
Citation: Kővári, B.; Pelenczei, B.;

Knáb, I.G.; Bécsi, T. Beyond Trial and

Error: Lane Keeping with Monte

Carlo Tree Search-Driven

Optimization of Reinforcement

Learning. Electronics 2024, 13, 2058.

https://doi.org/10.3390/

electronics13112058

Academic Editors: Arkaitz Zubiaga,

Yanping Zhang, Wenlin Han

and Jianjun Yang

Received: 25 March 2024

Revised: 3 May 2024

Accepted: 23 May 2024

Published: 25 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Beyond Trial and Error: Lane Keeping with Monte Carlo Tree
Search-Driven Optimization of Reinforcement Learning
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Abstract: In recent years, Reinforcement Learning (RL) has excelled in the realm of autonomous
vehicle control, which is distinguished by the absence of limitations, such as specific training data or
the necessity for explicit mathematical model identification. Particularly in the context of lane keeping,
a diverse set of rewarding strategies yields a spectrum of realizable policies. Nevertheless, the
challenge lies in discerning the optimal behavior that maximizes performance. Traditional approaches
entail exhaustive training through a trial-and-error strategy across conceivable reward functions,
which is a process notorious for its time-consuming nature and substantial financial implications.
Contrary to conventional methodologies, the Monte Carlo Tree Search (MCTS) enables the prediction
of reward function quality through Monte Carlo simulations, thereby eliminating the need for
exhaustive training on all available reward functions. The findings obtained from MCTS simulations
can be effectively leveraged to selectively train only the most suitable RL models. This approach
helps alleviate the resource-heavy nature of traditional RL processes through altering the training
pipeline. This paper validates the theoretical framework concerning the unique property of the Monte
Carlo Tree Search algorithm by emphasizing its generality through highlighting crossalgorithmic and
crossenvironmental capabilities while also showcasing its potential to reduce training costs.

Keywords: autonomous vehicles; reinforcement learning; lane keeping assist systems; Monte Carlo
methods; vehicle dynamics

1. Introduction

Nowadays, the domain of vehicle control and its closely associated field of autonomous
driving stands out as one of the most dynamically evolving sectors [1–3]. The genesis of
such advancements can be attributed to various factors, including the perpetual risk to
human safety in transportation scenarios [4]. The adoption of data-driven design not only
presents the advantage of low latency decision-making but also frequently surpasses the
efficiency of human actions and conventional solutions.

While the integration of black box models in engineering demands meticulous consid-
eration, encompassing legal and safety perspectives [5], it is evident that delegating tasks,
which are not directly safety-critical, such as lane keeping assistance or a lane departure
warning system, to Machine Learning (ML)-based methodologies is imperative for realizing
the vision of safer transportation.

Although the final performance of such systems justifies their utilization, it is crucial
to consider the constraints associated with their design. Preceding their deployment,
an offline learning phase, incurring substantial financial implications, becomes imperative.
This process plays a vital role in the development of a model endowed with the ability to
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make optimal decisions within predefined parameters or conditions. Illustrated in Figure 1,
the training cost of state-of-the-art Machine Learning models exhibits a tendency to escalate
monetarily over time. Hence, for industry stakeholders, a decrease in training duration
would not only result in efficiency gains, but also manifest noteworthy enhancements in
revenue maximization.

Figure 1. Training cost of Machine Learning systems expressed in USD on logarithmic scale [6].

The training process evolves into an iterative procedure due to the fine-tuning of
diverse instructional hyperparameters. Monitoring the progress of individual models
facilitates the determination of suitable values for these parameters. While this statement
universally applies to Machine Learning, Reinforcement Learning introduces an additional
challenge, namely the definition of a reward function that quantifies the success of a
specific objective, thus indirectly leading the agent’s behavior to the optimization goal.
However, on the one hand, the achievable performance highly varies based on the selected
rewarding criteria, as shown in Figure 2. On the other hand, articulating this function is
inherently intricate; often, various physical attributes are interconnected heuristically, and
the adaptability of trained agents to a specific environment becomes discernible through
their behavioral manifestations.

Figure 2. Training characteristics of different reward functions [7].

In order to attain the desired reduction in time and financial costs involved in model
development, there arises a need to preliminarily measure the quality of the formulated
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rewards. This ensures that only the most suitable concepts are utilized for training purposes.
The formulation of this evaluation metric falls within the scope of the Monte Carlo Tree
Search [8], which is an algorithm entirely devoid of explicit training that accomplishes
the construction of an asymmetric tree through the execution of Monte Carlo-simulations.
In real-time applications, sole reliance on the MCTS is evidently not advisable; nonetheless,
it can offer a viable solution for the preliminary assessment of individual reward schemes.

