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A B S T R A C T

The online self-calibration is a required capability from an autonomous vehicle that should operate lifelong
in a safe manner. This paper introduces relative weighting by a neural network into the batch Gauss–
Newton calibration method of the wheel odometry model. A wheel odometry model with accurately estimated
parameters could improve the motion estimation task of an autonomous vehicle, but the online parameter
identification from only onboard measurements is a challenge due to the noises and the nonlinear behavior
of the dynamic system. A possible solution to deal with the effect of noises is to calibrate the model with
more segments at once forming a batch, but this can only reduce the distortion effect, not eliminate it.
Our proposed algorithm improves this batch formulation by integrating relative weights for the segments to
mitigate the distorting effect of noisy measurements. The method applies an AI-based tool to extract a proper
weighting strategy from the previously recorded data that utilizes only online signals during operation. With
the usage of the proposed architecture, the calibration accuracy significantly increased with the reduction of
the distortion effect of faulty measurements, while the same amount of data is used as the raw batch estimation.
The performance of the method is demonstrated with real measurements in a city driving with a passenger
vehicle, where the calibration signals come from the equipped automotive-grade type of Global Navigation
Satellite System and Inertial Measurement Unit.
1. Introduction

1.1. Wheel odometry in the motion estimation of robots

Nowadays, autonomous robots are becoming widespread both in
small-sized cases, e.g. mobile robots in warehouses, and in real-sized
cases with passenger cars as self-driving vehicles. Fully autonomous
behavior can only be achieved with accurate and simultaneously robust
state estimation, the most important signals are the velocities and pose
(position and orientation). These can be estimated with a wide range
of sensors, such as GNSS (Global Navigation Satellite System), IMU
(inertial measurement unit), encoder-based wheel odometry, and per-
ception sensors, e.g. LiDAR or camera. In the industry, cost-efficiency
is also important, thus low-cost automotive-grade types of sensors are
generally equipped.

A detailed survey of the odometry-based navigation can be found
in Mohamed et al. (2019). The disadvantage of the GNSS is the low
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frequency and the reduced accuracy in crowded urban environments
due to the multipath error and building occlusion (Gao et al., 2018;
Falco et al., 2017). The IMU is an error-prone sensor, the bias and
noise result in an intolerable signal-to-noise ratio in vehicle applications
with a lack of high accelerations (Thrun et al., 2006; Funk et al.,
2017). The camera-based estimation is only accurate when enough
features are detected and often requires prior knowledge about the
motion (Funk et al., 2017; Scaramuzza and Fraundorfer, 2011). These
drawbacks can be mitigated with the integration of the signals of the
wheel encoder (Falco et al., 2017; Thrun et al., 2006; Funk et al., 2017),
a sensor that is equipped on wheeled robots and vehicles anyway.
Moreover, in indoor applications (depots, stores, homes, or a mine), the
usage of wheel odometry for localization is unavoidable. Furthermore,
an accurate wheel odometry model would open up new possibilities,
such as pseudo-range measurement correction of GNSS modules, bias
compensation of IMU, or scale factor estimation in visual odometry.
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One limitation of wheel odometry is the possible slip (Mohamed
et al., 2019), but this appears more in small robots and uneven terrain
and is less significant for self-driving cars. The core drawback is the
drift resulting from the parameter uncertainty, which is more signifi-
cant in the case of a passenger car because an improved wheel model
has to be used to capture the varying rolling radius, thus self-calibration
is required. Since the parameter values of the wheels are not constant
over the life cycle of the vehicle, e.g. due to tire wear or swap between
summer/winter types, and could change even daily because of the vary
in pressure or load, automatic online calibration using the signals of the
onboard sensors is a required capability from an autonomous vehicle.

1.2. Related works of wheel odometry calibration

Since the wheel odometry calibration task is basically the same
for indoor small mobile robots and passenger vehicles, vehicle types
are not distinguished when reviewing the methods. The first methods
in Borenstein and Feng (1996) and Lemmer et al. (2010) operate with
pre-defined special straight and circular paths for calibration. The error
sources are separated into systematic and non-systematic ones, and
estimation methods using the final position in Lee et al. (2010), or
orientation in Jung et al. (2016) are developed. This type of odometry
error approach is generalized to any path in the work of Martinelli
(2002) with a covariance matrix, which depends on 4 parameters (2-2
systematic and non-systematic) and the path followed by the mobile
robot. Besides special paths, these algorithms often require precise
pose measurements, e.g. with an expensive DGPS sensor in Lemmer
et al. (2010), external vision system in Lee et al. (2010), or human
intervention in Martinelli (2002).

Another way to handle the accumulation of odometry errors is to as-
sume an additive component in the velocity inputs of the model. In Roy
and Thrun (1999), the deviations are modeled as linear functions of
the traveled distance. In this formulation, the model calibration implies
estimating these slope values of the linear functions. The odometry
compensation uses an onboard LiDAR sensor, and the estimation is
based on the maximum likelihood method utilizing the scan matching
of two consecutive laser measurements. This results in a highly varying
estimation, therefore exponential smoothing is also applied. It can be
an advantage to adapt rapidly to the changes in the odometry error,
but the tuning of the smoothing as a balance between the adaption and
mitigation of noise is an open question. This type of error modeling is
examined in detail in the work of Kelly (2004), where a linearization
technique based on the first-order behavior of the nonlinear dynamics
is presented. The Jacobians depend on the state, input, and also on
trajectory. The aims of this linear error propagation model are to
determine optimal error compensation approaches and accentuate or
attenuate response to individual error sources. Nevertheless, the error
due to parameter uncertainty in odometry models, especially for car-
like vehicles, can be much more complex than an input linear error
function.

Due to the dynamic relation between the vehicle parameters and
the pose measurements utilized for their estimation, the calibration
task can also be formed as the augmentation of a filtering problem.
This method is applied in Larsen et al. (1998) as an Augmented
Kalman-filter integrating the model parameters into the state vector
and estimating parallel with the physical states. The method widely
used for calibration of odometry parameters with several complemen-
tary sensors such as, camera (Larsen et al., 1998), gyroscope (Rudolph,
2003), DGPS (Caltabiano et al., 2004), laser range finder (Martinelli
et al., 2007), and tested for real-sized passenger vehicles with serial
GPS (Brunker et al., 2017). However, in this type of parameter iden-
tification, observability issues arise (Martinelli and Siegwart, 2006),
the convergence to the true parameter value is not proven (Antonelli
and Chiaverini, 2007; Censi et al., 2013), and it is difficult to mitigate
the effect of measurement errors, such as outliers or measurement
2

noise (Censi et al., 2013). The advantage of the method is the automatic o
online operation and low computation demand. Similarly to the input
error method in Roy and Thrun (1999), smoothing is necessary, which
can be managed with the covariance of the filter, but the proper tuning
is challenging.

The general method for parameter estimation is the least squares-
based optimization. Antonelli and Chiaverini (2007) forms a linear
fitting problem from the nonlinear odometry model in two steps. The
model is re-parameterized, and first, only the orientation equation is
solved, and its result is utilized in the position equations generating
another linear problem. In this way, any bias in the first step is
propagated into the second estimation without the possibility of correc-
tion (Antonelli et al., 2005). Thus, noise-free orientation measurement
is needed, but it is almost impossible in the case of a passenger vehicle
in real streets. In the work of Censi et al. (2013), the same first step is
applied, followed by a maximum likelihood problem where the location
of the laser sensor on the robot is estimated as well. Kümmerle et al.
develops a similar method, but the model calibration is integrated
into a graph-based simultaneous localization and mapping problem.
In Seegmiller et al. (2013), an inverted method is presented where the
integration of the linearized system dynamics is calibrated to mitigate
the computation effort. Maye et al. (2016) addresses a special problem
as the impact of noise on the observability of the location of the
sensor and the estimated parameters. With the decomposition of the
Fisher-information matrix, it is detected that, due to the noise on the
measurements, unobservable directions in the parameter space could
appear to be observable.

Although vehicle types have not been distinguished so far, in a
real-sized vehicle, effects that are negligible in mobile robots, appear
and influence the wheel odometry, such as suspension (Kochem et al.,
2002), and steering (Gutiérrez et al., 2007) dynamics, lateral motion
(Fazekas et al., 2021a; Brunker et al., 2018), wheel slipping (Brunker
et al., 2018) or dynamic load transfer (Fazekas et al., 2020). With the
application of a more complex odometry model, the simplifications,
such as (Censi et al., 2013; Antonelli et al., 2005), or (Seegmiller et al.,
2013) cannot be applied.

From the identification scope, the noise analysis reveals new issues
from the theoretical point of view in the case of nonlinear models
compared to linear ones. Most methods in the estimation field, such as
least squares (LS) or Kalman-filtering assume white noises. However,
as the input or process noise is propagated through the nonlinearity,
the Gaussian assumption is no longer valid on the output (Ljung,
2010a). Due to the required linearization in the LS solution (Tangirala,
2015), the imprecise initialization has the same consequence (Ljung,
2010b). Accordingly, even with white measurement noises, unbiased
model calibration is inherently questionable (Schoukens and Ljung,
2019). Nevertheless, with the spread of automated vehicles, the usable
computation capacity and data for the calibration algorithms is signif-
icantly increased (CleanTechnica, 2019), thus new methods, e.g. the
pplication of machine learning techniques, can be and should be
eveloped.

One of the first papers that apply machine learning techniques in the
dometry calibration topic is (Xu and Collins, 2009), where a neural
etwork is trained to learn the pose error of a mobile robot. The
ethod is an offline calibration where the output pose measurement

s captured by an external LiDAR. Similar error modeling is presented
n Onyekpe et al. (2021) and an improved version in He et al. (2023) for
eal-sized vehicles, but the online recalibration is not addressed. Wide
ange of neural network types is tested for end-to-end learning, such
s: Recurrent Neural Network in Onyekpe et al. (2021), Transformer
n He et al. (2023), Long Short Term Memory in Fariña et al. (2023),
nd Residual Reduction Modules in Navone et al. (2023). This type of
earning method is often supplemented with other sensors, e.g. IMU
r special gyro (Brossard and Bonnabel, 2019). Other works, such
s (Toledo et al., 2018) and Zhang et al. (2021), approximate the whole

dometry model instead of the error.
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Regardless of whether the error or the model is learned, special
attention should be taken to avoid overfitting as the training data’s ac-
tual measurement error includes the noise and it is also approximated.
Another disadvantage is that the industry prefers physical models to
black-box models, especially for safety-critical systems such as auto-
mated road vehicles. Furthermore, these algorithms often operate with
signals from expensive sensors, e.g. fiber optic gyro (Brossard and
Bonnabel, 2019), or laser-based wheel radius sensor (Toledo et al.,
2018) to minimize measurement noise.

