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Abstract
This article presents a systematic approach to nonlinear state-feedback con-
trol design that has three main advantages: (i) it ensures exponential stability
and 2-gain performance with respect to a user-defined set of reference tra-
jectories, (ii) it provides constructive conditions based on convex optimization
and a path-integral-based control realization, and (iii) it is less restrictive than
previous similar approaches. In the proposed approach, first a virtual repre-
sentation of the nonlinear dynamics is constructed for which a behavioral
(parameter-varying) embedding is generated. Then, by introducing a virtual
control contraction metric, a convex control synthesis formulation is derived.
Finally, a control realization with a virtual reference generator is computed,
which is guaranteed to achieve exponential stability and 2-gain performance
for all trajectories of the targeted reference behavior. We show that the pro-
posed methodology is a unified generalization of the two distinct categories of
linear-parameter-varying (LPV) state-feedback control approaches: global and
local methods. Moreover, it provides rigorous stability and performance guar-
antees as a method for nonlinear tracking control, while such properties are
not guaranteed for tracking control using standard LPV approaches. Code is
available at https://github.com/ruigangwang7/VCCM.
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1 INTRODUCTION

For linear time-invariant (LTI) systems, essentially all reasonable definitions of stability coincide, and if a particu-
lar solution (such as the zero solution) is locally stable, then all solutions are globally stable. This favorable property
extends to stabilization, and furthermore there are many well-established methods for computing stabilizing feedback
controllers.

For nonlinear systems, however, the picture is more nuanced: distinct and practically-motivated notions of stabil-
ity are not necessarily equivalent. For example, stability of a particular set-point (equilibrium) does not imply stability
of all set-points, which in turn does not imply stability of all non-equilibrium trajectories. Furthermore, even in the
full-state-feedback case, the computation of stabilizing feedback controllers is an on-going research topic.
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In this article, we use the term regulation to denote stabilization of a particular set-point, usually the origin under
suitable choice of coordinates. For the regulation problem, the concept of a control Lyapunov function (CLF)1,2 plays an
important role. Given a CLF, a simple, but universal construction yields stabilizing controllers.3 For certain classes of
nonlinear systems, CLFs can be constructed based on energy4 or back-stepping techniques.5 For more general systems, it
is desirable to construct a CLF via optimization. For linear systems, the CLF criteria can be converted into a convex linear
matrix inequality (LMI),6 but for nonlinear systems, the set of CLFs for a particular system is not necessarily convex or
even connected.7 Certain dual notions of a CLF lead to convexity of synthesis,7,8 but these can only imply almost-global
stabilization, and are difficult to extend to disturbance rejection or robust stabilization.

In contrast, for the much stronger problem of universal stabilization—that is, global exponential stabilization of
all trajectories—the concept of a control contraction metric (CCM) leads to convex conditions analogous to those for
the LTI case,9 and has been extended to disturbance rejection and robust stabilization.10 This concept builds on con-
traction analysis,11 extending it to address constructive control design. The main idea of contraction analysis is that
local stability of all trajectories of a nonlinear system implies global stability of all trajectories. Hence, stability can
be addressed via analysis of an infinite family of linear systems (the local linearizations along trajectories) and is
decoupled from the specification of particular trajectories. To establish stability of an LTI system or to stabilize one,
it is sufficient to search via semidefinite programming for a quadratic Lyapunov function or CLF.6 In CCM synthesis,
this is replaced by a smoothly state-varying quadratic form that measures infinitesimal distances, that is, a Rieman-
nian metric. The resulting search is still convex, and is defined via state-dependent point-wise LMIs. Due to these
advantageous features, contraction-based methods have recently also received attention in other parts of the non-
linear control field, such as adaptive control,12,13 model predictive control14–17 and learning-based control18–21 and
so forth.

Nevertheless, for some systems, the requirements for existence of a CCM may be too stringent. For example, in a
set-point tracking problem, it may only be desired to globally stabilize a particular family of set-points: a problem that
is stronger than regulation, but weaker than universal stabilization.22,23 Motivated by such cases, in this article we pro-
pose methods for achieving global exponential stability of all trajectories from a user-specified reference set ∗. We
call this problem 

∗-universal stabilization, which covers a wide range of stabilization problems from regulation to
tracking.

Linear parameter-varying (LPV) control is a widely-applied framework that also extends LTI design techniques to non-
linear systems.24,25 There are two distinct categories of LPV state-feedback control approaches: local and global methods.
The local LPV (a.k.a. LPV gain scheduling) approach is based on the widely-applied idea of gain scheduling.26 It contains
three stages24: linearize around a family of operating points (modeling), design controllers for those points (synthesis),
and then interpolate in some way (realization). Although successfully applied in many settings, it is well known that
“hidden couplings” between system dynamics and parameter variations can lead to closed-loop instability. Previous work
to analyse this problem has led to an approach that is similar to contraction analysis, interpreting local linearization as
the Gâteaux derivative of a nonlinear operator.27

The global LPV approach uses the same synthesis techniques as local methods, but different LPV modeling and
realization methods. In this approach, the nonlinear system is modeled as an LPV system by choosing the schedul-
ing variable as a function of state and input. This scheduling variable is treated as a “free” (external independent)
variable throughout the synthesis step. However, it becomes in general* an internal variable for the control real-
ization. The fact that stability must hold for all possible trajectories of the scheduling variable, including those
incompatible with the true system dynamics, results in an inherent conservatism that can be seen as a trade-off for
a convex synthesis procedure. Closed-loop stability and performance with respect to a particular set-point is guar-
anteed by the so-called LPV (behavior) embedding principle, that is, any solution of the nonlinear system is also
a solution of the LPV system. However, this approach can fail to guarantee asymptotic convergence in set-point
tracking.28,29

In this article, we propose a systematic approach to design nonlinear state-feedback controllers for ∗-universal sta-
bilization based on behavioral embedding. In this approach, we first generate behavior embeddings via the concept of a
virtual system.30,31 The main idea of virtual system is that a nonlinear system—which is not itself contracting—may still
have stability properties that can be established via construction of an auxiliary observer-like system which is contract-
ing. This contracting virtual system takes the original state as a “free” parameter, and thus naturally induces a nonlinear
behavior embedding of the original system, that is, any solution of the original system is also a particular solution of the
virtual system.
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7700 WANG et al.

By extending this virtual contraction concept, a ∗-universal stabilizing controller can be constructed if the virtual
system satisfies two conditions: (C1) the virtual system is universally stabilizable, and (C2) any state reference from∗ is
admissible to the virtual system. For the virtual feedback design, we provide constructive conditions based on parametric
LMIs via the new concept of virtual control contraction metrics (VCCMs), which extends the CCM approach9 to weak
stabilization problems. Moreover, since part of the system nonlinearities can be hidden into the “free” parameter, the
synthesis problem is simplified compared to the CCM approach. For Condition C2, we use several examples to show that
it may lead to closed-loop instability for tracking tasks if such condition does not hold. However, this condition is quite
stringent as it does not hold for many virtual systems. We present a relaxed condition by introducing the concept of virtual
reference generators (VRGs), which produces a virtual reference that temporarily deviates from, but then exponentially
converges to the original reference.

We also show that the proposed VCCM approach provides a unified framework for the two distinct categories of LPV
control approaches: local and global methods. First, the virtual system can be taken as a generalization of the concept
of global LPV embedding to nonlinear embedding of the behavior and the virtual differential dynamics can be seen as
an extension of local linearization at operating points to continuous linearization across the entire space, that is, taking
the first-order Taylor approximation at each state-input pair rather than those on the equilibrium manifold. Second, the
VCCM approach provides a path-integral-based realization, which we argue is the correct realization of gain scheduling
control that has been searched for in the past. We provide numerical examples in which local and global LPV approaches
result in closed-loop instability at some set-points, whereas the VCCM approach guarantees global exponential stability
of all set-points. We also discuss how to use our theoretic framework to explain the loss of stability guarantees for tracking
control by standard LPV methods.

Contributions

This article presents a systematic behavioral embedding based nonlinear state-feedback approach for various stabilization
problems—ranging from regulation to universal stabilization. Our work has the following contributions:

• We extend the CCM approach9 to solve weak stabilization problems. Moreover, our proposed approach enables the
embedding of the original dynamics into a virtual system with a simpler structure, which can reduce the complexity
of contraction based control synthesis.

• We show that existing virtual contraction based control methods32,33 require existence of a virtual feedforward con-
troller that has restrictions on the achievable performance and even feasibility of stabilization of the system. We
relax the underlying conditions by introducing VRGs and a novel feed-forward synthesis approach that ensures
implementability of dynamic ∗-universal stabilizing controllers, see Theorem 3.