The aim of this research is to compare various reward strategies by utilizing trained
neural networks and the Monte Carlo Tree Search independently, thereby demonstrating
that the judicious fusion of algorithms can lead to the minimization of surplus Rein-
forcement Learning training runs, thus resulting in a reduction in terms of training costs.
Throughout the evaluation phase, an exhaustive analysis has been carried out to examine
how distinct agents respond to modifications applied under identical state and action rep-
resentations to eventually determine the most suitable strategy with regard to adaptability.

2. Related Work

In the latter part of the twentieth century, the widespread adoption of computing
technology spurred the integration of numerical methods and Machine Learning techniques
into a wide set of engineering application domains, such as medical analysis [9], fraud
detection [10], robotics [11] and aerial vehicle localization [12]. This integration aimed to
tackle tasks requiring human-like intelligence capable of making decisions based on learned
experiences. As computational power advanced and demand grew, Artificial Intelligence
(AI) emerged as a pivotal force capable of real-time interventions in vehicular motion.

This marks a significant milestone in AI’s application, thus enriching capabilities
across various sectors, most notably in automotive and transportation systems. The de-
velopment of AlphaGo by DeepMind [13], which famously defeated the world champion
in the game of Go in 2016, stands as a landmark achievement. It showcased the potential
of Deep Reinforcement Learning methodologies in executing control tasks with a preci-
sion surpassing human capabilities, particularly when augmented by Monte Carlo Tree
Search algorithms.

Beyond applications in board games like Go and chess, the Monte Carlo Tree Search
algorithm has demonstrated remarkable success across various domains. For instance,
in trajectory planning for robotics [14], a decentralized variant of the MCTS was introduced,
thus allowing multiple robots to generate a joint distribution over trajectory plans within a
joint action space and periodically updating it with each robot’s decision trees.

In the realm of drone control environments, area scanning tasks were explored by [15]
using both Reinforcement Learning and Monte Carlo Tree Search methods. In a grid world
environment, the objective was to comprehensively survey a designated geographic area
while minimizing the time required.

Addressing the multimode resource-constrained multiproject scheduling problem,
ref. [16] proposed a solution to optimize large-scale real-world computational tasks. Their
approach aimed to minimize the total time requirements of all projects, thus considering
potential resource sharing.

In [17], the experimentation involved both plain and hybrid versions of the MCTS,
with the latter integrating a classic Genetic Algorithm. This hybrid approach was applied
to a structural engineering design problem, which was specifically optimizing load-bearing
elements within a reference reinforced concrete structure while adhering to constraints and
dynamic requirements.

Furthermore, ref. [18] conducted a survey covering the Vehicle Routing Problem
(VRP) domain, including issues such as simultaneous planning and resource allocation for
land vehicle operations in logistics, UAV delivery, and various VRP subfields like Green
VRP, City VRP, and periodic VRP. The solutions employed hyperheuristics, Monte Carlo
simulations, and other established methodologies within the field.

These diverse applications underscore the versatility of the Monte Carlo Tree Search
beyond gaming scenarios. However, despite the breadth of research, integration with
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Deep Reinforcement Learning methods remains an area warranting further exploration.
For additional insights into alternative applications of the MCTS, refer to [19].

The utilization of the MCTS is not initially associated here with training the DQN. Its
relevance was highlighted in a prior investigation focusing on urban traffic scenarios [20],
thus laying the foundation for the current research objective. Here, the aim was to mitigate
emissions and fuel consumption rates, thus prompting the exploration of integrating these
two methodologies. Throughout the research, an examination was conducted on varying
reward structures within the context of a single intersection that can be seen in Figure 3.
Subsequent to the instructional phase, a hierarchy was formulated between rewards, thus
paralleling the categorization ascertained through the implementation of the Monte Carlo
Tree Search.

Figure 3. Geometric design of the junction in the previous research [20].

3. Contribution

While there is unanimous acknowledgment that the reward function, serving as
an abstraction of the optimization objective, stands as a main element in Reinforcement
Learning—as it is the sole source of feedback guiding the agent’s behavioral adaptation
throughout task resolution—a prevalent trend exists where researchers continually in-
troduce novel metrics in pursuit of enhanced performance. However, the challenge of
selecting the optimal function to minimize training costs remains insufficiently addressed,
thus often relying on a trial-and-error approach.