Nevertheless, the authors also see potential in these types of learn-
ing, but rather as a supplementary method and consider more im-
portant the detailed physical modeling of the system dynamics and
the calibration of its parameters, before the approximation of the
remaining error terms. Therefore, this paper focuses on parameter
identification and the development of an algorithm that also addresses
online re-calibration.

1.3. Proposed approach

In our previous works, compensation methods for the input wheel
rotation noise in Fazekas et al. (2022), and output pose measurement
noise in Fazekas et al. (2021b), have been developed to improve the
estimation accuracy. However, these are separate algorithms and can
be applied only offline. Nonetheless, these papers demonstrate that
batch formulation with more measurement segments can be an option
to reduce the impact of noise, but weighting is recommended for
various segments. It is also mentioned in Seegmiller et al. (2013) but
has not been addressed in any related works.

This paper presents our idea to deal with the distortion effect of
all the noises. The assumption is that the odometry model can be
calibrated well from a batch of around a dozen segments if the impact
of the few segments that are accountable for the bias is mitigated.
This is achieved by introducing relative weights for each segment that
are determined with a neural network. In the design of the algorithm,
special attention has been taken to utilize only signals from currently
available segments directly for the parameter estimation. In this way,
the model can be re-calibrated online only from signals of onboard
automotive grade-type sensors. Before going into the details, we would
like to motivate the effort by outlining the novelties of the presented
approach:

• To the best of the authors’ knowledge, the idea of improving the
estimation performance with the integration of relative weights
in such a calibration task is unique.

• A full calibration architecture is proposed for the online self-
calibration of the wheel odometry model of an autonomous ve-
hicle. The algorithm is based on the raw batch Gauss–Newton
method completed with an integrated relative weight estimation
by a neural network, but only the same signals are utilized.

• Since these weights are only inner, immeasurable, and ambigu-
ous, a proper method that can generate the required label values
for the training is developed

Although our work deals with passenger cars, the proposed method can
also be used for wheel odometry calibration of any kind of robot.

The paper starts with presenting the wheel odometry model and
examining the parameter sensitivity and calibration in Section 2. Then,
the Gauss–Newton-based parameter identification is summarized, in-
cluding the calibration issues to handle. At the end of this Section 3, the
idea of integrating relative weighting into the identification algorithm
is presented as well. The development of the weight estimator neural
network can be found in Section 4, focusing on the formulation of the
inputs and label generation in detail. At the end of this part, a block
diagram illustrates the full calibration architecture. Section 5 shows
the experimental data on which the method is validated. Section 6
contains the results of the model calibration and validation of the
proposed method in 4 parts, and a brief evaluation and comparison of
the localization with the calibrated odometry model is demonstrated as
well. Finally, the paper is concluded in Section 7.
3

Fig. 1. Two-wheel odometry model.

2. Vehicle model and motivation

2.1. Two-wheel odometry model

Odometry is the process of using motion measurements to calculate
the change of position 𝑝𝑥,𝑡, 𝑝𝑦,𝑡 and orientation 𝜓𝑡. Since the lateral
dynamic is significant in a real-sized vehicle, the sideslip angle 𝛽𝑡 is
also integrated into the model.

Between the 𝑡𝑠 sampling time, moving on an arc of a circle is
assumed, the discrete form of the state transition equations are,

⎡

⎢

⎢

⎣

𝑝𝑥,𝑡+1
𝑝𝑦,𝑡+1
𝜓𝑡+1

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑝𝑥,𝑡 + 𝑣𝑡 ⋅ 𝑡𝑠 ⋅ cos(𝜓𝑡 + 𝜔𝑡∕2 ⋅ 𝑡𝑠 + 𝛽𝑡)
𝑝𝑦,𝑡 + 𝑣𝑡 ⋅ 𝑡𝑠 ⋅ sin(𝜓𝑡 + 𝜔𝑡∕2 ⋅ 𝑡𝑠 + 𝛽𝑡)

𝜓𝑡 + 𝜔𝑡 ⋅ 𝑡𝑠

⎤

⎥

⎥

⎦

. (1)

The motion estimation is controlled by the 𝑣𝑡 longitudinal and 𝜔𝑡
angular velocity, which are calculated by utilizing the rotation of the
wheels in the case of wheel odometry. We apply the two-wheel model
illustrated in Fig. 1, where the velocities are based only on the 𝑛𝑟𝑙,𝑡, 𝑛𝑟𝑟,𝑡
rotation of the rear wheels,

𝑣𝑡 = (𝑛𝑟𝑙,𝑡 ⋅ 𝑐𝑟𝑙,𝑡 + 𝑛𝑟𝑟,𝑡 ⋅ 𝑐𝑟𝑟,𝑡)∕2, (2a)

𝜔𝑡 = (𝑛𝑟𝑟,𝑡 ⋅ 𝑐𝑟𝑟,𝑡 − 𝑛𝑟𝑙,𝑡 ⋅ 𝑐𝑟𝑙,𝑡)∕𝑡𝑟, (2b)

where 𝑡𝑟 is the rear track width and 𝑐𝑟𝑙 and 𝑐𝑟𝑟 are the wheel circum-
ferences. In almost all related works in wheel odometry, the circum-
ferences are handled as constant parameters, but in the next section, it
will be demonstrated that the actual rolling circumferences are required
for proper localization thus the slight change due to the vertical load
transfer is integrated,

𝑐𝑟𝑙,𝑡 = 𝑐𝑒 + 𝑐𝑑∕2 + 𝑑 ⋅ 𝑎𝑦,𝑡, (3a)

𝑐𝑟𝑟,𝑡 = 𝑐𝑒 − 𝑐𝑑∕2 − 𝑑 ⋅ 𝑎𝑦,𝑡, (3b)

where 𝑎𝑦,𝑡 is the lateral acceleration measured by the IMU. Therefore,
the wheel circumferences are now variables and parameterized by the
𝑐𝑒 effective wheel circumference, 𝑐𝑑 difference between the effective
values, and the 𝑑 dynamic component models the impact of vertical
dynamics.

The 𝑝𝑥,𝑡, 𝑝𝑦,𝑡, 𝜓𝑡 pose state variables are also measured ones, thus the
summarized system model for the parameter identification task is,

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑢𝑡, 𝜃), 𝑥𝑡 = [𝑝𝑥,𝑡, 𝑝𝑦,𝑡, 𝜓𝑡]𝑇 , 𝑦𝑡 = 𝑥𝑡, (4)

where 𝑓 (⋅) contains (1). The inputs are

𝑢 = [𝑛 , 𝑛 , 𝛽 , 𝑎 ]𝑇 , (5)
𝑡 𝑟𝑙,𝑡 𝑟𝑟,𝑡 𝑡 𝑦,𝑡
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Table 1
Values and localization errors with the nominal and reference parameter values.

𝑐𝑒 [m] 𝑐𝑑 [mm] 𝑡𝑟 [m] 𝑑 [mm] 𝐸[m]

Nominal 1.98 0 1.545 0 –

Reference 1.949 2.223 1.518 0.827 –

C
A
S
E

𝑐𝑒 nom 𝑐𝑒,𝑛𝑜𝑚 𝑐𝑑,𝑟𝑒𝑓 𝑡𝑟𝑒𝑓 𝑑𝑟𝑒𝑓 1.61
𝑐𝑑 nom 𝑐𝑒,𝑟𝑒𝑓 𝑐𝑑,𝑛𝑜𝑚 𝑡𝑟𝑒𝑓 𝑑𝑟𝑒𝑓 18.9
𝑡𝑟 nom 𝑐𝑒,𝑟𝑒𝑓 𝑐𝑑,𝑟𝑒𝑓 𝑡𝑛𝑜𝑚 𝑑𝑟𝑒𝑓 0.67
𝑑 nom 𝑐𝑒,𝑟𝑒𝑓 𝑐𝑑,𝑟𝑒𝑓 𝑡𝑟𝑒𝑓 𝑑𝑛𝑜𝑚 3.45
all nom 𝑐𝑒,𝑛𝑜𝑚 𝑐𝑑,𝑛𝑜𝑚 𝑡𝑛𝑜𝑚 𝑑𝑛𝑜𝑚 22.3

of which the 𝑛𝑟𝑙,𝑡, 𝑛𝑟𝑟,𝑡 are measured with the wheel encoders, 𝛽𝑡 and 𝑎𝑦,𝑡
are filtered from GNSS and IMU measurements. The parameters of the
system to be estimated are grouped to the 𝜃 = [𝑐𝑒, 𝑐𝑑 , 𝑡𝑟, 𝑑] vector.

2.2. Parameter sensitivity and requirement of calibration

The disadvantage of this type of localization method is the sensitiv-
ity to parameter uncertainty, which corrupts the velocity measurements
that are integrated over time to give pose estimates. Since the wheel
and track parameters are geometry ones, nominal values can be reached
in the vehicle’s datasheet. Analysis with our test vehicle, where the
localization error using the nominal and reference (which result in
the minimum error considering the whole measurement, Section 5.4)
values of the parameters, and the error sensitivity are examined on a
real 30 km long experiment in Budapest.

The parameter values can be found in the first three rows of Table 1,
and in the furthers, 4 test cases are presented in which one of the
parameters is set to the nominal values, and for the rest the reference
ones are used. In the last row, the model is tested with only nominal
values.

The model settings are tested on 300 m long segments and the
mean localization error can be found in the last column of Table 1.
Using the nominal value of the parameters one by one, the errors are
1.61, 18.94, 0.67, 3.45 m for the 𝑐𝑒, 𝑐𝑑 , 𝑡, 𝑑 parameters, and this increases
to 22.30 m if all parameters are set to their nominal value. Take into
account that without calibration, this setting has to be utilized, thus the
model calibration is a must.

The other key questions are the parameter sensitivity and the possi-
ble change of the values. The sensitivity analysis results are presented
in Fig. 2. The position errors due to the uncertainty of the 𝑐𝑒 effective
circumference and 𝑡𝑟 track width are in the few meters range. These
parameters vary every time when the tires are changed e.g. from winter
type to summer, and the size of the tire decreases continuously due to
wear. Thus, even if nominal values are available for these parameters,
the few 𝑐𝑚 deviations from the actual value have to be estimated
repeatedly.