• We show that the proposed VCCM approach is a unified theoretic framework for two distinct LPV state-feedback con-
trol methods. Our proposed approach can provide rigorous stability and performance guarantees, while such properties
are not guaranteed for tracking control using standard LPV approaches.

Related works

Virtual or partial contraction analysis was first introduced in Reference 30 to extend contraction analysis to weaker stabil-
ity notions. A more formal treatment appeared later in Reference 31. The first work to use virtual systems for constructive
control design was Reference 32, however this was limited to Lagrangian systems. Subsequently, a virtual-contraction
based approach to control of port-Hamiltonian systems was presented in Reference 33. In this article, a parametric-LMI
based computational method is proposed to remove the structural assumption. For control realization, we introduce VRGs
to relax the strong requirement on virtual feedforward control design.32–34 Recently, we applied the proposed method to
various stabilization tasks of a control moment gyroscope.34 Compared to Reference 34, besides introducing VRGs and
integrating it into the VCCM method, we provide a comprehensive description of the proposed VCCM approach, compar-
ison with the CCM based approach, and an extensive discussion on the connection of the VCCM approach to local and
global LPV methods.
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WANG et al. 7701

Notation

R is the set of real numbers, while R+ is the set of non-negative reals. We use lower-case normal letters such as x to denote
vector signals on R+. 2 is the space of square-integrable signals, that is, x ∈ 2 if ||x|| ∶=

√

∫
∞

0 |x(t)|2dt < ∞ where | ⋅ |

is the Euclidean norm. e
2 is the extended 2 space where ||x||T ∶=

√

∫
T

0 |x(t)|2dt < ∞ for all T ∈ R+. A ≻ (⪰)B means
that the matrix A − B is positive (semi)-definite. A Riemannian metric is a smooth matrix function M ∶ Rm → Rn×n with
M(x) = M(x)⊤ ≻ 0 for all x ∈ Rm. A Riemannian metric M is said to be uniformly-bounded if there exist a2 ≥ a1 > 0 such
that a2I ⪰ M(x) ⪰ a1I for all x ∈ Rm.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 Problem formulation

Consider a nonlinear systems of the form

ẋ(t) = f (x(t), u(t)), (1)

where x(t) ∈ Rn
, u(t) ∈ Rm are the state and control input, respectively, at time t ∈ R+, and f is a smooth func-

tion of their arguments. We define the behavior  as the set of all forward-complete solutions of (1), that is,  =
{(x, u)} with x ∶ R+ → Rn piecewise differentiable and u ∶ R+ → Rm piecewise continuous satisfying (1) for all t ∈
R+. A state trajectory x is said to be admissible to system (1) if there exists an input signal u such that (x, u) ∈ .
Let ∗ ⊂  be a (feasible) set of desired behaviors. We consider state-feedback controllers that explicitly depend on
(x∗, u∗) ∈ ∗:

u(t) = 𝜅(x(t), x∗(t), u∗(t)), (2)

where 𝜅 ∶ Rn ×Rn ×Rm → Rm. By applying (2) to system (1) we obtain the closed-loop system

ẋ(t) = f (x(t), 𝜅(x(t), x∗(t), u∗(t))). (3)

A reference trajectory (x∗, u∗) is said to be globally exponentially stabilizable if one can construct a feedback controller
(2) such that for any initial condition x(0) ∈ Rn, a unique solution x exists for (3) and satisfies

|x(t) − x∗(t)| ≤ Re−𝜆t|x(0) − x∗(0)|, (4)

where rate 𝜆 > 0 and overshoot R > 0 are constants independent of initial conditions but may depend on the choice of ref-
erence trajectory. If every (x∗, u∗) ∈ ∗ is globally exponentially stabilizable, then the system is said to be ∗-universally
exponentially stabilizable. If ∗1 ⊃ 

∗
2, then ∗1-universal stabilization is stronger than ∗2-universal stabilization. The

strongest case is ∗ = , which is called universal stabilization.9
We will also consider the disturbance rejection problem for the perturbed system of (1):

ẋ(t) = f (x(t), u(t), w(t)), z(t) = h(x(t), u(t), w(t)), (5)

where w(t) ∈ Rp
, z(t) ∈ Rq are collections of external disturbances (load, noise, etc.) and performance outputs (tracking

error, actuator usage, etc.), respectively. With slight abuse of notation, we use  to denote the behavior of (5). The set

∗

⊂  is called a reference behavior if each (x∗, u∗, w∗
, z∗) ∈ ∗ satisfies w∗ = 0 (i.e., the nominal value of disturbance is

0). Similar to the stabilization problem, we consider state-feedback controllers of the form (2), leading to the closed-loop
system:

ẋ(t) = f (x(t), 𝜅(x(t), x∗(t), u∗(t)), w(t)), z(t) = h(x(t), 𝜅(x(t), x∗(t), u∗(t)), w(t)). (6)
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7702 WANG et al.

The above controlled system is said to have ∗-universal 2-gain bound of 𝛼 if for each (x∗, u∗, w∗
, z∗) ∈ ∗, any initial

condition x(0) ∈ Rn and any input w ∈ e
2, a unique solution (x, w, z) of (6) exists and satisfies

||z − z∗||2T ≤ 𝛼
2||w − w∗||2T + 𝛽(x(0), x∗(0)), (7)

for all T > 0 and some continuous function 𝛽(x, y) ≥ 0 with 𝛽(x, x) = 0.
The controller synthesis problems we address in this article are (i), synthesizing a state-feedback controller of the

form (2) for a nonlinear system of the form (1) such that the resulting closed-loop system (given by (3)) is ∗-universally
exponentially stable, and (ii), synthesizing a state-feedback controller of the form (2) for a nonlinear system of the form (5)
such that the resulting closed-loop system (given by (6)) is ∗-universally exponentially stable and satisfies a prescribed

∗-universal 2-gain bound.

In the next section, we will briefly discuss contraction and virtual contraction theory, which will be used to address
these controller synthesis problems.

2.2 Contraction analysis

Contraction analysis studies the convergence between arbitrary trajectories of the system, which has proven to be a useful
tool for constructive design of nonlinear tracking controllers.9,35 Here we summarize the main results of contraction
theory, see details in References 11,36, and 37. Consider a nonlinear time-varying system of the form:

ẋ(t) = f (t, x(t)), (8)

where x(t) ∈ Rn is the state, and f is a smooth function. Later on, time variation will appear in the virtual systems
associated with time-invariant systems (1) and (5). System (8) is said to be contracting if any solution pair (x1, x2) satisfies

|x2(t) − x1(t)| ≤ Re−𝜆t|x2(0) − x1(0)|,

where 𝜆, R are some positive constants. To analyze the contraction property, we utilize the “extended” system consisting
of (8) and its differential dynamics:

𝛿̇x(t) = A(t, x)𝛿x(t) ∶=
𝜕f (t, x)

𝜕x
𝛿x(t), (9)

defined along the solutions x. The state 𝛿x(t) is the infinitesimal variation11,37 (or can be seen as a tangent vector36) at the
point x(t). A uniformly-bounded Riemannian metric M(x, t) is called a contraction metric for (8) if

Ṁ +MA + A⊤M ⪯ −2𝜆M, (10)

for all x ∈ Rn
, t ∈ R+, where Ṁ = 𝜕M

𝜕t
+
∑n

i=1fi
𝜕M
𝜕xi

. The contraction metric M(x, t) also induces a quadratic differential
Lyapunov function V(x, t, 𝛿x) = 𝛿

⊤

x M(x, t)𝛿x for (9), that is, V̇ ≤ −2𝜆V . A central result of Reference 11 is that the existence
of a contraction metric for system (1) implies that it is contracting with 𝜆 and R =

√
a2∕a1.

