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Modeling CT images in the presence of beam
hardening

Tamás Dózsa, Sándor Fridli, Péter Kovács

Abstract—We propose a parameterized mathematical model
to approximate CT images in the presence of beam hardening.
This physical phenomenon causes so-called cupping and streaking
artifacts to appear on the reconstructed image. We pose the
problem of optimizing the model parameters as a separable
nonlinear least squares approximation task. The optimized model
parameters have exact physical meaning. More precisely, the
model parameters can be used to describe the attenuation
properties of different materials with respect to monochromatic
components of polychromatic X-ray beams. In addition, the
proposed model can be used to correct the reconstructed image in
a physically informative way. We find that the proposed method
provides reliable estimates of the examined object’s attenuation
properties up to 4 dominant beam components. We verify the
proposed method’s effectiveness through numerical simulations.

Index Terms—Computer Tomography, Variable Projection,
Adaptive signal models, Separable Nonlinear Least Squares

I. INTRODUCTION

Computer tomography (CT) has been an indispensable tool
for examining the internal structure of objects since its intro-
duction in 1972 [1]. The use of CT images is prevalent across a
wide array of applications such as medical imaging [1], [2], [3]
and non-intrusive structural analysis in industrial settings [4],
[5]. CT machines emit X-ray beams that pass through the ob-
ject of interest. As the beams traverse through the object, they
are attenuated. Since different materials attenuate beams to a
different extent, beam intensities are measured before and after
they pass through the object. This process is repeated many
times, with the emitter-detector pairs rotated around the object
yielding a 3-D reconstruction of the internal structure [1], [2],
[3] (see fig 1).

In practice, many problems can occur during the scanning
process which cause artifacts to appear in the reconstructed
image. These can be divided into several categories [1].
In this work, we consider the modeling and correction of
artifacts which appear because of a physical phenomenon
known as beam hardening [1], [6], [7], [8], [9], [10], [11]. This
phenomenon occurs, because the attenuation properties of a
material also depend on the energy level of the photons which
make up the X-ray beams. Lower energy photons are more
easily attenuated, thus the presence of this phenomenon causes
so-called ”cupping” and ”streaking” in the reconstructed im-
ages (see Fig. 2).
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The correction of beam hardening artifacts is an intensively
studied problem [6], [7], [8], [9], [10], [11], [12]. The most
popular existing methods can be divided into two main cate-
gories. Physical methods involve placing a highly attenuating
material in front of the emitters to filter high frequency
beam components and artificially ”harden” the beam [12].
Drawbacks of this approach include the need to physically
modify the CT machine as well as a reduction in the scan’s
quality especially for low dose methods.

In contrast, software based correction methods usually
consider artifact removal as a post processing step of CT
imaging [6], [7], [8], [9], [10], [11]. These approaches can
be divided into three large subcategories: linearization [6], [9],
dual energy [7], [10] and iterative methods [8], [11], [13]. Each
of these approaches have their advantages, however iterative
methods can be applied in more general settings (see e.g. [13]).

In [13], we proposed an iterative method for the correction
of artifacts caused by beam hardening. The main novelty of
our approach was that for homogeneous materials, the method
could be used to not only correct, but also to estimate the true
attenuation properties of the examined object at each beam
energy level. This property is a significant advantage over
previous methods, which could only be used to remove the
beam hardening artifacts. Since these methods (see e.g. [8]
and also [13]) did not provide precise estimates of the atten-
uation parameters, the corrected images could only be used
to conduct a relative comparison of the attenuation properties
of the materials present in the object. For objects containing
multiple materials, in [13] we proposed a simplification of an
existing method [8], however we could not claim the precise
estimation of the attenuation properties of each material at
each energy level.

In this work, we extend our results in [13] to objects
made up of multiple materials. The proposed method can
be used to estimate the attenuation of the entire object at
each energy level. Thus, the corrected images also contain
relevant information about the attenuation properties of the
examined object. This behavior is preferable in both medical
and industrial settings.