The impact of the 𝑐𝑑 circumference difference and 𝑑 dynamic con-
stant are an order of magnitude higher, only a few mm deviations
from the optimal value can cause around 20 m localization error, and
nominal values are not available at all. Moreover, this tiny difference in
the circumference of the wheels changes frequently, depending on the
current tire pressure or load of the vehicle e.g. the number and weight
of the passengers. Therefore, frequent identification of these parameters
is required.

In summary, the wheel odometry-based estimation can be inte-
grated into the state estimation layer of an autonomous vehicle only
with a proper calibration algorithm, that is able to estimate the pa-
rameters from onboard measured signals (without any application en-
gineering), and the process has to be online since there are parameters
with significant impact depending on actual circumstances.
4

3. Model calibration algorithm

3.1. Parameter estimation of nonlinear dynamic models with Gauss–
Newton method

Generally, the parameter estimation is formulated as a least squares
optimization problem, to minimize the error of the 𝑦𝑘(𝜃) predictor of
the model from the 𝑦𝑘 output measurements, such as

𝜃𝑜𝑝𝑡 = argmin
𝜃

𝑉 (𝜃) = argmin
𝜃

𝑁𝑘
∑

𝑘=1
‖𝑤𝑥(𝑦𝑘 − 𝑦𝑘(𝜃))‖2, (6)

where the predictor contains the system model of (4),

𝑦𝑘(𝜃) = 𝑓 (𝑥𝑘, �̃�𝑘, 𝜃). (7)

When the model is nonlinear in 𝜃, the optimization can only be
solved with numerical search (Tangirala, 2015). We apply the Gauss–
Newton (Tangirala, 2015) method that solves the nonlinear least
squares problem with Taylor-approximation in the following way,

𝑦𝑘(𝜃) ≈ 𝑦𝑘(𝜃𝑖−1) +
𝜕𝑦𝑘(𝜃)
𝜕𝜃

|

|

|

|

|𝜃𝑖−1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑗𝑘

(𝜃 − 𝜃𝑖−1)
⏟⏞⏞⏟⏞⏞⏟

𝛥𝜃

, (8)

where due to the dynamic behavior of the predictor, the 𝑗𝑘 jacobians
are computed recursively. This results in a locally linear LS problem,
such as

𝛥𝜃𝑜𝑝𝑡 = argmin
𝛥𝜃

𝑁𝑘
∑

𝑘=1
‖𝑤𝑥((𝑦𝑘 − 𝑦𝑘(𝜃𝑖−1)) − 𝑗𝑘 𝛥𝜃)‖2, (9)

which can be solved with the LS solution in an iterative way,

𝜃𝑖 = 𝜃𝑖−1 + (𝐽𝑇 𝑊𝑥 𝐽 )−1𝐽𝑇 𝑊𝑥 𝑅, (10)

where the 𝐽 ∶= 𝐽 (𝜃𝑖−1) jacobian and 𝑅 ∶= 𝑌 −𝑌 (𝜃𝑖−1) residual matrices
are formed from the 𝑗𝑘 and 𝑦𝑘 and 𝑦𝑘(𝜃𝑖−1) values as,

𝐽 (𝜃𝑖−1) =
⎡

⎢

⎢

⎣

𝑗1
⋮
𝑗𝑁𝑘

⎤

⎥

⎥

⎦

, 𝑌 =
⎡

⎢

⎢

⎣

𝑦1
⋮
𝑦𝑁𝑘

⎤

⎥

⎥

⎦

,

𝑌 (𝜃𝑖−1) =
⎡

⎢

⎢

⎣

𝑦1(𝜃𝑖−1)
⋮

𝑦𝑁𝑘 (𝜃𝑖−1)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑓 (𝑥0, �̃�1, 𝜃𝑖−1)
⋮

𝑓 (𝑥𝑁𝑘−1, �̃�𝑁𝑘 , 𝜃𝑖−1)

⎤

⎥

⎥

⎦

,

(11)

and 𝑊𝑥 is a weight matrix. Since the model is linearized around the
previous parameters, an initial guess for 𝜃 is required,

𝜃0 = [𝑐𝑒,𝑛𝑜𝑚, 𝑐𝑑,𝑛𝑜𝑚, 𝑡𝑛𝑜𝑚, 𝑑𝑛𝑜𝑚]𝑇 (12)

for which the nominal values from the vehicle’s datasheet are used.
Furthermore, when in the 𝑅 last term, the 𝑌 (𝜃𝑖−1)) integrated system
model is computed with the previous parameters, the states also have
to be initialized at the beginning of the estimation window in 𝑥𝑘=0.

3.2. Calibration issues

The presented calibration of the nonlinear model is based on the
{�̃�𝑡, 𝑦𝑡} input–output signal pairs, thus the main issues arise from the
impact of the noises on these measurement signals.

The noise on the measured �̃�𝑡 input can be interpreted as an
added unknown process noise on the nonlinear state transition func-
tion. Schoukens and Ljung (2019) illustrates that since this distortion
enters before the nonlinear transition, using the Gaussian framework to
formulate the cost function is no longer realistic. Since the nonlinear
least squares methods like GN apply this, the error of the calibration is
certainly not zero.

In general, the noise on the 𝑦𝑡 measured output would be less
significant because it enters after the nonlinearity. However, when the

̂
𝑦𝑘(𝜃𝑖−1) predictor is computed in (10), the 𝑥𝑘=0 state has to be initialized
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Fig. 2. Parameter sensitivity of the localization error.
with the associated 𝑦𝑡 measured output. The core issue is that the
integrated path of the model utilizing a noisy initial state differs from
the ground truth path even with the true parameter values. The impact
is similar to the mentioned process noise, consequently, the model
calibration can only be biased regardless of the other settings.

Due to these facts, some related works mention that noiseless pose
signals are required for the proper calibration however, with a passen-
ger vehicle, in the case of normal city driving, it is almost impossible to
produce using only cost-effective sensors, such as ABS encoder, GNSS
and IMU. Thus, improvement of the calibration algorithm’s side is
necessary to ensure bias-free parameter identification.

3.3. Estimation in batch mode

The effect of the mentioned issues can be mitigated if more mea-
surement segments with length 𝑁𝑘 are applied at once. In this way,
one common 𝜃𝐵 parameter is estimated for the separated segments. The
objective function is formulated as,

𝑉𝐵(𝜃𝐵 , 𝑤) =
𝑁𝑛
∑

𝑛=1
𝑤𝑛

𝑁𝑘
∑

𝑘=1
‖𝑤𝑥(𝑦𝑘 − 𝑦𝑘(𝜃𝐵))‖2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑉𝑛

(13)

where 𝑉𝑛 is the sum loss of segment 𝑛. Suppose that there are 𝑁𝑛
segments (𝑛 = 1⋯𝑁𝑛), the jacobian and residual matrices of the
single GN method can be calculated separately, such as 𝐽𝑛(𝜃𝐵,𝑖−1) and
𝑅𝑛(𝜃𝐵,𝑖−1). In this batch mode, the matrices of the different segments
are stacked into the following huge matrices,

𝐽𝐵(𝜃𝐵,𝑖−1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐽1(𝜃𝐵,𝑖−1)
⋮

𝐽𝑛(𝜃𝐵,𝑖−1)
⋮

𝐽𝑁 (𝜃𝐵,𝑖−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝑅𝐵 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑌1 − 𝑌1(𝜃𝐵,𝑖−1)
⋮

𝑌𝑛 − 𝑌𝑛(𝜃𝐵,𝑖−1)
⋮

𝑌𝑁 − 𝑌𝑁 (𝜃𝐵,𝑖−1)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (14)

𝑁𝑛 is hereafter referred to as batch size. The parameters can be iden-
tified in the same iterative way of (10) with the batch matrices,

𝜃𝐵,𝑖 = 𝜃𝐵,𝑖−1 + (𝐽𝐵𝑇 𝑊𝐵 𝐽𝐵)−1𝐽𝐵𝑇 𝑊𝐵 𝑅𝐵 . (15)

To avoid confusion, the estimation that is performed on one individual
segment (Section 3.1), will be noted as single GN method, while this as
batch GN.

3.4. Relative weights to deal with the calibration issues

The batch design of the GN estimation has been introduced with the
aim to compensate for these distortions since the model has to fit 𝑁𝑛
segments at the same time. However, the formulation can only reduce
the bias, because the sum of the individual residuals (𝑅𝐵) is minimized
which leads to the fact that the optimum of the batch is more influenced
by the segments where the associated ‖𝑅 ‖ is higher.
5

𝑛

The core idea of our paper is to introduce a 𝑤 relative weight vector
to the batch optimization,

𝑤 = [𝑤1 …𝑤𝑛…𝑤𝑁 ]𝑇 𝑁𝑛×1, (16)

where the 𝑤𝑛 relative weights are added to the objective function of
each segment in (13) to mitigate the impact of segments with higher
individual residuals resulting from the higher noises. In this way, the
𝑊𝐵 batch weight matrix is formed such as,

𝑊𝐵 = diag(𝑤 ⋅𝑊𝑥)𝑁𝑛⋅3𝑁𝑘×𝑁𝑛⋅3𝑁𝑘
= diag([𝑤1𝑊𝑥…𝑤𝑛𝑊𝑥…𝑤𝑁𝑊𝑥])𝑁𝑛⋅3𝑁𝑘×𝑁𝑛⋅3𝑁𝑘 , (17)

where the 𝑤𝑛 relative weights are scalar numbers. 𝑊𝑥 is the same
weight matrix for all segments formulated as,

𝑊𝑥 = diag([𝑤𝑥…𝑤𝑥…𝑤𝑥])3𝑁𝑘×3𝑁𝑘 , 𝑤𝑥 = [1, 1, 40], (18)

and it is responsible for scaling the orientation error since it is measured
in rad, consequently significantly lower than the positions measured in
m.

Since the 𝑤𝑛 weights are not applied because of different physical
characteristics of the trajectories, such as lateral acceleration or path
length, but because of the distorting effect of the appearing noises,
the determination of the 𝑤 setting that could guarantee the bias-free
calibration is a complicated task.

4. Relative weighting with neural network

4.1. Idea of neural network-based weighting

The existence of a weight combination that can significantly im-
prove the model calibration is clear. The main goal of this paper is
to develop a method that could determine the proper weights online
resulting in improved calibration. The following aspects have been
taken into account in the design of the algorithm:

• Each segment has the potential to contribute to an accurate
estimation, and our analysis reveals that less good measurements
should also be considered but with a lower weight rather than
eliminating the segment. Therefore, outlier detection methods,
e.g. RANSAC are not correspondent.