Therefore, our contribution unfolds in three main aspects: Firstly, building upon our
previous research [20], we empirically substantiate and validate our hypothesis within the
domain of lane keeping using a kinematic bicycle model. Specifically, we demonstrate that
the Monte Carlo Tree Search serves as a viable algorithm for evaluating the effectiveness of
reward functions in Reinforcement Learning, without the need for training. This approach
optimizes RL training processes in such a manner that, following the execution of Monte
Carlo simulations, explicit training is exclusively requisite for the optimal reward function.
In our previous study, a traffic signal control problem has been investigated; therefore, we
demonstrate adaptability across environments of our method. Additionally, we showcase
that our methodology also exhibits versatility across algorithms as, contrary to prior
research utilizing a policy gradient method, this paper includes comparisons with a Q
Learning-based algorithm. Secondly, we have trained Deep Q Network agents for this
problem formulation employing five distinct rewarding strategies commonly found in the
literature. Eventually, we have utilized the Monte Carlo Tree Search for the aforementioned
task under identical conditions with the same rewarding strategies.

4. Environment

Numerous methodologies exist for the physical representation of vehicles, thus offer-
ing diverse models grounded in geometric, kinematic, and dynamic constraints [21]. When
considering their application, careful consideration must be given to the velocity of the
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vehicle’s motion. At lower speeds, a kinematic description provides a sufficiently accurate
approximation [22]. Nevertheless, for the evaluation of highway conditions or higher
velocities, it becomes imperative to integrate and compute forces and torques influencing
the vehicle’s dynamics. In such scenarios, the adoption of dynamic vehicle models becomes
indispensable for achieving a more precise representation and analysis.

Throughout both the training and evaluation phases, delivering steering interven-
tions at a consistent velocity may impact the yaw motion of the vehicle. Given that
both phases were conducted at low speeds, a kinematic bicycle model [23] has been em-
ployed, which is schematically shown in Figure 4 and mathematically described with the
following equations:

ẋ = v cos(θ + β)

ẏ = v sin(θ + β)

ψ̇ =
v cos(β)

lr
sin(β)

v̇ = a

β = tan−1(
lr

l f + lr
∗ tan(δ f ))

where:

x: Vehicle’s x coordinate
y: Vehicle’s y coordinate
θ: Vehicle’s heading angle
β: Side slip angle
ψ: Yaw angle
v: Vehicle’s velocity
δ f : Steering angle
a: Acceleration
l f , lr: Distance from the center of gravity to the front and rear axles

Figure 4. Kinematic bicycle model.

Once the vehicle model is established, the subsequent critical consideration involves
track generation, where ensuring adequacy stands as a fundamental concern for successful
training. By employing suitably randomized tracks, as shown in Figure 5, the issue of
overfitting can be mitigated, thus facilitating the design of universally applicable trajectories.
These trajectories are not solely tailored to enable the vehicle to navigate specific segments
but also aim to ensure broader applicability. The generation of these tracks occurs along
different seeds and is represented in the simulator characterized by the vehicle’s center of
mass. Additionally, the simulator specifies the maximum deviation; failure to maintain
lane keeping within this limit results in track failure for that specific step.
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Figure 5. Randomly generated tracks [24].

Since the objective is to conduct a Reinforcement Learning task, the environment
must feature an appropriate interface between the simulator and the agents. In this con-
text, the widely adopted gym structure [25] is utilized due to its simplicity, standardiza-
tion, and efficiency in training, thus necessitating only three fundamental functions for
interobject communication.

4.1. State Representation

One of the three crucial abstractions concerning the agent’s decision-making paradigm
is the state representation, as it serves as a sole information source, based on which the
agent is able to understand the inner dynamics of the given task. In the realm of lane
keeping, this representation entails the current spatial orientation of the vehicle within
the lane, which is expressed through both the distance from lane centerline d and the
relative yaw angle ψ. Concurrently, the state representation is augmented with a desired
number of lookahead sensory data (set to eight elements in our experiments) in the form of
relative yaw angles. By computationally discerning relative yaw angles towards equidistant
points along the forthcoming trajectory, this information yields indispensable orientation
modifications, ensuring harmony with the desired trajectory. As a result, the vehicle’s state
manifests as a 10-element vector, thus serving as the neural network’s input layer, as shown
in Equation (1):

statei =
[
|di| ψ ψ∗1 ψ∗2 ψ∗3 ψ∗4 ψ∗5 ψ∗6 ψ∗7 ψ∗8

]T (1)

4.2. Action Space

Actions can be realized through two modalities by utilizing either continuous or
discrete decision spaces. Given deployment of the Deep Q Network algorithm, decision
making is rendered by the neural network contingent upon a discrete decision space.

The domain of actions is defined as a three-element vector. Each vector component
represents uniform differentials of the steering angle, which are manifested in both lateral
directions—right and left—inclusive of an idling state. Given the specification of steering
angle differentials, a network equipped with three output neurons is capable of covering the
entire action space of the steering actuator in accordance with the given equal distribution.
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In alignment with the mentioned factors, the action space is formulated as shown in
Equation (2):

action =

+0.1
0
−0.1

rad, (2)

where each of the newly acquired steering angle values is determined at 100 ms intervals.