The rest of this paper is organized as follows. In section II,
we review some mathematical concepts needed to optimize the
parameters of the proposed method. Section III reviews the
fundamental equations used to model the beam hardening. In
section IV, we propose a parameterized model and discuss how
it can be used to correct beam hardening artifacts. Section V
contains the results of our numerical experiments and their
discussion. Finally, we draw our conclusions and discuss
future research directions in section VI.
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II. VARIABLE PROJECTION OPERATORS

In section IV, we derive our proposed model from a discrete
variation of the Beer-Lambert law (see e.g. [1]). That is, we
propose a parameterized model, where a good approximation
of the cupping artifact ridden CT image can be obtained
through the appropriate choice of the model parameters. An
important component of the proposed algorithm is to formalize
this nonlinear optimization problem as a so-called separable
nonlinear least squares (SNLLS) task [14], [15]. In this sec-
tion, we briefly introduce SNLLS problems and the related
variable projection operators [14], [15].

Suppose H is a Hilbert space, and the elements
φ0, . . . , φm−1 ∈ H (m ∈ N) form a linearly independent
system that spans an m-dimensional subspace U ⊂ H. Let
f ∈ H be arbitrary. It is well known (see e.g. [16]), that there
exists a unique element f̂ ∈ U , that falls closest to f , that is
∥f − f̂∥ is minimal, where ∥ · ∥ denotes the norm induced by
the inner product in H. Since ⟨f − f̂ , g⟩ = 0 (g ∈ U) also
holds, f̂ is referred to as the orthogonal projection of f onto
U .

Suppose now, that the elements of the basis
φη
0 , φ

η
1 , . . . , φ

η
m−1 ∈ H also depend on the real parameter

vector η ∈ Rq, q ∈ N. This means that the subspace
U(η) = span{φη

0 , φ
η
1 , . . . , φ

η
m−1} ⊂ H and in turn, the best

approximation f̂(η) also depend on η. Clearly, f̂(η) exists
for any fixed η. We call the operator Pη : H → U(η) defined
as

Pηf := f̂(η)

a variable projection operator [14], [15].
In real-world applications [15], specific Hilbert spaces

and parameterized bases are considered. For the CT image
modeling problem, we are going to use the Hilbert space
L2(R). More specifically, we are going to consider the CT
measurements as discrete samplings of L2(R) functions. That
is, we will assume H := RN . Suppose the columns of the
matrix Φ(η) ∈ RN×m contains discrete samplings of the basis
functions φη

0 , . . . φ
η
m−1 ∈ L2(R). Then, the projection of f

onto the column space of Φ(η) can be expressed as

PΦ(η)f = f̂(η) = Φ(η)Φ(η)+f , (1)

where Φ(η)+ denotes the Moore-Penrose pseudo inverse [14]
of Φ(η). Then, the problem of identifying the optimal variable
projection operator is equivalent to the minimization of the
functional

r2(η) := ∥f − PΦ(η)∥22 = ∥f − Φ(η)Φ(η)+f∥22. (2)

Clearly, minimizing r2 in (2) is an SNLLS task. Furthermore,
in [14] Golub and Pereyra were the first to show that the
gradient of r2 with respect to η can be analytically given pro-
vided that the partial derivatives ∂Φ(η)

∂η are known. This finding
allows us to minimize (2) using gradient based methods.

III. PHYSICAL BACKGROUND

A schematic of the CT imaging process is given in Fig. 1.
Although in this work we consider 2D images, the proposed
method can be applied to all possible 2D slices to obtain 3D
models. Let us consider a single line segment of emitters and
corresponding detectors, where each emitter-detector pair is
characterised by its position along this segment: r ∈ [−1, 1].
The emitters and detectors are rotated around the object of
interest, with the beams traversing between them. That is, the
path of a single X-ray beam is assumed to be a line L(r, α),
where r denotes the detector position and α ∈ [0, π) gives the
angle of rotation. Even though in our experiments we assumed
that the emitted beams are parallel, there is no theoretical
constraint that prohibits the use of the proposed model with
modern, fan-like beam geometry.
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Fig. 1: CT imaging using parallel beams.