• The calibration algorithm has to operate online, but previously
collected data can be applied to design the method.

• Since the weights are relative (only valid for a given batch), their
determination is not explicit and requires a complex algorithm
based on non-handmade rules

Considering these, we propose a neural network to determine the
weights to take advantage of the enormous data available nowadays
in an autonomous vehicle.
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Fig. 3. Cross-losses of the motivation example batch.

4.2. Input for the neural network

The open question is whether it is generally possible to determine
the optimal weights resulting in accurate parameter estimation from
the available data of the batch. For the batch estimation, measured �̃�𝑘
inputs and 𝑦𝑘 outputs of the 𝑁𝑛 segments of the batch can be used. The
dimension of the 𝑢 and 𝑦 are 4 and 3 in our model, respectively, thus,
e.g. with window length 𝑁𝑘 = 1500, batch size 𝑁𝑛 = 9, with these are
94,500 values in sum. Using all of these results in a huge network that
is difficult to run online on the vehicle and requires enormous data
considering automotive applications. Moreover, it is difficult to train
as well. Thus, the measured �̃�𝑘, 𝑦𝑘 signals are transformed into a lower
dimensional space as input of the neural network.

The transformation is based on the recognition that the calibration
accuracy can be improved significantly if one can simply guess which
segment is ‘‘bad’’ or ‘‘good’’ in relation to the current batch. First, single
GN estimations (Section 3.1) are performed for the segments one by
one, which result in 𝑁𝑛 pieces of 𝜃𝑛 parameters. Our idea to be imple-
mented is that a segment should be ‘‘bad’’ if its own optimal parameter
setting results in a relatively high error on the other segments of the
batch or if the optimums of the other segments have a relatively high
error on this segment. Therefore, the 𝜃𝑛 individual optimums are tested
on the other segments, and cross errors are computed as,

‖𝑅𝑙|𝑛‖ = ‖𝑌𝑙 − 𝑌𝑙(𝜃𝑛)‖ | 𝑛 = 1⋯𝑁𝑛, 𝑙 = 1⋯𝑁𝑛 (19)

which is the norm of the residual matrix (11) of segment 𝑙 with optimal
estimated parameters of segment 𝑛. Due to the different path lengths of
segments, the values are normalized, and the 𝑁𝑛 ×𝑁𝑛 cross-loss matrix
R can be formed, e.g. Fig. 3 shows the cross-losses of a motivation
example batch.

As we can see, the optimal parameters of segments 5, 6, 9 have a
higher error on segments 1, 7, 8. Nevertheless, it is not apparent which
segments are ‘‘good’’ and ‘‘bad’’, i.e. the calibrations of segment 5, 6, 9
are inaccurate, or the segments 1,7,8 are wrong, e.g. the noises on the
first measurements used for initialization are high. The assumption is
that it can be realized from the 𝑁𝑛 × 𝑁𝑛 cross-errors with a complex
algorithm, i.e. a well-trained neural network (Aspect 3 in Section 4.1).

4.3. Label generation for training data

The relative weights are calculated by a neural network whose
parameters are determined in a supervised learning method. Thus,
training data pairs containing the optimal 𝑤𝑛 weights as labels for the
𝑁𝑛 ×𝑁𝑛 cross-errors inputs are required. Due to the online calibration,
the net inputs have to be based on values available in the actual
batch. However, the training of the neural net is performed offline on
6

previously measured data by the autonomous vehicle, thus for label
generation more data can be used in addition to the signals of the
actual batch. The dataset used in this paper is presented in detail in
the section, now we assume that there are 𝑁𝑠 measurement segments
with measured �̃� − 𝑦 signals containing 𝑁𝑘 time instants.

4.3.1. Formulation of label generation task
Since the true values in the 𝜃 vector are unavailable, the label values

of the 𝑤𝑛 weights are determined indirectly. Although the unavailabil-
ity of optimal 𝜃, the 𝑁𝑠 segments can be a proper test set to evaluate a
𝜃 parameter vector as,

𝑇 (𝜃) =
𝑁𝑠
∑

𝑠=1

(𝑁𝑘
∑

𝑘=1

√

(𝑝𝑥,𝑘 − 𝑝𝑥,𝑘(𝜃))
2
+ (𝑝𝑦,𝑘 − 𝑝𝑦,𝑘(𝜃))

2
∕𝑁𝑘

)

∕𝑁𝑠 (20)

where 𝑇 is the average test error.
Applying this evaluation metrics, the following objective function is

formulated,

𝑤 = argmin
𝑤

𝑇
(

argmin
𝜃𝐵

𝑉𝐵(𝜃𝐵 , 𝑤)
)

, (21)

where in the inner minimization the 𝑉𝐵 is the objective function of the
batch GN based optimization for 𝜃 (13). Therefore, the 𝑤 label weights
are the ones that results in a model which has minimal position error
on the available test set. The calculation can only be done offline, but
the online training of the net is not required.

4.3.2. Optimization of label generation task
The 𝑇 error is not a direct function of the 𝑤 weight vector, it

can be evaluated with the resulting 𝜃𝐵 parameter after the batch GN
estimation is executed with given 𝑤𝑛 weights. Thus, the minimization
of (21) is solved with genetic algorithm-based optimization because this
method does not require any knowledge about the gradient, the pure
evaluation of the argument is enough, and an appropriate choice when
several local optimums exist.

The genetic algorithm (GA) is a sampling-based optimization
method that operates with natural selection inspired by biological evo-
lution. We use the implemented version of GA in MATLAB (Mathworks,
2021), which is based on (Goldberg, 1989). This process is not the topic
of the paper, but a brief summary is presented because the appropriate
choice of method settings is necessary to properly address the problem
we are investigating.

The flow of the process is illustrated in Fig. 4. The method starts
with the so-called population generation, the initialization of entities
(the optimized parameter) by random sampling. Next, in the fitness cal-
culation phase, every entity is tested with the given objective function
and ranked by the loss. The main idea of the GA is to apply genetic
operators or functions inspired by the process of natural selection to
obtain convergence to the optimum. The Selection function chooses
the entities as parents to form the new generation of the population.
These are paired, and the new entities are calculated with the Crossover
function. The Mutation function enables the GA to search further away
from the parent entities’ parameter domain, which helps to avoid
sticking to a local optimum. Finally, in the Reinsertion phase, the new
generation is generated from the calculated entities by the previous
functions. The stable convergence is ensured with the so-called elite
strategy. This iterative evolution of the population continues until the
stopping condition is reached.

As we can see, every time a 𝑤 weight vector entity is evaluated, the
batch GN estimation has to be executed. With e.g. 𝑁𝑛 = 9 dimensions,
several local optimums could exist, thus many generations and high
population size would be necessary for proper convergence, which
makes the data generation unmanageable. Therefore, first, the genetic
optimization is initialized where the [0, 1] range of every 𝑤𝑛 weight
is bounded into a smaller one. Thus, the label generation algorithm is
formulated in the following three steps.

Step 1: Individual segment validation
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Fig. 4. Architecture of the genetic algorithm-based optimization.

The idea is that the goodness of a segment can be inferred from
the error of its resulted parameter if the calculation is based on many
segments. For this reason, single GN estimations (Section 3.1) are
performed for every segment of the actual batch one by one resulting in
𝜃𝑛 parameters. These are tested on all the 𝑁𝑠 segments of the recorded
data,

𝑇𝑛 = 𝑇 (𝜃𝑛)
|

|

|

𝜃𝑛 = argmin
𝜃

𝑁𝑘
∑

𝑘=1
‖𝑤𝑥(𝑦𝑘 − 𝑦𝑘(𝜃))‖2. (22)

Step 2: Initialization
These 𝑁𝑛 pieces 𝑇𝑛 error values are transformed to 𝑤𝑛′ initial weight

values as,

𝑤𝑛
′ = 0.8

max(𝑇𝑛) − 𝑇𝑛
max(𝑇𝑛) − min(𝑇𝑛)

+ 0.1, (23)

which means that the segment with minimum/maximum error gets
0.9/0.1 values, and the rest are scaled linearly between the two values.
These are utilized for lower and upper bounds of the weight values in
the entities of the genetic algorithm-based optimization as,

𝑤𝑛
′ − 0.1 < 𝑤𝑛 < 𝑤𝑛′ + 0.1, (24)

Step 3: Weight label calculation
The 𝑤 weight label vector is determined with the genetic opti-

mization. The fitness calculation is based on the introduced objective
function in (21). The lower and upper bounds of each segment value in
the weight vector entities are set by (24). Thanks to range reduction,
the label calculation can be managed with a population size of 3000,
over 30 generations.

The results of the label calculation of the presented motivation
example batch are illustrated in Fig. 5. The weights of the best entity re-
sulting by the genetic optimization are different from the initial values,
e.g. the final 𝑤𝑛 values at segments 2,5 are close to the lower bounds
while at 3, 7, 8, 9 to the upper, respectively, because that weight settings
results in more accurate model calibration. This demonstrates that even
if such position test errors were available for the segments of the
actual batch online, these values would not be enough to determine the
appropriate weights for the segments resulting in improved calibration.
Consequently, a more complex algorithm, such as a neural network, is
necessary.

4.4. Workflow of the calibration algorithm with relative weighting

In this section, the entire calibration process is summarized briefly,
and the flowchart of the proposed method is illustrated in Fig. 6.
The model calibration is an online process, but it integrates a neural
network trained offline from previously saved data by the autonomous
car.

The network generation process has 4 phases. The first phase is
signal processing, where the raw wheel encoder, GNSS and IMU signals
7

Fig. 5. Label generation for the motivation example batch.

are filtered to form U𝑡 and Y𝑡 calibration signals (Section 5.2). The
pre-recorded and filtered data is divided into 𝑁𝑠 smaller segments,
and from these batches are generated with a batch size of 𝑁𝑛 = 9
(Section 5.3) in the second phase. The training data is created in the
third phase, where the input of the neural net and the labels are
computed for every generated batch (Sections 4.2 and 4.3). This process
results in 𝑁𝑏 pieces of R−𝑤 training data pairs. Based on these pairs,
the neural network training is carried out with the backpropagation
algorithm in phase four (Section 6.1).