4.3. Rewarding Strategies

Determining the reward strategy stands as a core responsibility within Reinforcement
Learning. Ascertaining which physical attributes should be employed, to enable our agent
to comprehend the physics governing its motion, constitutes a complex endeavor. In the
context of lane keeping, the majority of approaches rely on the position of the vehicle’s
center of gravity and orientation to define an appropriate reward function. Nonetheless,
determining the exact metrics and their respective weighting often necessitates an empirical
approach. The objective of this research is not the identification of a global optimum
concerning reward functions but rather illustrating the combined application of the Monte
Carlo Tree Search and Deep Q Network. Consequently, a selection of five distinct reward
strategies are evaluated, thus guided by insights drawn from diverse scholarly references.

4.3.1. Sample Reward #1 [24]

This reward strategy penalizes the distance from the lane centerline (d), in addition
to minimizing the degree of the vehicle’s relative yaw angle (ψ), by applying a cosine
function, as shown in Equation (3). It is conceivable that smaller absolute deviations and
an orientation perfectly aligning with the lane centerline result in higher reward values.

R1 =

{
cos(ψ)− |d| if R > 0

0, otherwise
(3)

4.3.2. Sample Reward #2 [26]

This reward function forms a construct analogous to the aforementioned reward,
with the exception that it does not incorporate merely the orientation but also the decompo-
sition of velocities into longitudinal and lateral components, as formulated in Equation (4).

R2 =

{
−200 leaving the track

vxcos(ψ)− vxsin(|ψ|)− vx|d| otherwise
(4)

4.3.3. Sample Reward #3 [26]

Although this reward has been introduced in a traffic junction scenario, where three
possible outcomes may occur, collision avoidance is not part of the task, due to the presence
of a single vehicle on the track. In this case, the λ and η weighting constants play a
significant role in the rewarding strategy, as illustrated in Equation (5).

R3 =


pc collision
p0 leaving the track

(vxcos(ψ)− λ|d|)× η otherwise
(5)

4.3.4. Sample Reward #4

The final two reward functions share a similar objective: both motivate the agent for
remaining within the designated lane. The distinction lies in the implementation, wherein
the second scenario not only recognizes the absence of reward, such as the one shown in
Equation (6), but also imposes a penalty value for deviating from the track, as described in
Equation (7).

R4 =

{
0 leaving the track
1 otherwise

(6)
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4.3.5. Sample Reward #5

R5 =

{
−1 leaving the track
1 otherwise

(7)

5. Methodology

In the realm of control system engineering, an abundant array of alternative solutions
emerges for addressing control tasks. These solutions encompass strategies rooted in the
principles of modern control theory, such as Model Predictive Control (MPC). Nevertheless,
complicating factors, such as computational latency and challenges in providing detailed
physical system descriptions, often justify the adoption of methodologies derived from
soft computing paradigms. Within the domain of soft computing, there is a gradual inte-
gration of autonomous vehicles with models derived from Machine Learning algorithms,
particularly in sensory data processing. Furthermore, there is an emergent requirement
to accomplish tasks of specific nature using ML strategies. This necessity primarily arises
in scenarios where the computational demand of these tasks surpass the capabilities of-
fered by traditional approaches, thus rendering them impractical due to their intensive
computational capacity needs.

Given the above-mentioned computational demands, Deep Learning-based solutions
come into consideration for addressing tasks related to behavior and decision making. This
ensures real-time applicability of a system, thereby owing to reduced requirements for
online computation. This advancement is not only evident in traditional control theory real-
izations but also in Machine Learning algorithms, such as tree search-based decision making.
However, the computational time of these methods depends on task complexity, thereby
limiting their effectiveness, especially in scenarios lacking real-time decision-making capa-
bilities, which constitutes a drawback of, for instance, Model Predictive Control.

As a consequence of this limitation and the discrete decision space, we addressed the
problem using two distinct approaches: a tree search algorithm, being the Monte Carlo Tree
Search, representing a conventional Machine Learning technique known for its ability to
determine the global optimum given an infinite amount of iterations and a Deep Q Network
agent, which is a value-based Reinforcement Learning method suitable for rapid real-time
application, where output neurons correspond to each legal decision from a given state.
However, it is important to note that the DQN lacks an explicit mathematical guarantee
regarding the quality of its decisions.

5.1. Reinforcement Learning

Reinforcement Learning [27] deviates significantly from the other branches of Machine
Learning, as network tuning is not based on prearranged training samples, but rather on
a so-called agent’s own experiences. Its application enables the acquisition of complex
behavioral patterns, thereby covering a distinct area within technical sciences compared
to Supervised and Unsupervised Learning [28]. While not directly related to the specific
issue at hand, one advantage of RL lies in its ability to decompose the agent’s tasks into
various subtasks within a multiagent system, thereby effectively resolving the problem of
complex environments.

