Kis and E. Szögi
Burcea, M., Hon, W.-K., Liu, H.-H., Wong, P.W., Yau, D.K., 2016. Scheduling for
electricity cost in a smart grid. J. Sched. 19 (6), 687–699. http://dx.doi.org/10.
1007/s10951-015-0447-8.

Chau, V., Feng, S., Thăng, N.K., 2021. Competitive algorithms for demand response
management in a smart grid. J. Sched. 1–8. http://dx.doi.org/10.1007/s10951-
021-00690-x.

Drótos, M., Kis, T., 2011. Resource leveling in a machine environment. European J.
Oper. Res. 212 (1), 12–21. http://dx.doi.org/10.1016/j.ejor.2011.01.043.

Hajek, B., 1990. Performance of global load balancing by local adjustment. IEEE Trans.
Inform. Theory 36 (6), 1398–1414. http://dx.doi.org/10.1109/18.59935.

Harvey, N.J., Ladner, R.E., Lovász, L., Tamir, T., 2006. Semi-matchings for bipartite
graphs and load balancing. J. Algorithms 59 (1), 53–78. http://dx.doi.org/10.1016/
j.jalgor.2005.01.003.

Karzanov, A.V., McCormick, S.T., 1997. Polynomial methods for separable convex
optimization in unimodular linear spaces with applications. SIAM J. Comput. 26
(4), 1245–1275. http://dx.doi.org/10.1137/S0097539794263695.

Kravchenko, S., Werner, F., 2009. Minimizing the number of machines for scheduling
jobs with equal processing times. European J. Oper. Res. 199, 595–600. http:
//dx.doi.org/10.1016/j.ejor.2008.10.008.

Kravchenko, S., Werner, F., 2011. Parallel machine problems with equal processing
times: a survey. J. Sched. 14, 435–444. http://dx.doi.org/10.1007/s10951-011-
0231-3.

Liu, F.-H., Liu, H.-H., Wong, P.W., 2020. Non-preemptive scheduling in a smart
grid model and its implications on machine minimization. Algorithmica 82 (12),
3415–3457. http://dx.doi.org/10.1007/s00453-020-00733-3.
14
Meyer, R.R., 1977. A class of nonlinear integer programs solvable by a single linear
program. SIAM J. Control Optim. 15 (6), 935–946. http://dx.doi.org/10.1137/
0315059.

Schrijver, A., 1998. Theory of Linear and Integer Programming. John Wiley & Sons.
Shaikhet, G., Karbasioun, M.M., Kranakis, E., Lambadaris, I., 2013. Asymptotic convex

optimization for packing random malleable demands in smart grid. In: 2013
IEEE International Conference on Communications. ICC, IEEE, pp. 2555–2560.
http://dx.doi.org/10.1109/ICC.2013.6654919.

Simons, B., 1983. Multiprocessor scheduling of unit-time jobs with arbitrary release
times and deadlines. SIAM J. Comput. 12 (2), 294–299. http://dx.doi.org/10.1137/
0212018.

Simons, B., Sipser, M., 1984. On scheduling unit-length jobs with multiple release
time/deadline intervals. Oper. Res. 32 (1), 80–88. http://dx.doi.org/10.1287/opre.
32.1.80.

Stewart, R., Raith, A., Sinnen, O., 2023. Optimising makespan and energy consumption
in task scheduling for parallel systems. Comput. Oper. Res. 154, 106212. http:
//dx.doi.org/10.1016/j.cor.2023.106212.

Szögi, E., Kis, T., 2023. Scheduling jobs to minimize a convex function of resource
usage. In: Ganzha, M., Maciaszek, L., Paprzycki, M., Slezak, D. (Eds.), Proceedings
of the 18th Conference on Computer Science and Intelligence Systems. In: Annals
of Computer Science and Information Systems, Vol. 35, IEEE, pp. 791–799. http:
//dx.doi.org/10.15439/2023B4164.

Xie, G., Xiao, X., Peng, H., Li, R., Li, K., 2022. A survey of low-energy parallel
scheduling algorithms. IEEE Trans. Sustain. Comput. 7 (1), 27–46. http://dx.doi.
org/10.1109/TSUSC.2021.3057983.

http://dx.doi.org/10.1007/s10951-015-0447-8
http://dx.doi.org/10.1007/s10951-015-0447-8
http://dx.doi.org/10.1007/s10951-015-0447-8
http://dx.doi.org/10.1007/s10951-021-00690-x
http://dx.doi.org/10.1007/s10951-021-00690-x
http://dx.doi.org/10.1007/s10951-021-00690-x
http://dx.doi.org/10.1016/j.ejor.2011.01.043
http://dx.doi.org/10.1109/18.59935
http://dx.doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/10.1016/j.jalgor.2005.01.003
http://dx.doi.org/10.1137/S0097539794263695
http://dx.doi.org/10.1016/j.ejor.2008.10.008
http://dx.doi.org/10.1016/j.ejor.2008.10.008
http://dx.doi.org/10.1016/j.ejor.2008.10.008
http://dx.doi.org/10.1007/s10951-011-0231-3
http://dx.doi.org/10.1007/s10951-011-0231-3
http://dx.doi.org/10.1007/s10951-011-0231-3
http://dx.doi.org/10.1007/s00453-020-00733-3
http://dx.doi.org/10.1137/0315059
http://dx.doi.org/10.1137/0315059
http://dx.doi.org/10.1137/0315059
http://refhub.elsevier.com/S0305-0548(24)00220-X/sb16
http://dx.doi.org/10.1109/ICC.2013.6654919
http://dx.doi.org/10.1137/0212018
http://dx.doi.org/10.1137/0212018
http://dx.doi.org/10.1137/0212018
http://dx.doi.org/10.1287/opre.32.1.80
http://dx.doi.org/10.1287/opre.32.1.80
http://dx.doi.org/10.1287/opre.32.1.80
http://dx.doi.org/10.1016/j.cor.2023.106212
http://dx.doi.org/10.1016/j.cor.2023.106212
http://dx.doi.org/10.1016/j.cor.2023.106212
http://dx.doi.org/10.15439/2023B4164
http://dx.doi.org/10.15439/2023B4164
http://dx.doi.org/10.15439/2023B4164
http://dx.doi.org/10.1109/TSUSC.2021.3057983
http://dx.doi.org/10.1109/TSUSC.2021.3057983
http://dx.doi.org/10.1109/TSUSC.2021.3057983

	Scheduling jobs to minimize a convex function of resource usage
	Introduction
	Related work
	Properties of optimal solutions
	A combinatorial approach for problem P1
	Initial problem formulation
	Solution method
	Reformulation as a circulation problem in a network
	Solution of the primal problem (PWL2)
	Preliminary computational results
	Application to a parallel machine scheduling problem to minimize the total completion time of the jobs

	A solution to problem P2
	A network flow formulation to solve P2
	Application to a scheduling problem with a resource of bounded capacity

	Solution to P3 in special cases
	Jobs with agreeable deadlines
	Constant number of chains

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix. Proof of Proposition 1
	References