The bottom light green part of Fig. 6 illustrates the block diagram
of the online model calibration process. The signal filtering and input
calculation are the same, and the offline trained neural network is
utilized to estimate the 𝑤𝑛 weights for the actual batch. These are
integrated into the formulation of the 𝑊𝐵 weight matrix, and the 𝜃
vehicle parameters are obtained by the batch GN method (Section 3.3).

5. Measurement data for the odometry calibration

5.1. Measurement scenario

The proposed method is tested with data saved with a real series
vehicle that is equipped with automotive-grade dual-GNSS and IMU
sensors. The last contains a MEMS-based 3-axis accelerometer, gyro,
and compass. The wheel rotation measurements come from the onboard
ABS encoders via the CAN bus of the vehicle. The signal sampling
frequency in the calibration process is chosen to 40 Hz, thus the
odometry model is discretized with 𝑡𝑠 = 0.025 s sampling time.

It has been mentioned that the method is developed to calibrate
the vehicle model online in everyday operations using onboard signals.
Thus, the used measurement data consists of a 30 km long driving in
normal traffic conditions. The route is in the suburb and city area in
the southwest of Budapest, the path can be found in Fig. 7. The track
contains various bends with low and high speeds as well and lots of
crossroads.

5.2. Signal filtering

From the inputs of the odometry model, the 𝑛𝑟𝑙 , 𝑛𝑟𝑟 and 𝑎𝑦 signals
are measured with the ABS encoders and the IMU, respectively. The 𝛽
sideslip angle is included because neglecting the lateral motion corrupts
the parameter estimation (Fazekas et al., 2021a). The quantity cannot
be measured directly in series vehicles, but its estimation is a well-
explored topic. Our implementation utilizes the GNSS and IMU signals
in a sensor fusion method similar to Bevly et al. (2006).

The parameter identification requires measurements of the 𝑝𝑥, 𝑝𝑦 po-
sition, and 𝜓 orientation outputs of the model. These can be measured
directly with the dual GNSS, but the accuracy is poor. Since the signals
of the GNSS and compass are assumed to be noisy but unbiased, and the
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Fig. 6. Architecture of odometry model calibration with neural network-based relative weighting. The first four phase illustrates the offline training of the weight estimator neural
net on pre-recorded data. The last green box presents the online calibration steps with the actual onboard signals where the pre-trained network is used in inference mode.
acceleration and gyro measurements with the IMU are biased, but the
noise is lower, sensor fusion is a preferred solution. This type of filtering
has also been developed in detail, thus another Kalman-filter similar
to Caron et al. (2006) is implemented to obtain the pose measurements.
8

The model calibration is based on the filtered version of the signals,
which are organized into the following variables,

U =
[

𝑛 , 𝑛 , 𝛽 , 𝑎
]

, Y =
[

𝑝 , 𝑝 , �̃�
]

. (25)
𝑡 𝑟𝑙,𝑡 𝑟𝑟,𝑡 𝑡 𝑦,𝑡 𝑡 𝑥,𝑡 𝑦,𝑡 𝑡
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Fig. 7. Path of the measurement data in Budapest.
5.3. Segment and batch formulation

The calibration architecture operates with smaller measurement
parts, therefore the 30 km long route is divided into 300 m average
long segments consisting of 𝑁𝑘 = 1500 time points and 1 s step length
between them. The segments when the vehicle should stop are elimi-
nated, and since the 𝑐𝑑 , 𝑡 and 𝑑 parameters can be only appropriately
observed with the yaw rate Eqs. (2b), only the 𝑁𝑠 = 513 segments with
higher absolute angular velocity than 0.15 rad/s are selected for the
parameter estimation. The start point of the segments is stored in the
variable 𝑡𝑠 (𝑡𝑠 ∈ 𝑡 where 𝑠 = 1⋯𝑁𝑠) to obtain from the U𝑡,Y𝑡 variables
the currently necessary �̃�𝑘, 𝑦𝑘 signals for the GN estimations.

The calibration process operates with a batch of 𝑁𝑛 = 9 segments.
Thus, from the 513 individual segments of the measurement data, 𝑁𝑏 =
20000 batches are formulated to test the proposed method. The data of
the batches are organized into the B matrix with size 𝑁𝑏 ×𝑁𝑛, where
the rows contain the indexes of the segments of the actual batch. The
components of each batch are drawn randomly as,

B𝑏,𝑛 = 𝑟𝑎𝑛𝑑(𝑁𝑠), 𝑏 = 1⋯𝑁𝑏, 𝑛 = 1⋯𝑁𝑛, (26)

on the condition that the same segment is not drawn twice. For neural
network training purposes, it is important that the training data (the
batches in our case) are not similar, but for a batch size of 9 out of
513 segments, the chance that two drawn batches contain the same 3
segments is less than 0.0005%.

With this formulation, the calibration signals of a segment in a
batch, e.g. the ones of the 4th segment of the 3rd batch, can be obtained
as,

𝑏 = 3, 𝑛 = 4 → 𝑠 = B𝑏,𝑛 → 𝑡𝑠 → �̃�𝑘 = U𝑡𝑠+(𝑘=1⋯𝑁𝑘), 𝑦𝑘 = Y𝑡𝑠+(𝑘=1⋯𝑁𝑘).

(27)

5.4. Validation error

The true values of the parameters are unknown, thus the model
calibration could be validated with its output error. The position error
is utilized, and since obtaining ground truth measurements in real
traffic is difficult, the computation is based on the 𝑝𝑥, 𝑝𝑦 filtered signals.
This evaluation models the GNSS outage scenario, which is a widely
used metrics for odometry validation in passenger vehicles (Onyekpe
et al., 2021).

This position error is similar to the 𝑇 (𝜃) test error in (20), but
here some segments are eliminated. The reachable minimum error is
9

determined offline with a genetic algorithm-based search. An iterative
elimination strategy demonstrates that if the last 17 segments with
the highest error are eliminated, on the remaining segments, the lo-
calization error is lower with around 10%. These wrong segments have
position errors higher than 8 m, while the others are in the 1–5 m range.
Accordingly, these are definitely outlier measurements and distort the
validation of the proposed method.

Of course, these segments are only not taken into account in cal-
culating this validation error, they are applied in the generation of
the training batch data. To avoid confusion, the validation error with
which the model calibration results are examined in the Results section
is denoted by 𝐸(𝜃),

𝐸(𝜃) =
𝑁 ′
𝑠

∑

𝑠=1
𝐸𝑠(𝜃)∕𝑁 ′

𝑠 |

𝐸𝑠(𝜃) =
𝑁𝑘
∑

𝑘=1

√

(𝑝𝑥,𝑘 − 𝑝𝑥,𝑘(𝜃))2 + (𝑝𝑦,𝑘 − 𝑝𝑦,𝑘(𝜃))2∕𝑁𝑘,

(28)

where the 𝑁 ′
𝑠 = 496 refers to the outlier rejection.

Consider that the minimum validation error is not zero indepen-
dently of the applied calibration method because, for the error compu-
tation at the beginning of the segments, the states cannot be initialized
without noise (Section 3.2). The reachable minimum error determined
with the mentioned genetic algorithm-based search is 2.68 m on the
496 selected 300 m long segments. Therefore, the error of the calibrated
models is evaluated from this value in the next section.

6. Experimental results

The inputs of the neural net and the labels are calculated with the
algorithms presented in Sections 4.2 and 4.3. The experimental results
are presented in 3 phases:

First, the training results of the neural network using the generated
labels are presented in Sections 6.1 and 6.2. In a real case, this part
is performed offline, e.g. in a computation center or in the cloud, and
the knowledge from a large amount of historically recorded data is
obtained in this part.

Next, in Section 6.4, the proposed calibration algorithm with the
integrated neural network-based weighting is illustrated in detail with
an example batch with 9 segments. In a real case, this part is performed
online on the vehicle using the pre-trained network.

Last, testing the robustness of the algorithm, the results of all of the
generated 20,000 batches are presented in Section 6.5, but in this part,
only the validation error of the models is examined and summarized.
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Fig. 8. Validation losses of the various depth neural networks.

6.1. Training of the weight estimator net

In the formulation of the neural network structure, the focus is on
the fully connected ones. Convolutional networks have also been tried,
but there have been no promising results. The reason could be that the
convolutional layers are responsible for extracting features from the
raw data. Since cross-errors are appropriate features for deciding the
‘‘goodness’’ of a segment, the raw �̃�𝑘 input and 𝑦𝑘 output signals of the
GN estimation are transformed into the cross-loss matrix R containing
the𝑁𝑛×𝑁𝑛 ‖𝑅𝑙|𝑛‖ errors, thus low-level feature extraction on these does
not have much effect. Furthermore, recurrent layers are not considered
due to the lack of sequential data.

6.1.1. The required number of neurons
The formulation of the fully connected neural network starts with

the determination of the required number of neurons to be able to
predict the output correctly. Networks with stacked fully connected
hidden layers containing hundreds of neurons in sum are examined.
Regardless of the size increase, the validation loss is around 0.7, as the
blue line illustrates a network consisting of 6 deep 32 wide (6 × 32)
hidden layers in Fig. 8. This and another example where the 192 hidden
neurons are arranged into 4 layers (2 × 64−2 × 32) are able to overfit to
the dataset clearly, thus, these can be stated as baselines in the context
of the examined problem.

Next, networks with a fewer neuron number and the effect of the
deepness are studied. Fig. 8 shows 9 other cases where around 80
neurons are stacked uniformly with numbers of layers from 2 to 10.
The plot demonstrates that 1∕3 of the neurons of the previous two
networks can be enough to reach almost the same performance, the
validation errors of the best networks converge to 0.705, only the
overfitting does not occur clearly. Furthermore, the deepness of the
network has a significant impact, the networks with more than 7 hidden
layers cannot achieve the minimum loss, and also the shallow ones with
fewer than 4 layers have higher errors. In all of the aforementioned net-
works, every fully connected layer is followed by a batch normalization
and a tangent hyperbolic activation function and trained with various
learning parameters to find the optimal settings. In our case, with the
input and output layers, e.g., the network with 4 × 20 hidden layers
contains 3089 trainable parameters. Therefore, 80 hidden neurons can
be sufficient to predict the 9 outputs from the 81 precalculated cross-
error feature input values. Moreover, the validation loss drops from the
initial with an order of magnitude. In the impact of depth, two effects
should be taken into account. With the same amount of total neurons,
the number of trainable parameters increases with wider and shallower
shapes: e.g., with 7 × 11, 5 × 16, and 3 × 26 hidden layers, 1802, 2553,
10
and 3779 parameters are available, respectively. However, complex
relationships can only be built with a deep network containing more
layers since the later layers form a superposed feature of the previous
ones. Thus, the 4–6 optimal depth in the context of the examined
problem is appropriate.