The fundamental concept of RL is the interaction between two entities, where an agent
seeks to determine an optimal sequence of actions within an environment by continuously
assessing and evaluating individual decisions [29], as illustrated in Figure 6. Each decision
made is evaluated by the environment, which updates the state and provides feedback,
along with a numerical representation of decision quality known as the reward [28]. Obtain-
ing optimal decision-making patterns occurs through the maximization of the cumulative
weighted reward, with an increasing trend indicating successful training that converges
towards a value representing the environment’s limit. The mathematical formalization of
the cumulative weighted reward is shown in Equation (8) as
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Gt =
T

∑
t=0

γt · rt (8)

where Gt is the cumulative weighted reward at time step t, T is the time horizon through
which the agent is planning, γ is the discount factor determining the importance of imme-
diate versus future rewards, and rt is the immediate reward received at time step t.

Figure 6. Reinforcement Learning training loop.

In the field of RL, state values determine the favorability of certain states. These
values estimate how profitable it is for an agent to follow a certain policy in the long term.
The concept of state value can be articulated as expressed in Equation (9):

Vπ(s) = Eπ [Gt|St = s] (9)

where V is the value function, π is the policy the agent would need to follow after time
step t, s denotes the state, E is the expected value operator, and Gt denotes the cumulative
weighted reward.

The quality of decision making emerges along state transitions, which can be described
with the state–action value function, also known as the Q function. These state transitions
in many cases are stored in a memory and used afterwards for parameter adjustment of
a neural network via stochastic sampling from a uniform distribution. The Q function is
formulated as shown in Equation (10):

Qπ(s, a) = Eπ [Gt|St = s, At = a] (10)

where Q is the state–action value function, π is the policy the agent would need to follow
after time step t, s is the state, a denotes the action, E means the expected value operator,
and Gt is the cumulative weighted reward.

Consequently, the mathematical framework of Reinforcement Learning, rooted in
Markov Decision Processes [28], encompasses the state, an action from the set of legal
actions, the probability of transitioning from state st to st+1 via action at, and the reward
value. The global mathematical goal of the decision maker is to maximize its cumulative
reward Gt, as shown in Equation (8).

Given the dynamically generated training samples throughout the learning process,
engaging in exploratory actions becomes imperative. While forming part of the learning
strategy, these actions play a crucial role in maximizing potential rewards. This process
facilitates the discovery and comprehension of the ideal decision set that would yield the
highest outcomes in certain situations. The balance between exploration and exploitation is
determined by the ϵ-greedy policy as a standard approach in this field. This policy transi-
tions over time from complete exploration to the process of making decisions deemed fully
optimal according to the agent as the system encounters more and more training samples.
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Following a concise introduction of fundamental concepts, it is relevant to consider
the utilization of tools. In addition to conventional methods, such as tree search-based
algorithms, soft computing also deserve consideration. Nonetheless, as selection of the ap-
propriate algorithm highly depends on the task’s inherent nature and complexity, thorough
analysis is warranted.

Deep Q Network [30]

Concerning Reinforcement Learning, two primary avenues exist: value-based and
policy-based algorithms. While policy-based algorithms directly acquire the desired behav-
ior, value-based algorithms utilize a value function to evaluate the required actions in a
given scenario. The advantages of these approaches can be effectively merged through actor–
critic algorithms [31], which incorporate both value-based and policy-based networks.

Q Learning represents a value-centric approach as a subcategory in value-based Rein-
forcement Learning that employs either tabular or Deep Learning techniques to construct a
value function, thus discerning advantageous actions from detrimental ones within specific
contexts. In this framework, so-called Q values are assigned to each state transition, which
are defined by an update equation that considers the current state and the scenario, thus
yielding the maximum achievable Q value from the potential next states. The update step
is carried out following the Bellman equation, as shown in Equation (11).

Q(s, a)← Q(s, a) + α · [r + γ ·max
a′

Q(s′, a′)−Q(s, a)] (11)

where Q(s, a) is the Q value associated with the state transition from state s via action a,
α is the learning rate, and γ denotes the discount factor to lower the relevant weights of
rewards realized in future.

In this research, the so-called Deep Q Network algorithm has been utilized as a specific
training method, which incorporates principles of Q Learning methods but additionally
utilizes a double-component neural network architecture to interact with the value cal-
culated from the Bellman equation. Notably, among these interactions, only the reward
contributes numerically to the outcome, thereby maintaining a close relationship with the
resulting Q value, while the γ and α constants play a weighting role within the equation.
Additionally, the necessity for a second network arises from the limitation that subsequent
state transitions inherently include correlation. To address this aspect, a secondary, target
network is utilized. Of the two algorithms implemented, this will be the primary one
utilized for vehicle control. However, it is evident that training parameters must be deter-
mined empirically. To mitigate this limitation and complement the DQN, the Monte Carlo
Tree Search is being introduced in the following sections.