Contraction analysis can be extended to the system with external input w(t) ∈ Rp and performance output z(t) ∈ Rq:

ẋ = f (t, x, w), z = h(t, x, w), (11)

whose differential dynamics are of the form:

𝛿̇x = A(t, x, w)𝛿x + B(t, x, w)𝛿w, 𝛿z = C(t, x, w)𝛿x + D(t, x, w)𝛿w, (12)

where A = 𝜕f
𝜕x

, B = 𝜕f
𝜕w

, C = 𝜕h
𝜕x

, and D = 𝜕h
𝜕w

. System (11) is said to have a differential 2-gain bound of 𝛼, if for all T > 0,

||𝛿z||
2
T ≤ 𝛼

2||𝛿w||
2
T + b (x(0), 𝛿x(0)) , (13)
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WANG et al. 7703

where b (x, 𝛿x) ≥ 0 with b(x, 0) = 0 for all x. From Reference 38 (Theorem 3.1.11), a sufficient, and in some cases necessary,
condition for (13) is the existence of a differential storage function V(x, t, 𝛿x) ≥ 0 with V(x, t, 0) = 0 that verifies

Vt2 − Vt1 ≤ ∫

t2

t1

(
−𝛿

⊤

z 𝛿z + 𝛼
2
𝛿

⊤

w𝛿w
)

dt, (14)

where Vt = V(x(t), t, 𝛿x(t)). For smooth systems, the differential 2-gain bound is equivalent to the incremental 2-gain
bound.27

2.3 Behavior embedding and virtual contraction analysis

Virtual contraction analysis extends contraction theory to study convergence between behaviors (i.e., trajectory sets). For
the sake of simplicity, let us first consider a time-invariant smooth autonomous system

ẋ = f (x), (15)

with x ∈ Rn. A virtual system is a new system of the form

ẏ = 𝔣(y, x), (16)

with 𝔣(x, x) = f (x) and 𝔣 being smooth, where the virtual state y lives in a copy of the original state space Rn, and the
variable x, taken as an exogenous input, is the state associated with the original system (15). One way to construct a
virtual system is based on the factorization of the dependency of f on x, for example, f (x) = x2 can be re-cast as 𝔣(y, x) =
xy, or y2. Hence, construction of (16) is non-unique. A virtual system introduces an embedding relationship between
the behavior  of (15) and the virtual behavior  of (16). That is, x ∈  is equivalent to (x, x) ∈  . For any x ∈ , we
can define a projected virtual behavior x = {y|(y, x) ∈ }, which is the state trajectory set of (16) with fixed external
signal x.

Associated with x, the virtual differential dynamics is

𝛿̇y =
𝜕𝔣(y, x)

𝜕y
𝛿y. (17)

Note that 𝛿x(t) = 0 for all t since x is a fixed external signal for all y ∈ x. System (15) is said to be virtually contracting
if there exists a metric M(y, x) such that for any x ∈ , M̂(y, t) = M(y, x(t)) is a contraction metric for the time-varying
system (16). Here, M(y, x) is also referred to as a virtual contraction metric. The existence of a virtual contraction metric
implies that all virtual trajectories inx converge to each other, and thus they converge to a particular solution x as x ∈ x.
Furthermore, if x also contains x∗ ∈ ∗, we can conclude that |x(t) − x∗(t)| vanishes exponentially.

Theorem 1 (Virtual contraction31). Consider a system (15) and suppose that the virtual system (16) is virtually
contracting. Given a trajectory x ∈  of (15) and a reference trajectory x∗ ∈ ∗, suppose that x∗ ∈ x. Then x
converges to x∗ ∈ ∗ exponentially.

3 NONLINEAR STABILIZATION VIA VCCM

In this section, we first present the behavioral embedding based control framework for the ∗-universal stabilization
problem. In this framework there are two main components: virtual feedforward and feedback controllers. We give
a convex formulation for designing the virtual feedback controller by introducing the new concept of VCCMs. After
that, we introduce the concept of virtual reference generator, which can be understood as an extension of the virtual
feedforward controller. Finally, we discuss the differences between the proposed approach and the CCM-based con-
trol approach. For the sake of simplicity, the dependency of time t is dropped whenever it can be clearly inferred from
the context.
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7704 WANG et al.

3.1 Behavior embedding based control framework

A virtual system of (1) can be represented by

ẏ = 𝔣(y, x, v), (18)

with 𝔣(x, x, u) = f (x, u), where y(t) ∈ Rn
, v(t) ∈ Rm are the virtual state and input, respectively, and the variable x, taken

as an exogenous variable, is the state of the original system (1).

Remark 1. If 𝔣 is chosen to be linear in y and v, the virtual system (18) becomes a conventional global LPV
embedding.39 By allowing for more general behavior embeddings (e.g., nonlinear parameter-varying embed-
ding), we can further reduce the conservatism resulting from the embedding while still providing a similar
convex control formulations.

To obtain a∗-universal stabilizing controller, we construct virtual system (18) satisfying the following two conditions:

C1 (virtual feedback) For any admissible state trajectory x of , the projected virtual behavior x ∶= {(y, v)|(y, x, v) ∈ }
is universally exponentially stabilizable, that is, for any virtual reference (y∗, v∗) ∈ x there exists a virtual feedback
controller of the form

v = 𝜅
fb(y, x, y∗, v∗), (19)

where 𝜅
fb ∶ Rn ×Rn ×Rn ×Rm → Rm is a locally Lipschitz continuous map, such that (18) is exponentially stabilized

by (19) at (y∗, v∗).
C2 (virtual feedforward) For any admissible trajectory x of  and any reference trajectory (x∗, u∗) ∈ ∗ ⊆ , there exists

a virtual feedforward controller of the form

v∗ = 𝜅
ff(x, x∗, u∗), (20)

where 𝜅
ff ∶ Rn ×Rn ×Rm → Rm is a locally Lipschitz continuous map, such that u∗ = 𝜅

ff(x∗, x∗, u∗) and (x∗, v∗) ∈ x
hold, that is, any state reference from ∗ is admissible to the virtual system.

By substituting (20) into (19) and setting y∗ = x∗, system (18) is globally exponentially stabilized at the reference x∗
via the following controller:

v = 𝜅(y, x, x∗, u∗) ∶= 𝜅
fb(y, x, x∗, 𝜅ff(x, x∗, u∗)). (21)

By setting y = x and v = u, we obtain an overall controller for system (1):

u = 𝜅(x, x∗, u∗) ∶= 𝜅(x, x, x∗, u∗). (22)

Closed-loop stability with 𝜅 is guaranteed by the following theorem.

Theorem 2. Consider the system (1) and a reference behavior ∗. Assume that there exists a virtual system
representation (18) such that Conditions C1 and C2 hold. Then, for any 𝜅

fb and 𝜅
ff that satisfy C1 and C2, the

closed-loop system (1) under (22) is ∗-universally exponentially stable.

Proof. From (18) and (21), we can obtain a virtual closed-loop system of the form

ẏ = 𝔣(y, x, 𝜅(y, x, x∗, u∗)). (23)

Since 𝜅 is locally Lipschitz continuous due to the definition of 𝜅
fb and 𝜅

ff, then (23) is forward complete by
Angeli and Sontag40(Theorem 2). We use 𝜅 to denote the behavior of (23), that is, 𝜅 = {(y, x)} where (y, x) are
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WANG et al. 7705

the feed-forward solution of (23). Given a trajectory x, we can obtain the projected behavior of 𝜅 as 𝜅

x =
{y|(y, x) ∈ 𝜅}. For any x∗ ∈ ∗, Condition C2 implies that x∗ ∈ 𝜅

x for all x. Furthermore, by Condition C1
we have that all y ∈ 𝜅

x converge to x∗ exponentially.
Let 𝜅 be the closed-loop behavior of the original dynamics (1) and the controller (22). Since the

choice of virtual system (18) satisfies 𝔣(x, x, u) = f (x, u), then (23) is a virtual system of (3). For any x ∈ 𝜅 ,
we have x ∈ 𝜅

x by the behavior embedding principle, which further implies that x converges to x∗ ∈ ∗
exponentially. ▪

Example 1. Consider a system with state x = [x1 x2]⊤ and nonlinear dynamics

ẋ = A(x)x + Bu ∶=

[
−1 0

− sin x2 −1

]

x +

[
1
0

]

u. (24)

This system is not universally stabilizable as any trajectory starting in the plane x2 = 0 will remain in this
plane. However, it can be∗-universally stabilized if all reference trajectories in∗ satisfy x∗2(t) = 0, ∀t ∈ R+.
First, we choose the virtual system

ẏ = A(x)y + Bv, (25)

and then take the virtual feedback controller as

v = v∗ + (y2 − y∗2) sin x2, (26)

where (v∗, y∗) is the virtual reference trajectory, that is, ẏ∗ = A(x)y∗ + Bv∗. The closed-loop system of (25) and
(26) becomes

̇̃y = Acl(x)ỹ =

[
−1 sin x2

− sin x2 −1

]

ỹ, (27)

where ỹ = y − y∗. Since Acl(x) + A⊤

cl(x) = −2I for all x ∈ R2, the above system is globally exponentially
stable, which further implies that the virtual feedback controller (26) satisfies Condition C1. Moreover,
Condition C2 also holds if we take the virtual feedforward controller as y∗2 = x∗2 = 0 and v∗ = u∗. By the embed-
ding principle, we obtain a ∗-universal stabilizing controller u = u∗ + x2 sin x2 for the original nonlinear
system (24).

3.2 Virtual control contraction metrics

Here we present a constructive method for designing a virtual feedback controller satisfying Condition C1 via VCCMs. It
can be viewed as an extension of the CCM approach9 to ∗-universal stabilization.