Beer’s law describes a fundamental relationship between the
initial and exit intensities of an X-ray beam and the attenuation
properties of the examined material:

Ie := Ii · e−
∫
L(r,α)

µ(t)dt. (3)

In (3), Ie, Ii ∈ R denote the initial and exit beam intensities,
L(r, α) denotes the line along which the beam traverses and
the function µ denotes the attenuation function that describes
the examined material. In CT imaging, we are interested in
finding the function µ given initial and exit intensities from
many beams.

Beer’s law (3) can be reformulated as

p(r, α) = − ln
Ie
Ii

=

∫
L(r,α)

µ(t)dt. (4)

From (4) it is clear, that − ln Ie
Ii

expresses the Radon-
transform [17] of the attenuation function along the line
L(r, α). The function p : [−1, 1] × [0, π) → R is referred to
as the sinogram. Equation (4) also shows that the relationship
between this quantity and the attenuation function is linear.
This (in theory) allows for the reconstruction of the attenuation
function along all possible lines using back projection [1], [2].

The linear relationship described in (3) and (4) only holds
under the assumption that the emitted X-ray beams are
monochromatic. In practice however, CT machines are only
capable of emitting polychromatic X-ray beams [1]. Since
materials attenuate lower energy photons more easily [1],
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the use of polychromatic beams results in higher attenuation
values around the edges of homogeneous materials in the
reconstructed image. This physical phenomenon is called beam
hardening and its effect is demonstrated in Fig. 2. The errors
appearing on the reconstructed image due to beam hardening
are usually referred to as ”cupping” artifacts because of
their characteristic shape. In the presence of beam hardening,
equation (4) can be given by the nonlinear relationship

p(α, r) = − ln

(∫ Emax

0

ρ(E)e−
∫
L(α,r)

µ(t,E)dtdE

)
, (5)

where Emax denotes the maximum energy a photon can obtain
and ρ(E) denotes the probability density of a photon obtaining
energy level E.

Fig. 2: Cupping artifacts. LEFT: reconstructed image in the
presence of beam hardening. RIGHT: a cross section of

attenuation values along the red line resembles the shape of
a cup.

IV. METHODS

We can obtain an approximation of the sinogram by consid-
ering a discretization of (5). Let Q,N and M ∈ N denote the
number of energy levels in the emitted beams, the number of
materials in the examined object and the number of detectors
respectively. In addition, suppose the detectors are rotated
along O ∈ N angles around the object. Although this number
depends heavily on the CT machine and its settings, high
quality results can be obtained with i.e. O ≈ 1000 angles [1].
Consider a fixed rotation angle α := αj (j ∈ {1, . . . , O}) and
let lα(i, k) denote the length of the path of the i-th beam in
the k-th material. In this work, we assume these lengths to be
known a priori. If a segmentation of the examined object is
available, then the values lα(i, k) can be easily calculated. This
always holds, when the examined object is a physical phantom.
We obtain the following approximation of the sinogram (5):

p(α, ri) ≈ p̂α(ri) = − ln

 Q∑
j=1

ρje
−

∑N
k=1 µj,klα(i,k)

 . (6)

Our task is to estimate the energy level probabilities ρj and the
attenuation coefficients µj,k (j = 1, . . . , Q, k = 1, . . . , N).
That is, we would like to get a good estimate of the attenuation
properties of each material at each energy level.

As mentioned in section II, we pose the problem of finding
the above mentioned parameters as an SNLLS task. To this

end, consider the vector y ∈ RM , yi := e−p̂α(ri). Then, by (6)
we have

yi =

Q∑
j=1

ρje
−

∑N
k=1 µj,klα(i,k). (7)

Using the notations from section II, we introduce the param-
eter vector

η := [µ1,1, . . . , µQ,1, µ1,2, . . . , µQ,N ]
T ∈ RQ·N . (8)

and the basis vectors

φα,j(η) =[
e−

∑N
k=1 µj,k·lα(1,k), . . . , e−

∑N
k=1 µj,k·lα(M,k)

]T
∈ RM ,

(9)

where j = 1, . . . , Q. Letting Φα(η) ∈ RM×Q be the matrix,
whose columns contain the basis vectors (9) corresponding to
angle α, we can formulate the parameter optimization problem
in the desired SNLLS form

min
η∈RQ·N

rα,2(η) = min
η∈RQ·N

∥y − Φα(η)Φα(η)
+y∥22. (10)

Note that the partial derivatives of the basis vectors φα,j(η)
exist with respect to all components of η and can be easily
calculated. Thus, according to the discussion in section II, the
problem (10) can be solved using a gradient based numerical
optimization scheme.