5.2. Tree Search Algorithms

The general idea behind tree search-based planning agents involves the construction
of viable state transition sequences in the form of a graph theory-motivated abstract tree
representation, where the current state acts as the root of the tree. The main parameter,
namely the branching factor, is determined by the number of legal actions from a given state
and intricately shapes the complexity of the search problem. Following a predetermined
number of iterations, a decision is made from the root, thus relying solely on the values
derived from the initial layer.

Tree search algorithms exhibit notable properties. They provide a systematic approach
to exploring the solution space, thus allowing for a comprehensive evaluation of potential
outcomes. These algorithms are adaptable to various problem domains and can accommo-
date diverse action spaces and state representations. Additionally, their ability to balance
exploration and exploitation is advantageous in situations where an optimal solution needs
to be identified amid uncertainty.

However, inherent drawbacks exist. Uninformed search methods, though capable of
delivering optimal solutions given sufficient planning, often encounter challenges due to
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resource-intensive computational requirements. This limitation can hinder their applicabil-
ity in real-world scenarios where computational resources are constrained.

Conversely, methods leveraging heuristics offer a pragmatic means to guide the
search, thus making them computationally more efficient. Yet, the trade-off is the absence
of guarantees, as heuristic-based approaches may not always ensure optimal solutions and
can be sensitive to the quality of the heuristic function.

Monte Carlo Tree Search

Striking a balance between exploration and exploitation on the one hand and address-
ing computational demands to a certain extent on the other, the Monte Carlo Tree Search
offers a proper trade-off by integrating precision inherent in tree search methodologies
with expansive generalization capacity exhibited by Monte Carlo sampling techniques.

The MCTS operates through an iterative process, as shown in Figure 7, which is charac-
terized by stages of selection, expansion, simulation, and backpropagation. The algorithm
dynamically constructs a decision tree by iteratively exploring and expanding nodes based
on a designated heuristic selection policy. Subsequently, random simulations estimate the
value of unexplored nodes, and the obtained values are systematically backpropagated
through the tree, thus refining the information at each visited node.

Figure 7. Monte Carlo Tree Search planning iteration.

In the realm of Reinforcement Learning, a prominent approach for achieving a balance
between exploration and exploitation is the Upper Confidence Bound (UCB) algorithm,
which utilizes uncertainty estimates to guide decision making, thus assigning confidence
bounds to the estimated values of each action. This enables the agent to prioritize actions
with higher potential, as expressed in the formula detailed in Equation (12):

UCB(i) =
Q(i)
N(i)

+ C ·

√
ln(N(p))

N(i)
(12)

where UCB(i) is the value of node i, Q(i) is the total simulated reward of node i, N(i) is
the number of times node i has been visited, C is a constant controlling balance between
the exploration and exploitation terms, and N(p) is the number of times the parent node p
has been visited.

In the context of Monte Carlo Tree Search applications, a modified version of the
UCB method, known as the Upper Confidence Bound for Trees (UCT), is employed most
commonly as a selection policy. This variant manages to achieve a delicate equilibrium
between maximizing cumulative reward and acquiring valuable information that controls
the growth of the tree towards an asymmetrical configuration, thus resulting in a notable
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reduction in computational costs, time requirements, and memory usage when compared
to alternative search algorithms. The UCT value utilized for identifying the most promising
child node is delineated in Equation (13) as

UCT(i) = x̄i + 2 · c ·

√
2 · ln N

ni
(13)

where UCT(i) is the upper confidence bound value of node i, x̄i is the average simulated
reward of node i, N is the number of times the parent of node i has been visited, and ni is
the number of times node i has been visited.

While the Monte Carlo Tree Search demonstrates commendable performance, par-
ticularly in complex environments, it is crucial to recognize its limitations compared to
Reinforcement Learning-based alternatives. Reinforcement Learning models, leveraging
Deep Learning paradigms, often surpass the MCTS in terms of scalability. Furthermore,
the reliance of the MCTS on Monte Carlo sampling may lead to substantial computational
costs in scenarios characterized by extensive state spaces. Although theoretically capable
of identifying the global optimum in search problems given an infinite amount of compu-
tational power, practical constraints preclude its real-time applicability in domains such
as numerous tasks in the field of autonomous vehicle control. In essence, the exponential
growth in tree complexity with the extension of the applied time horizon renders the MCTS
unsuitable for such applications.

5.3. Monte Carlo Tree Seach for Reward Function Evaluation

While the Monte Carlo Tree Search algorithm is typically unsuitable for immediate
real-time decision making due to its computational complexity, the possibility of its indirect
utility via reward function evaluation lies in its ability to converge to the global optimum.