For any fixed admissible state trajectory x of , the virtual system (18) becomes a time-varying nonlinear system. Its
associated differential dynamics can be given by

𝛿̇y = A(𝜎)𝛿y + B(𝜎)𝛿v, (28)

where 𝜎 = (y, x, v), A = 𝜕𝔣
𝜕y

and B = 𝜕𝔣
𝜕v

.

Remark 2. Note that (28) fulfills the properties of an LPV system (see Reference 39) with σ as the
scheduling-variable. In fact, if one takes the original nonlinear system (1) as a virtual system (18) (i.e., 𝔣 = f ),
then (28) is a generalized local LPV embedding, see more details in Section 5.

Definition 1. A uniformly-bounded Riemannian metric M(y, x) is said to be a virtual control contraction
metric (VCCM) for (1), if there exists a matrix function K(y, x) ∈ Rn×m satisfying
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7706 WANG et al.

Ṁ +M(A + BK) + (A + BK)⊤M + 2𝜆M ⪯ 0 (29)

for some constant 𝜆 > 0.

The following result is a direct application of Reference 9 (Theorem 1).

Proposition 1. Given a virtual system (18) based embedding of (1), Condition C1 holds if there exists a VCCM.

3.2.1 Control synthesis

The VCCM-based control synthesis problem can be formulated as the following conditions on a uniformly-bounded
metric W(y, x) ∶ Rn ×Rn → Rn and matrix function Y (y, x) ∶ Rn ×Rn → Rm×n:

−Ẇ + AW +WA⊤ + BY + Y⊤B⊤ + 2𝜆W ⪯ 0, (30)

which implies (29) with M(y, x) = W−1(y, x) and K(y, x) = Y (y, x)W−1(y, x). Moreover, (28) is exponentially stable under
the differential controller

𝛿v = K(y, x)𝛿y. (31)

The formulation in (30) is convex in W , Y , but infinite dimensional as the decision variables are sets of smooth matrix
functions. There are various finite-dimensional LMI approximations to turn (30) into efficiently computable synthesis
problems. One way is to apply an LPV synthesis technique, since the differential dynamics (28) vary with 𝜎, which can
be seen as the scheduling-variable. By computing a convex outer approximation (e.g., a convex polytope) of the possible
signal variations (𝜎, ẋ) in  , (30) can be transformed to a finite set of LMI constraints using LPV state-feedback synthesis
techniques if A, B, and Y are rational matrix functions in 𝜎, and W is rational matrix function in y, x (see Reference 25
for an overview). An alternative representation for A, B, Y is the gridding based approach, see Reference 41 for details.
Another way is to approximate the components of (g, B, Y , W) by polynomials up to a chosen order, and verifying the
inequalities by the sum-of-squares relaxation.42

3.2.2 Control realization

We construct the virtual feedback realization by integrating the above differential controller (31) along a particular path,
that is,

v(t) = 𝜅
fb(y(t), x(t), y∗(t), v∗(t)) ∶= v∗(t) +

∫

1

0
K(𝛾(s), x(t))𝛾s(s)ds, (32)

with 𝛾s ∶= d𝛾

ds
, where the path 𝛾(s) ∶ [0, 1]→ Rn is a (shortest path) geodesic 𝛾 connecting y∗(t) to y(t) w.r.t. the metric

M(y, x). Based on Reference 9, we can conclude that (32) is a virtual feedback controller satisfying Condition C1.
Note that if the metric M is independent of y, then 𝛾 is a straight line 𝛾(s) = sy(t) + (1 − s)y∗(t), which allows to compute

an analytic form of the controller through (32). For general y-dependent metric, the proposed control realization (32)
requires solving an online optimization problem to compute the geodesic 𝛾 :

min
c∶[0,1]→Rn∫

1

0
c⊤

s M(c(s), x(t))csds s.t. c(0) = y∗(t), c(1) = y(t), (33)

where cs ∶= dc
ds

and then using numerical integration to compute (32). In Reference 43, a pseudo-spectral approach was
used to construct an approximate problem for the geodesic computation (33), which can reduce the computational load
of the controller computation significantly while maintaining a good approximation quality. A recent work44 devel-
oped a dynamical control realization method, which uses gradient flows to approximate the geodesics. By applying that
approach to (32), no online optimization is required to compute (32) at the price of slightly-reduced convergence rate for
the closed-loop system.
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WANG et al. 7707

3.2.3 Case study

We illustrate our approach on the pendubot system from Reference 45. The configuration, coordinates, and relative
parameters of the pendubot are depicted in Figure 1. The pendubot dynamics is a nonlinear system of the form

M(𝜃)𝜃̈ + C(𝜃, 𝜃̇)𝜃̇ + G(𝜃) = R𝜏, (34)

where 𝜃 = [𝜃1, 𝜃2]⊤ is the angle configuration of two links and 𝜏 is the control input torque at the base joint. Here the
coefficient matrices are

M =

[
(m1 +m2)l2

1 m2l1l2 cos(𝜃1 − 𝜃2)
m2l1l2 cos(𝜃1 − 𝜃2) m2l2

2

]

, C =

[
fv1 m2l1l2 sin(𝜃1 − 𝜃2)𝜃̇2

−m2l1l2 sin(𝜃1 − 𝜃2)𝜃̇1 fv2

]

,

G =

[
−(m1∕2 +m2 +mh)l1g sin 𝜃1

−m2l2g sin 𝜃2

]

, R =

[
1
0

]

,

where fv1, fv2 are the friction coefficients of two joints. We consider the stabilization problem of unstable set-points over a
large range, that is, the reference 𝜃

∗ ∈∶= {(𝜃∗1 , 𝜃
∗
2 )||𝜃

∗
1 | ≤ 𝜋∕3, 𝜃

∗
2 = 0}. Our proposed approach takes the following steps.

1. Behavior embedding via virtual system. Here we construct three virtual systems via different treatment of nonlinearities
in M, C, G:

M(𝜃)𝜙̈ + C(𝜙, 𝜙̇)𝜙̇ + G(𝜙) = Rv, (35a)

M(𝜃)𝜙̈ + C(𝜃, 𝜃̇)𝜙̇ + G(𝜙) = Rv, (35b)

M(𝜃)𝜙̈ + C(𝜃, 𝜃̇)𝜙̇ +H(𝜃)𝜙 = Rv, (35c)

where 𝜙, v are the virtual angle and input, respectively. The matrix H(𝜃) ∈ R2×2 is chosen such that H(𝜃)𝜃 = G(𝜃) for
all 𝜃 ∈ R2. Note that such H always exists as G is continuously differentiable and G(0) = 0.46 System (35a) only hides
the nonlinear terms M(𝜃)𝜃̈ of (34) into the linear embedding M(𝜃)𝜙̈ while keeping the rest unchanged. System (35c)
takes a full LPV embedding for all the nonlinear terms. System (35b) sits between (35a) and (35c). By introducing the
virtual state y = [𝜙, 𝜙̇]⊤ and external parameter x = [𝜃, 𝜃̇]⊤, we rewrite (35a)–(35c) as virtual systems (18).

2. Control synthesis. For each virtual system representation, we apply the gridding method to solve (30) with 𝜆 = 0.5
to search for a constant W ≻ 0 and a matrix function Y (y, x) over the operating region |𝜃1| ≤ 𝜋∕3, |𝜃2| ≤ 𝜋∕18,

|𝜃̇1| ≤ 1, |𝜃̇2| ≤ 1.
3. Control realization. As the VCCM M = W−1 is a constant metric, the virtual feedback controller in (32) can be

written as

v = 𝜅
fb(y, x, y∗, v∗) ∶= v∗ +

(

∫

1

0
K(𝛾(s), x)ds

)

(y − y∗), (36)

F I G U R E 1 The pendubot system (see physical parameters in Reference 45).
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7708 WANG et al.

F I G U R E 2 State responses of (34) with VCCM controllers based on different virtual systems: blue—(35a), green—(35b), red—(35c),
black dashed—reference trajectory.

with K(y, x) = Y (y, x)W−1 is the differential control gain and 𝛾(s) = (1 − s)y∗ + sy is the geodesic connecting y∗ to y.
Note that the above virtual feedback controller satisfies Condition C1 when the scheduling variable (y, x) is within the
operating region. For virtual feedforward design, we choose y∗ = x∗ ∶= [𝜃∗, 0]⊤ and v∗ = 𝜅

ff(x, x∗, u∗) ∶= u∗ where u∗
is the nominal input torque satisfying Ru∗ = G(𝜃∗). Finally, by applying the embedding rule y(t) = x(t) and u(t) = v(t)
for all t, we obtain the overall controller for the (34) as

u = u∗ +
(

∫

1

0
K(𝛾(s), x)ds

)

(x − x∗), (37)

where 𝛾(s) = (1 − s)x∗ + sx.