Finally, up until this point we assumed that the detector
angle α was fixed. Considering every available detector angle
αs ∈ [0, π) (s = 1, . . . , O), we can find the optimal model
parameters by solving a single SNLLS problem defined by the
overdetermined system

Φ(η)ρ =


Φα1

(η)
Φα2(η)

...

...
ΦαO

(η)

 ·


ρ1
ρ2
...
ρQ

 =


yα1

yα2

...
...

yαO

 = y, (11)

where yαs
denotes the sinogram segment (7) corresponding

to the detector angle αs.
Once the attenuation parameters in η (and thus the energy

level probabilities ρ = Φ(η)+y) have been determined, there
are several strategies one can use to correct cupping artifacts.
These include considering the ”true” attenuation for a given
material to be the mean of its attenuation across all energy
levels [8]: µk = 1

Q

∑Q
j=1 µj,k. One could also reconstruct

the image using a single attenuation coefficient µj∗,k (k =
1, . . . , N), where j∗ denotes the index of the highest energy-
level probability. This could not be done in previous similar
methods (see e.g. [6], [8], [9], [11], [12]), since they were
unable to reliably estimate the attenuation parameters.
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V. EXPERIMENTS

We verified the effectiveness of the proposed method
through numerical simulations. In particular, we considered
two simulated phantoms. The first phantom represented a
homogeneous material (water) and the second contained N =
2 materials resembling human soft tissue and bone tissue.
The phantoms (with cupping) are presented in Fig. 3. All
simulations were implemented using the MATLAB program-
ming language. The forward and back projection steps of the
simulations were conducted using the ”radon” and ”iradon”
methods.

Fig. 3: Phantoms used for numerical experiments.

We conducted two types of experiments. Firstly, we were
interested in measuring the proposed method’s robustness
against the number of energy levels considered in the X-
ray beams. That is, we measured how increasing the number
of energy levels Q in the beam effects the precision of the
estimated attenuation coefficients in each material as well as
the overall error of the reconstructed image.

We evaluated the precision of the estimated parameters
using the formula

µMSE :=
1

Q ·N

Q·N∑
k=1

(
ηtrue
k − ηest

k

)2
, (12)

where Q and N denote the number of energy levels and
materials, while ηtrue and ηest denote the true and estimated
attenuation coefficients as specified in (8). To measure the
overall quality of the CT image, we used the mean squared
error (MSE) metric [18] defined by

MSE :=
1

R

R∑
k=1

(
I true
k − Iest

k

)2
, (13)

where R denotes the number of pixels in the reconstructed
image. In (13), I true denotes the measured image and Iest is
the image reconstructed from the modeled sinogram (6). The
notation Ik denotes the row-wise indexing of the matrix I .

Fig. 4 illustrates the errors (12) and (13) for increasingly
polychromatic X-ray beams. By Fig. 4, we conclude that the
proposed model provides reliable estimates of the attenuation
coefficients up to 4 − 5 energy levels. In addition, the error
of the reconstructed image (13) remains low (in the order
of 10−5) for a higher number of energy levels as well. Our
experiment indicates, that it is possible to remove the cupping
artifact up to 4 − 5 energy levels in a way such that the
corrected image contains Hounsfield unit (HU) values that

Error of parameter estimates Error of reconstructed image

Number of energy levels (Q) Number of energy levels (Q)

μ
 M

S
E

M
S
E

Fig. 4: Error of the estimated parameters (12) and the
reconstructed image (13) for homogeneous material.

correspond to the true attenuation of the material at a given
energy level (see last paragraph of section IV).