The rewarding mechanism stands as a pivotal component within the framework of
Reinforcement Learning, as it constitutes an exclusive channel through which the agent
understands the outcomes of its actions. Consequently, the judicious selection of rewards
holds the key to the efficacy of the training process. Given the nontrivial nature of formu-
lating the rewarding concept, originally the researcher’s intuition exerts a profound impact
on the attainable performance outcomes.

However, with the help of UCT value formalization and Monte Carlo sampling,
the MCTS is able to predict the quality of a rewarding strategy, thus comparing them
in terms of performance and selecting the most suitable one without having to train a
Reinforcement Learning model for each reward function through a trial-and-error strategy.
The mathematical formalization of the UCT value is expressed in Equation (14) as

UCT∗(st,i) = r̄(st+1) + 2 · c ·

√
2 · ln N

ns
(14)

where UCT∗(st,i) is the UCT value associated with future state si at time step t, r̄ denotes
the mean reward received for state transitions initiated from state si at time step t, c is
the constant controlling the balance between the exploration and exploitation terms, N is
the number of times the parent node of state st,i has been visited, and n is the number of
times state st,i has been visited. Eventually, a summary schematic diagram highlighting the
distinctions between pipelines of the traditional approach and our methodology is depicted
in Figure 8.
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Figure 8. Schematic design of Monte Carlo Tree Search for reward function evaluation in Reinforce-
ment Learning.

6. Results

As determined during the initial motivation phase, the research objective was to
contrast various reward structures concerning Deep Q Network and Monte Carlo Tree
Search agents. The consistency of adaptability across both methods suggests the viability of
backing training with an initial evaluation of reward performance. Expanding on previous
discoveries, the lane keeping issue was utilized to demonstrate wider applicability. Within
this study’s framework, the adaptability of the generated agents was demonstrated through
alterations in environmental parameters, with an assessment of individual agent quality
focused on trajectory feasibility.

Before presenting the new findings, the suitability in traffic situations is demonstrated
through a brief discussion of the previous results. The prevailing guideline in modern traffic
management design focuses on energy-efficient implementation and emission reduction.
Thus, the aim of this previous study has been to enhance these indicators and increase
the average speed, thereby achieving a larger traffic flow. As depicted in Figure 9 and in
Table 1, the integration of these methodologies showcased advancements by constructing
the same performance hierarchy of reward functions among the MCTS and PG agents,
while taking mean values of 1000 consecutive seeded training runs on the demonstrated
environmental configuration, as illustrated in Figure 3. Regarding all the sustainability
parameters, Reward 1 exhibited the highest performance, followed by Rewards 2, 3, and 4
(the numbering of rewards utilized in the current context differs from the original paper).
For a comprehensive explanation of the distinct reward strategies employed, refer to [20].

The study in this paper examined the effectiveness of agents trained with various
reward structures compared to simulations with the Monte Carlo Tree Search in the case
of increasing the longitudinal velocity of the kinematic model. Owing to the increased
longitudinal velocity and consistent time step interval, this experiment evaluated the agents’
ability to utilize current state information to anticipate future outcomes, thereby avoiding
contact with lane edges. Both visual aids (Table 2 and Figure 10) present the mean values of
discrete time steps taken by an agent before encountering a lane limit, thus leading to the
termination of the episode. To ensure a fair comparison, both sets of tracks were generated
using the same seed values in each instance, and the same initial positions have been set.
Furthermore, the same hyperparameter set and iteration number (for the MCTS) has been
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utilized among every given rewarding strategy. This approach enabled the incorporation of
a comparative sample consisting of 1000 distinct, randomly generated tracks, thus allowing
for an examination of the average number of steps taken by different agents.

Figure 9. Sustainability metric results gathered on a single-traffic intersection scenario: (a) Fuel
consumption and (b) CO2 emission.

Table 1. Statistical comparison of sustainability measures on the Traffic Signal Control problem.

Agents CO2
Emission [kg]

NOx
Emission [g]

Fuel
Consumption [L]

PG—Reward 1 108.5 47.2 46.6
PG—Reward 2 110.1 48.0 47.3
PG—Reward 3 110.4 48.1 47.4
PG—Reward 4 118.7 52.0 51.0

MCTS—Reward 1 108.7 47.3 46.7
MCTS—Reward 2 109.9 47.3 47.3
MCTS—Reward 3 113.2 49.4 48.7
MCTS—Reward 4 131.1 57.7 56.4

An analysis of the results, presented in Table 2 and in Figure 10, reveals that the gener-
ated order is identical in both scenarios. Specifically, both MCTS and DQN agents attained
optimal results utilizing Reward #3, followed by a sequence of decreasing performance
trends employing Reward #2, Reward #1, and Reward #4, and the worst performing agents
have been trained on this task applying Reward #5. It confirms that extensive training can
effectively address this issue through preliminary evaluation of the reward strategies. As a
result, as the MCTS is able to transform the prior need of multiple trainings due to the
diverse set of rewarding strategies concerning the initial RL problem to a planning task,
thereafter only the most suitable reward function needs to be employed in the sole Rein-
forcement Learning training run, which is contrary to the traditional approach. In practical
implementations, the application of this method allows the MCTS to minimize the required
training sessions from n to 1, where n represents the number of eligible reward functions
considered in the experiment, thereby optimizing the process to obtain the best neural
network model with Reinforcement Learning efficiently.