Figure 2 depicts the closed-loop responses for control design based on virtual systems (35a)–(35c). The controllers
from (35a) and (35b) can stabilize the system at different set points while unstable behavior is observed for the controller
based on (35c) at the reference point 𝜃

∗
1 = −𝜋∕4. The explanation is as follows. First, we can easily verify that the chosen

feedforward controller 𝜅
ff satisfies Condition C2 under the virtual systems (35a) and (35b). Thus, ∗-universal stability

follows by Theorem 2. Second, for the virtual system (35c), Condition C2 requires H(x)x∗ = Ru∗,∀x ∈ R2, which only
holds when 𝜃

∗
1 = 0. For this commonly used feedforward, a.k.a. input offset or trimming, in LPV gain scheduled control,

Condition C2 explains why the closed-loop response is stable for the large set-point jump from 𝜃
∗
1 = 𝜋∕4 to 𝜃

∗
1 = 0, but

unstable for the same amount of jump from 𝜃
∗
1 = 0 to 𝜃

∗
1 = −𝜋∕4. The instability is mainly due to the violation of Con-

dition C2 by the chosen 𝜅
ff, showing that an inappropriate design of 𝜅

ff can reduce the stability margin obtained from
feedback control synthesis. For further analysis of this issue, see Section 5.3.

3.3 Virtual reference generator

As shown in Section 3.2.3, if Condition C2 is not satisfied then closed-loop stability can suffer. However, the more reference
trajectories∗ contains, the more restrictive this condition becomes. Taking the virtual control-affine system ẏ = g(y, x) +
B(y, x)v as an example, Condition C2 becomes

ẋ∗(t) − g(x∗(t), x(t)) ∈ Span {B(x∗(t), x(t))} , ∀x∗ ∈ ∗, x ∈ , (38)

where Span{B} denotes the column space of the matrix B. Such a condition often does not hold if the input dimension is
smaller than the state dimension.

In this section, we relax Condition C2 by introducing virtual reference generators (VRGs). Roughly speaking, instead
of forcing y∗(t) = x∗(t) for all t ∈ R+, a VRG allows to find a virtual reference y∗(t) that can deviate from x∗(t), but it
represents an admissible virtual state trajectory that converges to x∗(t), guiding x(t) towards x∗(t) as the virtual feedback
controller (19) ensures that all y(t) (including x(t)) converge to y∗(t).
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WANG et al. 7709

We create a copy of the virtual system (18) to govern the dynamics of the VRG:

ẏ∗ = 𝔣(y∗, x, v∗), (39)

with initial condition y∗(0) = x∗(0), where the exogenous signal x is generated by system (1). Let d ∶= x − y∗, then (39)
can be rewritten as

ẏ∗ = F(y∗, v∗, d) ∶= 𝔣(y∗, y∗ + d, v∗). (40)

Here d(t) is a known time-varying parameter. As one of our contributions, we replace Condition C2 with the following
weaker condition.

C2′: For any reference trajectory (x∗, u∗) ∈ ∗, there exists a virtual reference controller

v∗ = 𝜅
ff(y∗, x, x∗, u∗), (41)

with u∗ = 𝜅
ff(x∗, x∗, x∗, u∗), where 𝜅

ff ∶ Rn ×Rn ×Rn ×Rm → Rm is a locally Lipschitz continuous map, such that
for any signal d = x − y∗ with |d(t)| ≤ Re−𝜆t|d(0)|, the closed-loop solution y∗ of (40) exists and

|y∗(t) − x∗(t)| ≤ R′e−𝜆t|x(0) − y∗(0)|, (42)

for some constant R′ > 0.

Theorem 3. Consider the system (1) and a reference behavior ∗. Assume that there exists a virtual system
representation (18) such that Condition C1 and C2′ hold. Then, for any 𝜅

fb and 𝜅
ff that satisfy C1 and C2′,

system (1) is ∗-universally exponentially stable under the following controller

ẏ∗ = 𝔣(y∗, x, 𝜅
ff(y∗, x, x∗, u∗)), y∗(0) = x∗(0), u = 𝜅

fb(x, x, x∗, 𝜅ff(y∗, x, x∗, u∗)). (43)

Proof. Condition C1 implies |x(t) − y∗(t)| ≤ Re−𝜆t|x(0) − x∗(0)| since x(t) is also a feasible virtual state tra-
jectory of (18). By Condition C2′ we have |y∗(t) − x∗(t)| ≤ R′e−𝜆t|x(0) − y∗(0)|, which further leads to |x(t) −
x∗(t)| ≤ |x(t) − y∗(t)| + |y∗(t) − x∗(t)| ≤ (R + R′)e−𝜆t|x(0) − x∗(0)|. ▪

Example 2. Consider the following nonlinear system

ẋ = f (x) + Bu ∶=

[
2x1 + x2

x1 + x2
1 − x3

1 − x2

]

+

[
1
0

]

u, (44)

and the reference set ∗ = {(x∗, u∗)|x∗, u∗ are constant signals such that f (x∗) + Bu∗ = 0}. We construct a
control-affine virtual system ẏ = g(y, x) + Bv with

g(y, x) =

[
2y1 + y2

y1 − y2 + x2
1 − x3

1

]

.

Simple incremental analysis yields that the virtual feedback controller 𝜅
fb(y, x, y∗, v∗) = v∗ − K(y − y∗) with

K = [ 5 1.5 ] satisfies Condition C1. For the virtual feedforward design, we can verify that (38) does not hold
for g since for any set-point x∗, there are infinitely many x1 ∈ R such that x∗1 − x∗2 + x2

1 − x3
1 ≠ 0. In fact, Con-

dition C2 cannot be satisfied for this choice of control-affine virtual embedding, as (38) does not hold for any
control-affine virtual embedding of (44) that tries to hide all or part of the nonlinear term x2

1 − x3
1. Here we
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7710 WANG et al.

F I G U R E 3 State responses of (44) with VRG-D controller (47) and linear controller (45) from initial state x(0) = [ 7 7 ]⊤. The virtual
reference y∗2(t) first deviates from x∗2 due to the large initial value of x1(t) and then converges to x∗2 when x1(t) approaches to x∗1 . The state x2(t)
converges to x∗2 as it follows y∗2(t).

choose the virtual feedforward input as v∗ = u∗ = arg minv∈Rm |g(x∗, x) − Bv|2. The overall controller (22) is a
linear law:

u = u∗ − K(x − x∗). (45)

Simulation results in Figure 3 show that this controller fails to stabilize the system for some large initial states.
Now we consider the following VRG

y∗1 = x∗1 , ẏ∗2 = y∗1 − y∗2 + x2
1 − x3

1 , v∗ = u∗ + x∗2 − y∗2, (46)

which satisfies Condition C2′ as y∗2(t) converges to x∗2 if x1(t) approaches to y∗1. Then, the overall controller (43)
becomes

ẏ∗2 = x∗1 − x∗2 + x2
1 − x3

1 , y∗2(0) = x∗2 , u = u∗ + x∗2 − y∗2 − K

(

x −

[
x∗1
y∗2

])

. (47)

The closed-loop stability follows by Theorem 3 and Figure 3 also shows stable response to a large initial state.

3.4 Comparison with CCM-based control

A special case of the VCCM approach is when we take the original system itself as a virtual representation. In this case,
both control synthesis and realization are the same as in the CCM approach.9,10 With the proposed generalization based
on the behavior embedding, our method can be applied to weak stabilization problems where the CCM approach fails to
produce a feedback controller, see Example 1. Additionally, the complexity of the control design can be simplified since
some of the system nonlinearities can be treated as external parameters at the synthesis stage.

Example 3. Consider an example taken from Reference 47 with state x = [ x1 x2 x3 ]⊤ and nonlinear
dynamics ẋ = f (x) + Bu where

f (x) =
⎡
⎢
⎢
⎢
⎣

−x1 + x3

x2
1 − x2 − 2x1x3 + x3

−x2

⎤
⎥
⎥
⎥
⎦

, B =
⎡
⎢
⎢
⎢
⎣

0
0
1

⎤
⎥
⎥
⎥
⎦

. (48)
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WANG et al. 7711

F I G U R E 4 State responses of (48) with VCCM, CCM and LQR control from initial state x(0) = [ 0.5 0.5 0.5 ]⊤ (left) and
x(0) = [ 10 10 10 ]⊤ (right).

The task is set-point tracking, that is, ∗ = {(x∗, u∗)|f (x∗) + Bu∗ = 0} with linear quadratic regulation (LQR)
cost ∫ ∞0

(
x⊤x + u2) dt. As pointed out in Reference 9, the above system does not allow for a uniform CCM.