6.1.2. The optimal neural network shape
The shape of the linked fully connected layers is analyzed as well

with 5 different types illustrated in Fig. 9: the previously applied
stacked (A), growing (B), and descending (C) pyramidal, autoencoder-
like (D) and its counterpart rhombus (E) when the middle layers are
the widest.

Only networks with 4 and 6 hidden depths are considered, and the
total number of neurons is the same around 80, for proper comparison
with the previous ones. The convergence plots of the various network
architectures can be found in Fig. 10. The left plots show that the 6 deep
slight pyramidals perform worse, but the autoencoder and diamond
types can reach the 0.7 loss. It is interesting that with 4 layers, all of
the types converge to below 0.7 a bit, and the minimum loss is resulted
by the (C) type descending pyramidal shape, which forms the most
trainable parameter from the 80 neurons.

In summary, in the examined problem, the outputs can be predicted
appropriately with 80 neurons, 4 depths are sufficient to form super-
posed features from the inputs, and avoiding bottlenecks containing
only a few neurons is important. Therefore, the neural network of 4
hidden layers with 32-24-16-8 width is taken forward for final tuning.

6.1.3. Final training of the chosen network architecture
In the chosen fully connected neural network, the width of the 4th

hidden layer is increased to 10 to eliminate the possible bottleneck
since the output layer has 9 values. The mentioned batch normalization
and hyperbolic tangent activations are also included. The detailed
architecture of the network can be found in Fig. 11.

With the used batch size of 9 in the GN calibration, this neural
network operates with 4095 parameters to estimate the 9 𝑤𝑛 rela-
tive weights of the segments from the 9 × 9 ‖𝑅𝑙|𝑛‖ cross-losses. The
network is trained with the generated 20000 R cross-loss matrix and
𝑤 label weights input–output pairs by the MATLAB Deep Learning
Toolbox (Mathworks, 2022). The data is divided into 80–20% train and
validation groups. The values are scaled to [−1, 1] for numeric stability.
The solver is the Adam method of Kingma and Ba (2015), where the
most relevant learning parameters are,

𝛼0 ∶ 𝙸𝚗𝚒𝚝𝚒𝚊𝚕𝙻𝚎𝚊𝚛𝚗𝚁𝚊𝚝𝚎 [0.2, 0.1, 0.05],

𝛥𝛼 ∶ 𝙻𝚎𝚊𝚛𝚗𝚁𝚊𝚝𝚎𝙳𝚛𝚘𝚙 [0.75, 0.80, 0.85],

𝛽1 ∶ 𝙶𝚛𝚊𝚍𝚒𝚎𝚗𝚝𝙳𝚎𝚌𝚊𝚢 [0.8, 0.9, 0.95],

𝛽2 ∶ 𝚂𝚚𝚞𝚊𝚛𝚎𝚍𝙶𝚛𝚊𝚍𝚒𝚎𝚗𝚝𝙳𝚎𝚌𝚊𝚢 [0.9, 0.99, 0.999],

where all of the combinations of the 3 values in the ranges are tested to
optimize the training. The other parameters of the training are fixed,
such as: LearnRateDropPeriod=50, MaxEpochs=2000, Mini-
BatchSize=1600. Fig. 12 illustrates the validation loss of the 81
parameter setting. The flow of the convergences are different due to
the various learning rates, but after 300 epochs, the losses are in the
same range, and the minimum value of every case is below 0.68. The
minimum loss of the best setting is 0.668 thus, this training is less
sensitive to the Adam optimizer parameters in the presented range.

The signal of this best setting is highlighted in red in the figures.
This chosen case has the parameters 0.1 − 0.8 − 0.95 − 0.99 of 𝛼0 − 𝛥𝛼 −
𝛽1 − 𝛽2, respectively. The validation loss has a minimum of 0.668 at
the 766th epoch. The training loss is illustrated as well, it is 0.646 at
this epoch, and it decreases only a bit to 0.642 at the end. Thus, the
overfitting is negligible, the chosen trained neural network can be the
final one as well. The losses drop around an order of magnitude, thus
the training of the network parameters converges to a stable optimum.
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Fig. 9. Tested network shapes in the model architecture analysis (Kulathunga et al., 2021).
Fig. 10. Convergence plots of the network shape analysis. The values in the labels
indicate the width of the layers.

6.2. Results of weight estimation

The previous figure illustrates MATLAB’s training loss for the whole
data group. Since this applies to the scaled values (only for training)
and is uniquely calculated by MATLAB, the �̂� estimated weight vectors
are scaled back to the [0, 1] range. Furthermore, because only the rela-
tive values between the �̂�𝑛 weight elements in the batch are essential,
𝑠𝑢𝑚(�̂�𝑛) = 4.5 in each �̂� vector is applied in the re-scaling process.

The overfitting is tested with 5-fold cross-validation, thus the train-
ing process of Section 6.1 is performed 5 times each with a different
20% validation group of the data. The estimated weight errors of the
batches in the 5 validation folds can be found in Fig. 13.

As we can see, the different training cases have similar errors,
therefore overfitting to a smaller part of the data does not occur.

In every case, 75% of the batches have a lower mean error than
0.124, the median is 0.091. The outlier limit with these boxplot settings
is 0.205, which is exceeded in 741 cases, but this is only 3.71% of the
batch number. The 0.091 median error corresponds to 9.1% regarding
the [0, 1] range of the estimated �̂�𝑛 weights. It is difficult to evaluate
the performance because the aim is to increase the calibration accuracy,
and these weights are only inner variables.

Nevertheless, the element-wise weight error is also calculated and
illustrated with a histogram in Fig. 14. Except for some mild peaks
around 0.05, the element-wise errors can be exactly modeled with a
normal distribution, the fitted function has 3.7765𝑒−4 center and 0.1337
deviation. Thus, the trained neural network can estimate the label
weights without any bias from the chosen input data of the batch.
11
6.3. Convergence and stability analysis of the GN nonlinear estimation
method

In the context of nonlinear least squares methods, the convergence
to the global optimum and sticking into a local one is an open question.
These are mainly influenced by the proper choice of the 𝜃0 initial pa-
rameter guess (12). Since the calibrated parameters are physical ones,
the estimation starts not far from the optimum thus, convergence issues
should not occur. Furthermore, a test is also carried out, where the
calibration with the example batch is performed with various 𝜃0 initial
parameter settings. The estimation started from three different values
for every parameter (𝑐𝑒:[1.9,1.95,2], 𝑐𝑑 :[-5,0,5], 𝑡:[1.5,1.55,1.6], 𝑑:[-
2,0,2]), the final estimated values of all of the 81 combinations can be
found in the Appendix in Fig. 24. The standard deviation of the values
are lower than 10−5 for every parameter, therefore the estimation
stably converges to the optimum regardless of the initialization.

Fig. 25 in the Appendix illustrates the path of parameter conver-
gences. In some cases, the estimation of 𝑐𝑒 and 𝑡 starts off in the wrong
direction, but this is only the consequence of the negative sign of the
𝑐𝑑 and 𝑑 initial guess. These are only tested to check the robustness of
the GN method, the 𝑑 is formulated as a positive value by default (3),
and the 𝑐𝑑 difference of the wheel circumstances is initialized to 0 in
practice as well. If zero values are applied, the estimations converge to
the correct direction straightaway (Fig. 26 in the Appendix).

6.3.1. Comparison with other nonlinear least squares methods
The optimization task and the general form of the nonlinear least

squares technique is the following,

argmin
𝜃

𝑁𝑘
∑

𝑘=1
‖𝑦𝑘 − 𝑦𝑘(𝜃)‖2, 𝜃𝑖 = 𝜃𝑖−1 + 𝜂𝑖𝜉𝑖, (29)

where 𝜉𝑖 is the direction of change in the parameter space and 𝜂𝑖 is the
step length. In the most basic Gradient Descent (GD) technique, the
direction is the negative gradient of the 𝑉 cost function (𝜉𝑖 = −𝜕𝑉 ∕𝜕𝜃),
while the step length is parameterized with a constant 𝜂𝑖 = 1∕𝜆.
The Newton–Raphson (NR) method operates with the Hessian second
derivative of the cost 𝜂𝑖 = 𝜕𝑉 ∕𝜕2𝜃 as step length, and the direction is
the same. The utilized Gauss–Newton method is based on the first-order
approximation of the 𝑦(𝜃) predictor (8), which results in the Jacobian of
the predictor (𝐽 = 𝜕𝑦∕𝜕𝜃) in the two components, while the Levenberg–
Marquardt (LM) technique proposes a 𝜆𝐼 additional damping to the GN
one, such as

𝜂𝑖 =

(

𝜕𝑦
𝜕𝜃

|

|

|

|

𝑇

𝜃𝑖−1

𝜕𝑦
𝜕𝜃

|

|

|

|𝜃𝑖−1
+ 𝜆𝐼

)−1

, 𝜉𝑖 = −
𝜕𝑦
𝜕𝜃

|

|

|

|

𝑇

𝜃𝑖−1
(𝑦 − 𝑦). (30)

The resulted in 𝜉𝑖 with the predictor approximation is similar to the
−𝜕𝑉 ∕𝜕𝜃 component, thus the only difference in the 4 approaches is the
determination of the step length.

However, the 𝐽𝑇 𝐽 part in the predictor-based techniques is a suit-
able approximation of the Hessian around the optimum (Tangirala,
2015), which is ensured in our case due to the physical property
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Fig. 11. Architecture of the applied neural network.
Fig. 12. Losses of the training of the final neural network with the tested 81 Adam optimizer parameter combinations.
Fig. 13. Results of the 5-fold cross-validation with box plots (whiskers are 1.5 𝐼𝑄𝑅).

and proper initialization of the parameters. The damping of the LM
is mainly required when divergence occurs, moreover, the diagonal
elements in the 𝐽𝑇 𝐽 matrix are high, since the task is highly overde-
termined (the 4 × 4 matrix is calculated from 𝑁𝑘 = 1500 time values).
Thus, the NR, LM (with low 𝜆), and GN techniques have almost the
same output in the examined case.