Furthermore, as depicted in Figure 11, it is visually apparent that within the observed
trajectories, certain agents outperform others in their ability to maximize future rewards,
even if they occasionally deviate from the lane centerline. This suggests that despite receiv-
ing the same lookahead point information, these exceptional agents demonstrate superior
foresight by effectively managing future rewards through their predicted action sequences.

Moreover, the generated search tree of the MCTS-based agent is shown in Figure 12
along a curvature track segment. Here, the optimal trajectory arc, converging to the
lane centerline, is evident through the expansion of future states in the planning space.
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The intensity of transition colors over nodes corresponds to the visit count ni, with darker
shades indicating more frequent visits. Thus, it becomes apparent how the initial position,
orientation of the vehicle, and environmental constraints collectively shape the optimal
trajectory, which are guided by a specific reward function, as evidenced by the darkest state
transition sequence.

Table 2. Average steps per episode along 1000 seeded evaluation runs on the task of lane keeping.

Agents Deep Q Network Monte Carlo Tree Search

Reward #3 (Section 4.3.3) 919.9 460.9
Reward #2 (Section 4.3.2) 822.1 415.0
Reward #1 (Section 4.3.1) 735.5 236.7
Reward #4 (Section 4.3.4) 677.1 126.6
Reward #5 (Section 4.3.5) 593.3 71.6

Figure 10. Comparison of average steps per episode along 1000 seeded evaluation runs on the task of
lane keeping.

Figure 11. Trajectories realized by agents based on different methodologies following 5 distinct
reward strategies: (a) Deep Q Network and (b) Monte Carlo Tree Search.
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Figure 12. MCTS-generated asymmetrical search tree along a curve.

7. Conclusions

This paper provides solutions for the task of lane keeping within the context of a
kinematic bicycle model. The objective for the agents is to determine the optimal steering
action sequence that simultaneously optimizes the track by leveraging a given reward
strategy. Two distinct methods were employed to tackle the problem: a Deep Q Network
agent was trained to apply five different rewarding concepts to address the control task,
and the same reward functions were utilized by the Monte Carlo Tree Search algorithm.
The employed reward functions, detailed in Section 4.3, are based on the most commonly
used strategies found in the literature. In addition to the new application environment,
the results also show that MCTS is not only a useful tool for PG, but since it has been used
in this research as an aid to the DQN, it can also be concluded that the MCTS algorithm can
help other RL algorithms to be more effective.

As defined in the motivation, the objective of this research was to apply the MCTS to
an additional problem formulation, analyze its performance over the investigated reward
functions, and compare the resulting metrics, thereby supporting our previous theoretical
hypothesis and showcasing that it can mitigate training resources not only for a specific task
but, being a generalizable methodology avoiding the traditional trial-and-error approach
in RL for defining the appropriate reward functions, it can be applied regardless of the
problem at hand. As introduced formerly in a Traffic Signal Control problem and in vehicle
trajectory planning at this time, an assessment can be carried out through preliminary
simulations to determine which strategy yields an agent for a given application such that,
while optimally adapting to environmental changes, it still designs feasible trajectories.
With the aid of Deep Learning, real-time decision making and consequent actuations can
be realized in the physical system.

In conclusion, the study highlights a unique and valuable attribute of the Monte Carlo
Tree Search algorithm. Particularly, the MCTS proves adept at comparing and prioritizing
various rewarding strategies, thereby notably shortening the time needed to select the
optimal reward for training Reinforcement Learning agents and eliminating the necessity
for excessive training iterations. This efficiency leads to a significant decrease in resource
utilization throughout the entire process.

In future endeavors, we intend to evaluate the robustness of this aspect of the Monte
Carlo Tree Search algorithm across a range of sequential decision-making problems to
ascertain its reliability and potential power in reward function evaluation. Moreover,
when employing the MCTS as a tool for this purpose, it appears reasonable to consider
establishing a threshold for the number of tree search iteration steps necessary for accurate
outcomes. Additionally, our investigation will extend to address the Traffic Signal Control
problem within a more intricate setup involving multiple interconnected intersections as a
formulation of Multiagent Reinforcement Learning.
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