Then, a pair of state-dependent controller and metric have been computed by solving state-dependent LMIs.
However, implementation of this CCM controller requires solving an online optimization problem at each
time step due to the non-uniform metric.

For the proposed VCCM approach, we consider the virtual embedding ẏ = g(y, x) + Bv with

g(y, x) =
⎡
⎢
⎢
⎢
⎣

−y1 + y3

−y2 + y3 + x2
1 − 2x1x3

−y2

⎤
⎥
⎥
⎥
⎦

.

Since the associated virtual differential dynamics becomes an LTI system, we can obtain a constant metric
and an LQR gain K based on the cost functional ∫ ∞0

(
𝛿

⊤

y 𝛿y + 𝛿
2
v
)

dt. We choose the VRG with y∗1 = x∗1 , ẏ∗2 =
−y∗2 + y∗3 + x2

1 − 2x1x3, y∗3 = x∗3 and v∗ = y∗2, which satisfies Condition C2′. Then, our method gives a simple
dynamic controller for (48):

ẏ∗2 = −y∗2 + x∗3 + x2
1 − 2x1x3, y∗2(0) = x∗2 , u = y∗2 + K(x − y∗). (49)

Figure 4 shows that for small initial conditions, the responses of VCCM, CCM, and LQR controllers are almost
identical, where the LQR controller is constructed based on the local linearized model at the origin. In con-
trast, for larger initial conditions, the LQR controller was not stabilizing, while both the VCCM and CCM
controllers were. On the other hand, the implementation of the VCCM controller (49) is much simpler than
the CCM controller in Reference 9 as it does not require online optimization for computing geodesics.

4 DISTURBANCE REJECTION VIA ROBUST VCCM

Building on the results of the previous sections, we can extend the VCCM approach for general disturbance rejection.
Given the system (5), we first construct a virtual system

ẏ = 𝔣(y, x, v, w), 𝜁 = 𝔥(y, x, v, w), (50)
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7712 WANG et al.

with the property that 𝔣(x, x, u, w) = f (x, u, w) and 𝔥(x, x, u, w) = h(x, u, w), where y(t) ∈ Rn
, v(t) ∈ Rm

, 𝜁(t) ∈ Rq are the
virtual state, virtual control input and virtual performance output, respectively, and x(t) is the real state of (5).

The associated differential dynamics of the projected virtual behavior x are given by

𝛿̇y = A(𝜎)𝛿y + B(𝜎)𝛿v + Bw(𝜎)𝛿w, 𝛿𝜁 = C(𝜎)𝛿y + D(𝜎)𝛿v + Dw(𝜎)𝛿w, (51)

where 𝜎 = (y, x, v, w), A = 𝜕𝔣
𝜕y

, B = 𝜕𝔣
𝜕v

, Bw = 𝜕𝔣
𝜕w

, C = 𝜕𝔥
𝜕y

, D = 𝜕𝔥
𝜕v

and Dw = 𝜕𝔥
𝜕w

. Applying the differential state feedback (31)
to (51) gives the closed-loop differential dynamics:

𝛿̇y = (A + BK)𝛿y + Bw𝛿w, 𝛿𝜁 = (C + DK)𝛿y + Dw𝛿w. (52)

A robust virtual control contraction metric (RVCCM) is a uniformly bounded metric M(y, x) used to establish an 2 gain
bound for (52), that is,

V̇(y, x, 𝛿y) ≤ −𝛿
⊤

𝜁
𝛿𝜁 + 𝛼

2
𝛿

⊤

w𝛿w, (53)

where V(y, x, 𝛿y) = 𝛿
⊤

y M(y, x)𝛿y is called a virtual differential storage function. The following result gives a sufficient
condition to search for the pair (K, M).

Proposition 2. Suppose that there exist matrix functions Y (y, x) ∶ Rn ×Rn → Rm ×Rn and W(y, x) ∶ Rn ×
Rn → Rn ×Rn with c2I ⪰ W(y, x) ⪰ c1I such that

⎡
⎢
⎢
⎢
⎣

H Bw (CW + DY )⊤

B⊤

w −𝛼I D⊤

w

(CW + DY ) Dw −𝛼I

⎤
⎥
⎥
⎥
⎦

≺ 0, ∀x, y ∈ R
n
, (54)

where H = −Ẇ + AW +WA⊤ + BY + Y⊤B⊤. Then, the controlled system (52) with K = YW−1 satisfies the
2-gain condition (53) with M = W−1.

Proof. The proof follows similarly as in Reference 10. ▪

The transformation from (53) to (54) is similar to the case of H∞ state-feedback control for linear systems (e.g., Ref-
erence 48). Here (54) takes the form of a point-wise LMI in W and Y , that is, it is still convex, but infinite dimensional.
Numerically tractable solutions are discussed in Section 3.2.

For realization of the controller in case of disturbance rejection, we consider a VRG of the form

ẏ∗ = 𝔣(y∗, x, v∗, w∗), 𝜁
∗ = 𝔥(y∗, x, v∗, w∗), (55)

with initial condition y∗(0) = x∗(0), where the exogenous input x is generated by the original system (5) under the control
law u = 𝜅

fb(x, x, y∗, v∗)where 𝜅
fb is given in (32). From Reference 10 (Theorem 1) and the behavioral embedding principle,

the real closed-loop system achieves an 2-gain bound of 𝛼 from w − w∗ to z − 𝜁
∗. We can also obtain the 2-gain bound

(denoted as 𝛼wy) from 𝛿w to 𝛿y of (52) under the differential gain K = YW−1. The performance bound from w − w∗ to z − z∗
is given as follows.

Theorem 4. Consider the system (5) and a reference behavior ∗. Assume that there exists a virtual embedding
such that (54) is feasible and there exists a virtual feed-forward controller 𝜅

ff achieving2 gain of 𝛼y𝜁 from x − x∗
to 𝜁

∗ − z∗ for the VRG (55). Then, the realization of the overall control law (43) achieves a ∗-universal 2-gain
bound of 𝛼 =

√
𝛼2 + 𝛼

2
wy𝛼

2
y𝜁

for the system (5).

Proof. From the above analysis, the upper bound of the 2 gain can be established by

||z − z∗||2T ≤ ||z − 𝜁
∗||2T + ||𝜁∗ − z∗||2T ≤ 𝛼

2||w − w∗||2T + 𝛼
2
y𝜁
||x − x∗||2T ≤ (𝛼

2 + 𝛼
2
wy𝛼

2
y𝜁
)||w − w∗||2T .

▪
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WANG et al. 7713

5 A UNIFIED GENERALIZATION FOR LPV CONTROL

In this section, we first summarize the design procedure of the proposed VCCM approach. Then, by step-by-step compar-
isons, we show that the VCCM approach is a unified generalization for two distinct categories of LPV control methods,
namely, global and local LPV state-feedback control. Moreover, through the lens of Theorem 2, we provide explanations
to the question why both the local and global standard LPV control realizations do not provide rigorous global stability
and performance guarantees for tracking control.

5.1 Overview of VCCM-based control

We summarize the procedure of the VCCM-based control as follows (see also Figure 5):

• Two-stage modeling: We first choose a virtual system by treating some state-dependent terms as exogenous signals,
resulting in a nonlinear parameter-varying (NPV) behavior embedding. Then, by taking continuous linearization w.r.t.
the virtual state and input, we obtain a virtual differential dynamics, which can be treated as an LPV system.

• Control synthesis: We use the LMI-based control synthesis framework for LPV systems to design a linear differential
state-feedback controller.

• Control realization: We construct a virtual feedback controller by integrating the differential controller over a particular
path. This realization ensures that Condition C1 holds. We also need to design a virtual feedforward controller based
on the NPV embedding such that either Condition C2 or C2′ holds. Finally, the overall controller based on behavior
embedding principle provides rigorous stability and performance guarantees.

5.2 Local LPV control

We rephrase a classic local LPV control method—the equilibrium linearization approach49 in the VCCM framework. For
simplicity, we only consider control design for the nominal system (1).

F I G U R E 5 Control design procedure for the proposed VCCM approach.
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7714 WANG et al.