With increased 𝜆, LM method becomes similar to the GD (Yu and
Wilamowski, 2018), since 𝜆𝐼 ≫ 𝐽𝑇 𝐽 ⇒ 𝜂𝑖 = 1∕𝜆. This induces different
convergence behavior, therefore the calibration of the example batch is
performed with the components of (30) and 𝜆 = 105 setting as well. The
12
Fig. 14. Element-wise deviation of the weight estimation.

final parameters are in the same optimum, only the 𝑐𝑒 and 𝑐𝑑 converge
a bit faster, while the 𝑡 and 𝑑 are a bit smoother. The plots can be
found in Fig. 27 in Appendix. In summary, the utilized method to solve
the nonlinear least squares task has less influence due to the proper
initialization close to the optimum.

6.3.2. Convergence behavior in the context of relative weighting
The convergence behavior of the GN method is also tested in the

context of relative weighting. The path of the parameter calibrations
can be found in Fig. 15 for the example batch in the raw unweighting,
NN-based weighting, and with randomly generated weights. From the
last, only 10 cases are illustrated, but 100,000 were performed for
exhaustive analysis to visualize the bounds of the estimated parameters
final value.

Regardless of the introduced relative weights, the estimation does
not diverge in any case. Moreover, the direction of the convergence
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Fig. 15. Parameter convergence plots of the examined batch in cases: without weights, weights calculated by the trained neural network, and with 10 random weight cases.
Table 2
Cross-losses of segment 2 and 7. 𝑅𝑙|𝑛 means the loss on segment 𝑙 with estimated
vehicle parameters of segment 𝑛.

l/n 1 2 3 4 5 6 7 8 9 Mean

𝑅2|𝑛 6.3 0.2 1.6 1.1 2.9 2.5 8.4 5.7 1.8 3.4
𝑅7|𝑛 2.2 3.1 4.3 4.0 5.4 3.6 0.1 0.6 7.7 3.5
𝑅𝑙|2 5.0 0.2 3.5 4.6 2.0 1.1 3.1 1.3 2.6 2.6
𝑅𝑙|7 2.7 8.4 4.9 1.7 9.2 20 0.1 0.7 7.4 6.1

flow is similar, thus the stability of the calibration is not influenced by
the weights. However, weighting can substantially modify the optimum
location from the no-weighting case, but this phenomenon motivates
the whole methodology obviously.

6.4. Calibration of a batch with relative weights

In this section, the model calibration with the proposed batch
GN architecture with the integrated neural network-based weighting
is demonstrated in detail with an example batch. The used batch is
the one that has been illustrated as a motivation example when the
relative weighting with the neural network has been examined in
Section 4. In this demonstration, the only offline available validation
error (Section 5.4) is applied as an evaluation metrics, which is shown
in Fig. 18.

The first step of the model calibration is to estimate the 𝜃𝑛=1⋯𝑁𝑛
optimal vehicle parameters of each segment of the batch individually.
The resulting parameters can be found in Fig. 17.

Next, the estimated settings of the segments are tested on the others
forming the 𝑅𝑙|𝑛 cross-loss values. These losses of the best and worst
segments, 2 and 7, respectively, are listed in Table 2.

The interesting fact is that when the other segments are tested on
these two (the first two rows of the table), the values are substantially
different, but the mean values are almost the same, although the
segment 7 has 10.11 m validation error compared to the 0.60 m of
segment 2. Thus, on a segment, whose estimated optimal parameters
are totally wrong (𝑡𝑟 track width is 1.92 m or negative 𝑑 dynamic tire
component), the average loss of 9 other segment calibrations can be
the same as on a measurement section that results in almost perfect
calibration. This illustrates the difficulty of deciding the goodness of
a segment from online data. Nevertheless, if the settings of these two
segments are tested on the other ones (the last two rows of the table), it
becomes clear that segment 2 is better, but the mean loss of the worse
calibration is only 2.3 times higher despite the fact that the rate of the
validation errors is 16.8.

The 𝑁𝑛 ×𝑁𝑛 R cross-losses of the example batch have been shown
in Fig. 3. This matrix is utilized as input of the offline trained neural
13
Fig. 16. Estimated weights of the example batch.

network, the output of the net, the estimated �̂�𝑛 relative weights can
be found in Fig. 16. The estimated values are close to the label ones,
furthermore, the speculation at the end of Section 4.2 has also become
apparent. It has been obvious that the weight of segments 2, 3, 4
have to be the highest, but the relation between the 1, 7, 8 and 5,
6, 9 segment groups has been an open question at that time. The �̂�𝑛
estimated weights declare that low weights should be given to segment
1, 7, 8.

If we examine the estimated parameters in Fig. 17, especially the
peak values of the resulting 𝑡𝑟 track width, the consideration seems to
be correct. This is further clarified by the offline calculated validation
errors in Fig. 18.

Finally, in the last step of the proposed calibration architecture, the
estimated �̂�𝑛 relative weights are utilized in the 𝑊𝐵 weight matrix of
the batch GN calibration. The outcomes of this estimation can be found
in the parameter and error figures as well, in parallel with the results
of the batch calibration without relative weighting.

The formulation of a raw batch problem from the individual seg-
ments significantly improves the calibration performance because the
model of the ‘‘batch no weighting’’ case has 2.42 m validation error,
lower than the second best of the individual ones whose mean error
is 5.34 m with a standard deviation of 2.74 m. Nevertheless, this
calibration is still biased, e.g. the estimated 𝑐𝑑 , which is the most
sensitive vehicle parameter, has a higher error than most of the segment
ones. The most likely explanation for this is that segment 9 has a
peak low 𝑐𝑑 value, and since this segment is considered with the same
importance, the common batch estimate cannot deviate significantly
from this.

However, if one can properly guess the 𝑤𝑛 relative weights (Fig. 16),
the validation error decreases to a negligible low 0.13 m as it is
illustrated with the ‘‘batch NN-weighting’’ case in Fig. 18. This also
means that the calibration is almost bias-free, the error of the esti-
mated vehicle parameters are 𝑐 ∶ −2.91 mm, 𝑐 ∶ 0.001 mm, 𝑡 ∶
𝑒 𝑑
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Fig. 17. Estimated parameters of the example batch.
Fig. 18. Validation errors of the example batch.

−5.47 mm, 𝑑 ∶ −0.062 mm s2∕m. The individual segment estimations
with the single GN method have a mean error of 2.99 mm, 0.44 mm,
149.3624 mm, 1.07 mm s2∕m with a standard deviation of 4.76 mm,
0.49 mm, 199.24 mm, 1.29 mm s2∕m for the 𝑐𝑒, 𝑐𝑑 , 𝑡, 𝑑 vehicle parameters,
respectively. This proves that the model can be appropriately calibrated
even from such 9 segments whose individually optimal estimated pa-
rameters have a major error, which verifies the idea of relative weight
integration.

6.5. Calibration results with the proposed algorithm

The previous section illustrates the calibration with the proposed
architecture in detail while in this the robustness is examined, with
the analysis of only the resulted validation error of all of the 20000
batches. Since the batches are quite various in terms of validation
error (the errors are in a range of [0.03, 5.92] m in the no weighting
case), the batches are grouped according to this error to illustrate the
performance of the method well. The batches fall into 20 bins with a
width of 0.3 m. The ‘‘no weighting’’ case error on which the grouping
is based is also referred to as the base error.

6.5.1. Calibration results of one error group
The validation errors of the models in the [3.3, 3.6] m error group

are presented in Fig. 19 with histogram. The model calibrations im-
prove substantially by utilizing the estimated �̂� weights by the neural
14

𝑛

Fig. 19. Validation errors of the no weighting and our proposed NN-based weighting
cases for the models in the [3.3, 3.6] m group.

network. The validation errors from the [3.3, 3.6] m range in the no
weighting case decrease to the mean of 1.47 m with a standard devia-
tion of 0.98 m in the proposed NN-based weighting case. The 1.47 m
as an absolute localization error of wheel odometry will be discussed in
the next section. Regarding the calibration of the model, note that it is
not certain for all of these batches (with errors between [3.3, 3.6] m by
raw calibration), that the unbiased parameter estimation resulting error
close to 0 m is even achievable only with the modification of the 𝑤𝑛
relative weights. Due to the supervised learning technique, it is more
realistic to compare the value of improvement with the label weights.

For this reason, and to allow the opportunity for common compari-
son between groups with widely different errors, relative improvement
metrics is also introduced as follows,

𝑅𝐼 =
𝐸(𝜃𝑁𝑜 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔) − 𝐸(𝜃𝑁𝑁 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔)

𝐸(𝜃𝑁𝑜 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔)
⋅ 100 [%], (31)

where 𝐸(𝜃𝑁𝑜 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔) and 𝐸(𝜃𝑁𝑁 𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔) are the validation error of
the no weighting and the proposed NN-based weighting cases, respec-
tively.

This improvement for the [3.3, 3.6] m error group can be found
in Fig. 20 with histogram, and the values for the label weights are
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Fig. 20. Relative improvement (31) of our proposed NN-based weighting method for
the models in the [3.3, 3.6] m error group.

illustrated as well. The mean error improvement of 1.98 m by the
proposed method is equivalent to an average relative improvement of
57.64% with a standard deviation of 28.30%, while the mean relative
increase with the labels is 72.19% with a standard deviation of 22.08%.
Thus, the estimation accuracy is doubled with the relative weights by
the neural network for this group. However, there are batches resulting
in worse calibration with the estimated weights. The bottom left corner
of Fig. 20 shows that there is not any label inducing worse calibration.
However, it has been mentioned in the analysis of Fig. 13 that the
average weight estimation error for 3.71% of the batches is greater than
0.205, which are considered outliers. Consequently, the appearance
of calibrations with larger errors is not surprising. The percentage of
worse calibrations is 3.44% for this group which matches with the
outlier ratio, therefore these calibration faults can be traced back to
some inaccuracy in the weight estimation. Since trying countless other
forms of neural networks has not improved the weight estimation, these
few worse calibrations should be handled as a trade-off in the context
of the proposed method.

Nevertheless, due to the applied supervised learning technique,
the performance level of the labels can be handled as an achievable
maximum. With the proposed NN-based weighting method, including
the calibrations with higher error, 79.88% of this possible improvement
is achieved, which means that the reduction in error from the [3.3, 3.6]
m to the 1.47 m can be evaluated as a significant advancement.

6.5.2. Calibration results of all error groups
In this section, the calibration results with the validation error are

presented for all error groups to test the robustness of the method. The
base error spreads until 5.92 m, thus the 20000 batches are grouped
into 20 error bins.