Fig. 5 shows the results of our experiments for the phantom
containing multiple materials, i.e. N = 2.

Number of energy levels (Q)

Error of parameter estimates Error of reconstructed image

Number of energy levels (Q)

M
S
E

μ
 M

S
E

Fig. 5: Error of the estimated parameters (12) and the
reconstructed image (13) for the phantom containing

multiple materials.

In this case, we found that the attenuation coefficients
for each material with respect to each energy level can be
accurately estimated by the proposed approach if the X-
ray beam contains up to 4 energy levels. Similarly to the
experiments with homogeneous phantom, the error of the
reconstructed image remains low, even if we assume beams
with a higher number of dominant energy levels.

Our experiments show that, the proposed method is able
to reliably estimate the attenuation coefficients (8) up to
Q = 4 energy levels. This is significant for two reasons.
First, previous methods [6], [8], [9], [11], [12] could not be
used to estimate these parameters, they only aimed to remove
the effect of beam hardening. Because of the lack of a good
estimate of the attenuation parameters, the corrected image did
not reflect the actual attenuation properties of the examined
materials [8]. In contrast, using the estimates provided by the
proposed method, it is possible to remove the cupping artifact
from the measured CT image in a way that the corrected image
matches the actual attenuation of the materials present in the
object. Secondly, many modern CT machines use wolfram
anodes to emit X-ray beams which are characterized by only
Q = 2 dominant energy levels [1], [19]. Since our numerical
experiments show the reliability of the proposed method up to
Q = 4, our results warrant conducting experiments with real
CT machines.

Finally, Fig. 6 illustrates a corrected CT image. Table I
contains the true and estimated attenuation coefficients and
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energy level probabilities used for the experiment in Fig. 6.
Clearly, in this particular case, both the linear parameters
(energy bin probabilities) and the corresponding attenuation
coefficients for each material were estimated with near perfect
accuracy.

Fig. 6: Measured, approximated and corrected
reconstructions for N = 2.

Linear parameters µ material 1 µ material 2
Energy level True Est. True Est. True Est.

1. 0.296 0.296 3.909 3.909 8.313 8.313
2. 0.392 0.392 1.733 1.733 8.033 8.033
3. 0.311 0.311 1.331 1.331 0.605 0.605

TABLE I: True and estimated linear and nonlinear
parameters used in the experiment shown in Fig. 6.

VI. CONCLUSION

In this work, we proposed a novel approach to model CT
images in the sinogram space. We extended our previous
work [13] and for the first time, we used a variable projection
based adaptive method to estimate the attenuation coefficients
describing a CT image in objects containing multiple mate-
rials. We found that the proposed method performs well for
homogeneous phantoms and for objects containing multiple
materials (provided that a segmentation is available). Our
results warrant experiments with real CT machines where
often Q = 2 dominant energy levels can be expected [1],
[19]. An advantage of the proposed method over previous
approaches [6], [8], [9], [11], [12] is that it is able to reliably
estimate the attenuation coefficients of the investigated objects.
This allows for the correction of the artifacts in a physically
informative manner.

We plan to continue our research by testing the proposed
method on real CT images. Since we assumed that image
segmentation is known, the current method can only be used
with physical phantoms. Nevertheless, the proposed method
remains applicable in practice, since beam hardening proper-
ties of the CT machine are usually investigated during spectral
calibration [12] with the use of physical phantoms. To apply
the proposed method to CT imaging problems in more general
settings, we also plan to augment the model with a priori
segmentation steps. Such a modification would also allow for
the continuous monitoring of beam hardening without the need
for phantoms. A monitoring scheme could be used to trigger
the re-calibration of the CT machine, as it is known that the
X-ray spectrum can change when the CT device is in use [1].

ACKNOWLEDGMENT

Project no. C1748701 has been implemented with the
support provided by the Ministry of Culture and Innovation

of Hungary from the National Research, Development and
Innovation Fund, financed under the NVKDP-2021 funding
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