5.2.1 Two-stage modeling

The local LPV control method takes a trivial NPV embedding, that is, the virtual dynamics is a copy of the original nonlin-
ear dynamics (1). Let {(x∗, u∗)(𝜎)}𝜎∈Ω be a smooth equilibrium family of (1) where 𝜎 ∈ Ω ⊂ Rn

𝜎 is a scheduling variable
depending on the internal state x, that is, 𝜎 = 𝜓(x) is a smooth mapping. By performing Jacobian linearization of (1)
around the equilibrium family, we obtain an LPV model as follows:

d
dt

𝛿x = A(𝜎)𝛿x + B(𝜎)𝛿u ∶=
𝜕f
𝜕x
(x∗(𝜎), u∗(𝜎))𝛿x +

𝜕f
𝜕u
(x∗(𝜎), u∗(𝜎))𝛿u, 𝜎 ∈ Ω, (56)

where 𝛿x = x − x∗(𝜎), 𝛿u = u − u∗(𝜎) are the deviation variables. The VCCM approach extends the modeling of local LPV
control in two aspects. First, it allows for more general NPV embeddings, which can hide some “troublesome” nonlinear
terms into the exogenous variables and result in a simple control synthesis problem. Second, linearization is extended
from the equilibrium manifold to the entire state/input space (see Figure 6), which allows for tracking control design for
time-varying references.

5.2.2 Control synthesis

By solving the same control synthesis problem (30) as the VCCM approach, we obtain an LPV controller of the
form

𝛿u = K(𝜎)𝛿x, (57)

with a given parameterization of K (e.g., an affine function of 𝜎). That is, there exists an Lyapunov function V(𝛿x) =
𝛿x⊤M(𝜎)𝛿x with M(𝜎) ≻ 0 such that

d
dt

V(𝛿x) = 𝛿x⊤

P(𝜎)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[
𝜕M
𝜕𝜎

𝜎̇ + Ac(𝜎)⊤M(𝜎) +M(𝜎)Ac(𝜎)
]

𝛿x < 0, (58)

for all 𝛿x ≠ 0, where Ac(𝜎) = A(𝜎) + B(𝜎)K(𝜎).

F I G U R E 6 Geometric illustration of gain-scheduling and VCCM-based control realizations. For the gain-scheduling approach, the
realization constrains the reference trajectories to the equilibrium manifold and takes the deviation x(t) − x∗(t) as the variable 𝛿x, which can
violate conditions C1 and C2 and result in a loss of stability. Our proposed VCCM approach takes a path integral along the geodesic 𝛾 and
allows the references x∗(t) temporally deviating from the equilibrium manifold. These two features make the resulting control realization
satisfy the conditions C1 and C2 and hence guarantee stability.
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WANG et al. 7715

5.2.3 Control realization

The realization task for a local LPV controller (57) is to construct a gain-scheduled law u = 𝜅(x, 𝜎) for (1) satisfying

u∗(𝜎) = 𝜅(x∗(𝜎), 𝜎), (59a)

𝜕𝜅

𝜕y
(y∗(𝜎), 𝜎) = K(𝜎). (59b)

Condition (59a) means that the reference point x∗ is also an equilibrium of the closed-loop system. Condition (59b)
states that linearization of u = 𝜅(x, 𝜎) at this equilibrium is the local LPV controller (57), which is the key to guarantee
closed-loop stability. However, such a realization generally does not exist when K(𝜓(x)) is not completely-integrable. A
typical realization for (57) used in the LPV literature is

u = u∗(𝜎) + K(𝜎) (x − x∗(𝜎)) , (60)

leading to a nonlinear controller of the form

u = u∗(𝜓(x)) + K(𝜓(x)) (x − x∗(𝜓(x))) . (61)

As pointed out in Reference 24, the closed-loop stability requirements of the above gain-scheduling controller suf-
fer from two drawbacks: first, the state x needs to be sufficiently close to the equilibrium manifold x∗(𝜎); second, the
scheduling signal 𝜎 needs to be sufficiently “slowly varying.” We now give explanations to the above issues by checking
the conditions of Theorem 2.

First, we show that Condition C1 may not hold for the feedback controller (61). Although 𝜎 is implicitly involved in
(61) via equilibrium parameterization, linearization of (61) at the equilibrium manifold yields

𝛿u = K(𝜎)𝛿x +

Kh(𝜎)
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜕u∗(𝜎)
𝜕𝜎

− K(𝜎)𝜕x∗(𝜎)
𝜕𝜎

)
𝜕𝜓

𝜕x
(x∗(𝜎))𝛿x.

Compared with (57), the above equation contains a so-called hidden coupling term Kh(𝜎)𝛿x. Then, the derivative of
Lyapunov function in (58) becomes

d
dt

V(𝛿x) = 𝛿x⊤P(𝜎)𝛿x + 𝛿x⊤
[
B(𝜎)Kh(𝜎)⊤M(𝜎) +M(𝜎)B(𝜎)Kh(𝜎)

]
𝛿x, (62)

which may not always be negative. Thus, Condition C1 may be violated by the virtual feedback realization (61), regard-
less the fact that exponential stability is achieved in the local control synthesis step. This could lead to performance
deterioration or even closed-loop instability.24

Then, we explain the necessity of sufficiently “slow-varying” scheduling signals for closed-loop stability through
the lens of Condition C2. The feedforward component in (61) is x∗(t) = x∗(𝜎(t)) and u∗(t) = u∗(𝜎(t)). Substitut-
ing (x∗, u∗)(𝜎(t)) into (1) yields a residual term 𝜕x∗(𝜎)

𝜕𝜎
𝜎̇, that is, Condition C1 does not hold as (x∗, u∗)(𝜎(t))

is not an admissible trajectory to the virtual system (1). If 𝜎̇ is not sufficiently small, the residual term can
drive the state away from the close neighborhood of x∗(𝜎), where the local stability guarantees of the design
hold.

Compared to gain-scheduling, the proposed VCCM control scheme achieves rigorous global stability and perfor-
mance guarantees based on the following two facts. First, it does not contain any residual term as its reference
trajectory is a feasible solution to the system dynamics. Second, thanks to continuous linearization and contrac-
tion theory, it does not suffer from hidden coupling effects as it only requires K to be path-integrable. By inte-
grating the differential controller along geodesics, it achieves the designed stability and performance.9 In Figure 6,
we also show a illustration of the geometrical comparison between gain-scheduling and VCCM-based control
realizations.
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7716 WANG et al.

We argue that the proposed path-integral based realization is the correct realization of gain scheduling that has been
searched for in the past. Considering a linear differential controller 𝛿u = K(x)𝛿x, its path-integral realization is v = 𝜈(1)
where 𝜈 ∶ [0, 1]→ Rm is a control path satisfying

𝜈(s) ∶= v∗ +
∫

s

0
K(𝛾(𝜏))𝛾s(𝜏)d𝜏, (63)

with 𝛾 ∶ [0, 1]→ Rn as a geodesic connecting y∗ to y. Note that Condition (59a) holds as 𝜈(1) = 𝜈(0) = u∗ if x = x∗. Condi-
tion (59b) holds along the path 𝛾 , that is, 𝜈s = K(𝛾(s))𝛾s(s) for all s ∈ [0, 1]. We connect it to the gain-scheduling controller
(60) by taking N sampled points of 𝛾 where N is sufficiently large. A simple numerical integration scheme for the path
integral (63) is

𝜈(sj+1) ≈ 𝜈(sj) + K(𝛾(sj))
(
𝛾(sj+1) − 𝛾(sj)

)
,

where v(s0) = v∗. Based on this observation, the control path 𝜈 integrates a series of gain-scheduling controllers (60) along
the path 𝛾 , which corresponds to a “scheduled path” to reach reference trajectory, and the VCCM control realization is
the corresponding control action to the state x = 𝛾(1) at one end-point of the path.

Here we give a comparison example of the gain-scheduling and path-integral realization schemes.

Example 4. Consider the following nonlinear system from Reference 26:

ẋ1 = −x1 − x2 + r, ẋ2 = 1 − e−x2 + u, (64)

where r(t) is a measurable reference. Define the equilibrium family by x∗(r) = (0, r) and u∗(r) = e−r −
1, and introduce the scheduling variable 𝜎 = e−r. Pole placement at 𝜆1,2 = −2 gives an LPV controller
(57) with K(𝜎) = [ 1 (−3 − 𝜎) ]. Substituting 𝜎 = e−r into (60) gives a gain-scheduled controller (denoted
by GSC 1):

u = e−r − 1 + x1 − (3 + e−r)(x2 − r). (65)

For this controller, unstable closed-loop responses are observed in Figure 7. Alternatively, applying the
equilibrium relation 𝜎 = e−x2 gives a controller (denoted by GSC 2):

u = x1 + e−x2 − 1, (66)

which contains a hidden coupling term with Kh = [ 0 3 ]⊤. As a direct consequence, the closed-loop differen-
tial dynamics have eigenvalues with larger real parts, that is, 𝜆1,2 = −1∕2 ±

√
3∕2i, leading to slower responses

as shown Figure 7. Moreover, due to the non-zero residual term, the above controller cannot achieve error-free
tracking for time-varying references r(t). The proposed realization (32) takes a path integral of the local LPV

F I G U R E 7 State responses of (64) with gain-scheduling and VCCM control for set-point and reference tracking.
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WANG et al. 7717

controller along a geodesic 𝛾 (in this case, 𝛾 is a straight line connecting x∗ = [0, r]⊤ to x), which can be
analytically computed via

u = u∗ +
∫

1

0
K(𝛾(s))(x − x∗)ds = ṙ + x1 − 3(x2 − r) + e−x2 − 1, (67)

where u∗ = e−r − 1 + ṙ. Figure 7 shows that this controller can follow both piecewise constant (set-point) and
time-varying reference.