The validation errors can be found in Fig. 21, where each column
represents a large number of batches (these could be shown in the
same way as Group 14 in the previous section), thus the standard
deviations are also illustrated beside the mean values. Generally, the
proposed neural network-based method reduces the error by a huge
amount, the average of the means is 1.27 m from 3 m, and e.g. at the
worst group, the [5.45, 6.00] m error decreases to 2.02 m on average.
The standard deviation increases almost linearly from 0.2 to 1.5 m
with the base error of the groups. As it has been pointed out in the
previous section, unbiased estimation is not certainly achievable for all
batches, accordingly the error values spread between the base value
of the group and zero, see Fig. 19. Taking this into account, the 1 m
standard deviation cannot be considered outstanding.

Due to this spread and because the validation error is bounded
from below, it is more interesting which upper error level contains a
given percentage of the calibrated models. These levels in case of 4
percentage values for 7 error groups are shown in Table 3. The first row
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Fig. 21. Validation errors of the no weighting and our proposed NN-based weighting
cases for all groups.

Table 3
Upper validation error levels that contain a given percentage of the model calibrations
with the proposed method.

Group of no weighting error (𝐸)

0.45 1.35 2.25 3.15 4.05 4.95 5.85

Pe
r.

of
m

od
el

s 33% 0.21 0.47 0.67 0.75 0.85 1.04 0.92

50% 0.30 0.67 0.97 1.16 1.33 1.64 1.67

66% 0.40 0.88 1.28 1.59 1.92 2.15 2.56

90% 0.70 1.33 2.00 2.61 3.25 3.66 3.93

Fig. 22. Relative improvement (31) of our proposed NN-based weighting method for
all groups.

illustrates that regardless of the base error (even at the worst [5.70, 6.00]
m error group), 1∕3 of the calibrated models with NN-based weights
have below than 1 m validation error on the 300 m long segments. The
values of the second row are equal to the groups’ median. These are
lower than the mean values of the groups, shown in Fig. 21, due to
the piling up at the zero value. The difference increases from 0.1 to
0.3 m along the low and high base errors of the groups, respectively.
Thus, the average calibration error can be considered to be less than the
mentioned 1.27 m, using the median values of only 1.08 m. The last
two rows demonstrate the robustness of the proposed method since the
levels containing 66% of the calibrations are lower than half of the base
error, and at 90% of the models, the error is below 4 m for the worst
group as well, equivalent with 2∕3 of the error in the no-weighting case.

The relative improvement (31) is a pleasing indicator of our algo-
rithm, it can be found for the error groups in Fig. 22. The improvement
compared to the base error is 50.1% with the estimated weights on an
average but with the lack of consistency along the errors. Moreover,
the variety is not random, the relative improvement increases with
the validation error but in a damped way. For the groups with a
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higher base error, e.g. more than 3 m, it verifies our assumption that
a few bad segments of the batch could result in incorrect parameter
estimation with a huge error, but if a correspondent algorithm is able to
detect these and estimate the relative weights properly, the calibration
performance is improved significantly.

However, for groups with low base error, e.g. less then 1 m, the
proposed method is less effective, and the 𝑅𝐼 metrics even become
negative for the group with [0.00, 0.30] m error. Although this is an
unpleasant outcome, the base errors of these 3 groups are fundamen-
tally low with the mean of 0.15, 0.45, 0.75 m, and these are changed
to 0.19, 0.37, 0.52 m with the estimated �̂�𝑛 relative weights. These
denote parameter estimation with high accuracy, thus the reduced
improvement property of the proposed algorithm for low error groups
is negligible and remains an acceptable trade-off.

Overall, the results demonstrate that the model calibration with
the integrated NN-based relative weight estimation reaches low errors
consistently or significantly reduces the error for the high base error
groups.

7. Summary

7.1. Evaluation of the calibrated wheel odometry-based localization

The best way to evaluate odometry-based localization is to assume
GNSS outage. The wheel odometry model has a 22.30 m validation
error with the uncalibrated nominal setting, which makes it unusable
for vehicle localization. With our proposed method, the error is only
around 1.2 m on average on 300 m long segments, thus it is worth
integrating into the state estimation layer of a vehicle. Only for eval-
uation, the calibrated models are tested on segments with different
lengths as well. On the 300 m long calibration segments, the mean
errors are 1.27 m and 2.48◦. These are decreased to 0.64 m − 1.75◦ and
0.25 m−1.15◦ on 200 and 100 m long measurement sections, respectively
(values are expressed relative to the error of the optimal model, as for
the validation error).

The estimation performance with the trained model is also com-
pared to other existing solutions from the related works. For a fair
comparison, only works that similarly also apply offline training on a
saved dataset before the online operations are considered. The com-
parison is performed with GNSS outages test on 100, 200, and 300 m
long segments, respectively. In our method, the test segments are
regenerated, in the others, linear scaling from the presented length is
carried out.

Fig. 23 illustrates that the proposed method outperforms both meth-
ods in the 100 and 200 m case and performs similarly to the best
of the others on 300 m. However, there are differences in the data
used. In Onyekpe et al. (2021) only the speed of the 4 wheels are
used for the localization, while in He et al. (2023) signals of an
IMU are also included in the localization system, and in both works
a single GNSS antenna is utilized in the training phase (beside the
wheel and IMU signals). In the proposed method, the localization is
based only on the two rear wheel signals, but acceleration values
are also included. Furthermore, both methods operate with an end-to-
end neural network for the prediction, while in the proposed method,
parameter identification is performed with a neural network-based
weighting, but the applied vehicle model is improved by the integration
of lateral dynamics and vertical load transfer. Finally, the localization
algorithm in the proposed method can be completed with an end-to-
end prediction besides the model-based estimation that could increase
accuracy.

Since wheel odometry is a relative pose estimation method, it is
worth evaluating the errors as a speed sensor and comparing them
to other ones. For example, the 0.25 m − 1.15◦ mean position and
orientation errors on the 100 m long (7 s in integration time) segments,
correspond to an angular velocity sensor with 0.003 rad/s, and a speed
sensor with 0.035 m∕s unknown bias. Due to the quadratic drift of the
16
Fig. 23. Comparison of the localization accuracy of the proposed method in
GNSS outages case with (Onyekpe et al., 2021) (WhoNet) and He et al. (2023)
(TransformerNet).

accelerometer, the 0.25 m error in 7 s is equivalent to 0.006 m/s2

unknown bias, at 14.28 m∕s average speed. These 0.035 m∕s, 0.003
rad/s, and 0.006 m/s2 uncertainties certainly exceed the accuracy of
a mid-price IMU and GNSS sensor.

7.2. Discussion and conclusions

In this paper, a novel method was presented for the calibration
of the wheel odometry model of an autonomous vehicle. The idea
is to integrate relative weights for the segments forming a batch in
the Gauss–Newton parameter estimation algorithm to emphasize the
impact of the good and mitigate the distortion of the bad measure-
ments. While the base idea of weighting between the measurements
is not new and simple enough, the realization that can be implemented
online on vehicles raises challenging questions. Our solution is built
around the idea that more powerful computers are available in modern
self-driving vehicles or in the cloud, thus larger amounts of data and
computationally intensive algorithms can be designed to improve the
performance of control algorithms.

In the paper, it is illustrated with tests and examples that the
relative weights have a crucial impact on the calibration accuracy.
Thus, it is worth integrating into the online calibration. However, the
construction of the algorithm that can predict the appropriate weights
can be formulated only offline. Nevertheless, it is demonstrated that a
machine learning-based approach is adequate, and its supplementary
tasks, such as proper input feature determination and label generation,
can be fulfilled with a combination of classic algorithms. Furthermore,
the architecture can be expanded with an end-to-end method which
can provide a complementary signal to predict the error terms that are
unmodeled in the vehicle model.

The main contribution of this work is the proposed calibration
architecture that integrates a neural network for estimating the relative
weights. The paper describes in detail the two most critical parts of
network development workflow, the input formulation and label gener-
ation, which are challenging tasks if the online operation with onboard
signals is a required capability. The effectiveness of the algorithm is
illustrated with experimental results from a real vehicle that demon-
strates the significant improvement of the calibration accuracy using
the same amount of online data. Thus, the calibrated wheel odometry
model is an adequate choice to improve the state estimation of a
self-driving vehicle, and in parallel, it is still a cost-effective method.
Furthermore, the motion estimation with this accuracy can be used to
estimate the noise of the GNSS or the IMU biases.

Moreover, no model-specific consideration or necessity of particular
trajectories is applied, thus, the proposed method could be adapted to
other parameter estimation tasks probably, which generates a bit of
theoretical contribution to the topic of parameter identification.
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Fig. 24. Final estimated parameters of the test of the 81 initial parameter guess.
Fig. 25. Parameter convergence plots of the test of the 81 initial parameter guess.
7.3. Future works

Although the results presented are promising, there are still more
opportunities for further development, which can be examined from
the perspective of the learning method applied.

If the weighting knowledge from the offline recorded data is ob-
tained via supervised learning, label generation is always a core im-
provement question since it is an upper limit for the calibration per-
formance. In the case of the examined calibration task, the difficulty
arises from the existence of several 𝑤 locally optimal weight vectors of
(21), i.e. substantially different 𝑤𝑛 settings result in similar parameter
estimation for the batch. The open question is how to determine the
ones for the batches that can be represented with a common neural
network.

The design of the neural network can be upgraded from the input
side as well. Fig. 22 illustrates that utilizing the label weights, the
improvement is 68% on average while the proposed method results
in 50%. Regardless of how the labels are determined, the estimation
performance can be further increased by mitigating this gap. An obvi-
ous solution is to increase the data fed into the net, e.g. by adding the
individual optimal parameters of the segments, but be careful to avoid
overfitting to the currently optimal vehicle parameters directly.

Another way to prevent the limitation of labels is not to use them
at all. In this case, the reinforcement learning method should be ap-
plied, however, it requires a dynamic environment with states and ac-
tions whose formulation from a parameter identification task generates
further questions.
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Appendix

Convergence and stability analysis of the GN nonlinear estimation method

Convergence plots of the Gauss–Newton method

See Fig. 27.
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Fig. 26. Parameter convergence plots of the test of the various initial parameter guess when the 𝑐𝑑 and 𝑑 start from 0 as used in practice.
Fig. 27. Calibration with different nonlinear least squares method.
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