Among other local LPV control methods, the so-called velocity linearization approach50 uses a similar technique as
continuous linearization, that is, it uses time derivatives of u(t) and x(t) to produce 𝛿u and 𝛿x, respectively. Then, the LPV
control design is executed on this form and the controller is intuitively, realized by integrating its output 𝛿u and fed by
differentiating the state to produce 𝛿x. However, the controlled system can converge to an arbitrary response and suffers
from implementation issues, due to required differentiation of the measured/estimated state signal. The work51 proposed
a gain scheduling law based on the velocity form as a solution to the realization problem, but without any theoretical
analysis of its implications on stability and performance of the resulting closed-loop system. Moreover, this approach will
suffer from convergence problems as it fails to guarantee Condition C2.

5.3 Global LPV control

Similarly, we rephrase the global LPV control approach52 in the VCCM framework.

5.3.1 Two-stage modeling

In global LPV control, the applied LPV embedding principle can be understood in our setting as follows: the nonlinear
system model (1) is rewritten as a virtual system

ẏ = 𝔣(y, x, v) ∶= Â(x)y + B̂(x)v, (68)

with 𝔣(x, x, u) = f (x, u). The main difference w.r.t. the NPV embedding (18) is that (68) has to be linear in (y, v). Note that
construction of (68) is not unique and in some cases existence of such a virtual form requires dependence of Â and B̂ on
u as well.

By introducing a scheduling map 𝜎 = 𝜓(x), where 𝜓 is a vector function such that Â(x) = A(𝜎) and B̂(x) = B(𝜎) are
affine, polynomial or rational functions of 𝜎 and restricting the variation of 𝜎(t) to a convex set Ω ⊂ Rn

𝜎 , a global LPV
model of (5) is formulated as

ẏ = A(𝜎)y + B(𝜎)u, 𝜎 ∈ Ω. (69)

From the modeling viewpoint, the VCCM approach extends the LPV embedding to NPV embeddings, which can reduce
the conservativeness of the behavioral embedding principle. Recent research results in the LPV literature also try to
formulate extensions of the available toolset in this direction.53,54

5.3.2 Control synthesis

Based on the same synthesis formulation (30) of the VCCM approach, we can obtain an LPV controller

v = K(𝜎)y, (70)

with a given parameterization of K (e.g., an affine function of 𝜎).
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5.3.3 Control realization

Due to the behavior embedding principle, the real controller takes the form of

u = K(𝜓(x))x, (71)

which stabilizes (69) if it maintains 𝜎(t) ∈ Ω. For set-point tracking, a possible realization28,29 of (70) is

u = u∗ + K(𝜓(x))(x − x∗). (72)

It might be assumed that due to the linearity of (69), stability guarantee for the origin trivially extends to any other set-
point (x∗, u∗) by applying a state transformation in the constructed Lyapunov/storage function V . However, it has been
recently shown that there is a fundamental gap in the reasoning extending the resulting Lyapunov/storage function
for such cases.29

For the LPV embedding (68), the VCCM synthesis does not require any Jacobian linearization, and hence it is
equivalent to the LPV synthesis. Since the metric is independent of y, the realization for (70) takes the form of

u = 𝜅
ff(x, x∗, u∗) + K(𝜓(x))(x − x∗), (73)

where the feed-forward term 𝜅
ff is chosen such that Condition C2 holds. From Theorems 2 and 4, the above controller

achieves global stability and performance for all set-points. Thus, the possible loss of stability and performance guaran-
tees of the LPV realization (72) is due to the fact that Condition C2 generally does not hold for the virtual feed-forward
controller v∗ = u∗. Here we give a brief explanation, see Reference 29 for details.

For simplicity, we consider a simple LPV embedding:

ẏ = A(𝜎)y + Bv, 𝜎 = 𝜓(x). (74)

Suppose that there exist an LPV controller v = K(𝜎)y and a quadratic Lyapunov function V(y) = y⊤My with M ≻ 0 such
that the closed-loop system ẏ = Ac(𝜎)y ∶= (A(𝜎) + BK(𝜎)) y is asymptotically stable, that is, ∀𝜎 ∈ Ω

P(𝜎) ∶= A⊤

c (𝜎)M +MAc(𝜎) ≺ 0. (75)

For the set-point (x∗, u∗) ≠ (0, 0), the closed-loop system under the realization (72) becomes

ẋ = A(x)x + B[u∗ + K(𝜓(x))(x − x∗)]. (76)

By introducing 𝛿x = x − x∗, the closed-loop error dynamics can be rewritten as

̇𝛿x = A(𝜎)x − A(𝜎∗)x∗ + BK(𝜎)𝛿x = (Ac(𝜎) + Δ(x, x∗)) 𝛿x, (77)

where Δ is defined by Δ(x, x∗)(x − x∗) ∶= (A(𝜎) − A(𝜎∗)) x∗ with 𝜎
∗ = 𝜓(x∗). By using the quadratic Lyapunov function

V(𝛿x) = 𝛿x⊤M𝛿x, we obtain

V̇(𝛿x) = 𝛿x⊤
(

P + Δ⊤M +MΔ
)
𝛿x. (78)

If there exist (x, x∗) with 𝜓(x), 𝜓(x∗) ∈ Ω such that PΔ(x, x∗) ∶= P(𝜓(x)) + Δ⊤(x, x∗)M +MΔ(x, x∗) is indefinite, then the
stability guarantee of the origin cannot be extended to the set-point (x∗, u∗). Performance deterioration or even instability
can be observed when Δ is sufficiently large, see Example 5. However, for the VCCM-based realization (73), the term
Δ(x, x∗) in (77) can be compensated by the feed-forward law 𝜅

ff since Condition C2 implies

A(𝜓(x))x∗ + B𝜅
ff(x, x∗, u∗) = 0. (79)

Thus, quadratic stability guarantee of the origin is correctly extended to the set-point (x∗, u∗).
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F I G U R E 8 State responses of (80) with GLPV and VCCM control for different set-points: x∗ = −1.9 (left), x∗ = 0 (middle), and x∗ = 1.9
(right). For the special case with x∗ = 0, the VCCM controller is identical to the GLPV controller. For other reference points, the GLPV
control may converge to a different equilibrium or yield unstable closed-loop behavior while our VCCM controller converges to the desired
equilibrium.

Examples have been reported in References 28 and 55 to show the loss of 2-gain performance guarantees for
set-point tracking when an external disturbance is present. Here, we give an example where, besides loss of performance
guarantees, closed-loop instability occurs.

Example 5. Consider the nonlinear scalar system:

ẋ = f (x) + u ∶= −x + x3 + u, (80)

and its LPV embedding ẏ = −(1 − 𝜎)y + v where 𝜎 = x2. We obtain an LPV control gain K(𝜎) = −2.49 − 1.01𝜎

by solving (54) with 𝛼 = 0.5, Bw = 0, Dw = 0, C = [ 1 0 ]⊤, D = [ 0 0.1 ]⊤ and Ω = [0, 4]. The closed-loop
responses of the global LPV (GLPV) controller (72) and VCCM-based controller (73) for the reference behav-
ior ∗ = {(x∗, u∗)|u∗ = f (x∗)} are depicted in Figure 8. When the set-point x∗ is the origin, both controllers
yield the same closed-loop response. When the magnitude of x∗ increases, undesired responses (e.g., conver-
gence to a different equilibrium or instability) can be observed with the global LPV controller. In contrast, the
VCCM controller remains stable and achieves the setpoint tracking objective.

6 CONCLUSION

In this article, we present a nonlinear state feedback design approach based on the concept of VCCMs. This approach can
be understood as the generalization of several nonlinear control methods. First, it has weaker assumptions than the exist-
ing virtual contraction based control methods. Second, it generalizes the CCM based control design to weak stabilization
problems. Finally, we argue that the VCCM framework provides a unified generalization of two distinct categories of LPV
state-feedback control methods. The VCCM control realization provides rigorous stability and performance guarantees
for tracking problems while such properties generally do not hold for conventional LPV-based control realizations.
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ENDNOTE
∗Except in cases where the scheduling variable is truly independent input to the system, for example, outside temperature.
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