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Abstract. We generalize Bernoulli’s classical method for finding poles of rational functions using3
the rational orthogonal Malmquist-Takenaka system. We show that our approach overcomes the4
limitations of previous methods, especially their dependence on the existence of a so-called dominant5
pole, while significantly simplifying the required calculations. A description of the identifiable poles6
is provided, as well as an iterative algorithm that can be applied to find every pole of a rational7
function. We discuss automatic parameter choice for the proposed algorithm and demonstrate its8
effectiveness through numerical examples.9
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1. Introduction. Numerical methods focusing on rational approximation and13

interpolation have provided a rich area of research in the last decades [12, 22, 27, 37,14

38, 39]. Many fields, such as control and system theory [39] and partial differential15

equations [12, 22, 27, 37, 38] have benefited from such approaches. In this work, we16

discuss the problem of finding the poles of rational functions by generalizing a method17

known as Bernoulli’s method. As we later point out the proposed methods have great18

application potential especially in the field of system identification. Daniel Bernoulli19

considered the problem of finding the dominant (largest in absolute value) zero of a20

polynomial P . Identifying the zeros of the n-th degree polynomial P is equivalent to21

finding the poles of the rational function R(z) := 1
znP (1/z) . Supposing that R has a22

unique dominant pole (the smallest in absolute value) outside the closed disk D, the23

ratios cn+1/cn constructed from the coefficients of the expansion24

(1.1) R(z) =

∞∑
n=0

cnz
n (|z| ≤ 1)25

converge to this dominant pole [15]. In (1.1), the coefficients cn are the Fourier-26

coefficients of R with respect to the trigonometric system [11].27

We now proceed to give a brief historical background about this method based28

on the monographs [14] and [17]. Bernoulli calculated cn in (1.1) using a recursion29

applied to the coefficients of P . We note that using the terminology of system theory,30

the Fourier-coefficients cn can also be interpreted as the impulse response of the SISO31
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(single input single output) [2] system whose transfer function is R. The original32

idea of Bernoulli was expanded by König, who generalized the pole finding method33

to meromorphic functions [17, 18]. Since then, many subsequent generalizations have34

been introduced. We note the work of Aitken, who showed that the determinants of35

Hankel-matrices created from the coefficients cn can be used to approximate every36

pole, provided that the absolute values of the poles are pairwise different [1, 17]. Using37

the so-called qd (quotient-difference) algorithm, Rutishauser [29, 30] and Henrici [14]38

further imrpoved Aitken’s results. Detailed results on the relationship between Hankel39

determinants, the product of the poles and the qd algorithm can be found in chapter40

7 and chapter 3 of [14] and [17], respectively.41

As illustrated in Figure 1, Bernoulli’s method diverges if the rational function has42

more than one dominant pole. We note that the above mentioned generalizations are43

also prone to this limitation of the method. In addition, this excludes the possibility44

of using Bernoulli’s method for identifying the poles of SISO transfer functions, since45

realizable systems often have complex conjugate pairs as dominant poles.46
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(a) LEFT: Inverse poles (reflections of the
poles across the torus) of the rational
function (dominant pole uniquely exists).
RIGHT: the sequence cn+1/cn.
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(b) LEFT: Inverse poles of the rational
function In this example there is no unique
dominant pole. RIGHT: Real and imagi-
nary parts of cn+1/cn.

Fig. 1: Bernoulli’s pole finding method. The sequence cn+1/cn diverges if the function
has multiple dominant poles.

In [32], a generalization of Bernoulli’s method was proposed, where the discrete47

Laguerre-Fourier coefficients of R were considered. Using this approach we can over-48

come the above mentioned limitation of Bernoulli’s algorithm and reconstruct a larger49

subset of the poles of R. In fact, the algorithm proposed in [32] can be used to re-50

construct every dominant pole of R. Later, using the ideas in [32] the von Mieses51

algorithm, which is capable of finding the dominant eigenvalues of matrices was gen-52

eralized in [33]. In addition, using the so-called fartherst-point Voronoi mappings [4]53

induced by the pseudo-hyperbolic metric, we were able to characterize the poles of54

the function R which can be reconstructed by this method.55

The main contribution of this work is a further generalization of the ideas pro-56

posed in [32]. Namely, we propose to use the coefficients of periodic Malmquist-57

Takenaka series [16, 24, 35, 39] to find the inverse poles of R. The proposed methods58

will include the ideas discussed in [32] as a special case. One important advantage of59

our generalization is that using the coefficients from a periodic Malmquist-Takenaka60

expansion, we can construct an iterative algorithm to find every pole of R.61

The paper is organized as follows. In section 2 we discuss periodic Malmquist-62
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ON BERNOULLI’S METHOD 3

Takenaka systems, generalize the concept of dominant poles and introduce a general-63

ization of Bernoulli’s algorithm. In section 3 we describe the poles which can be found64

using the proposed method. In section 4 we consider the problem of discretization. In65

section 5 we propose an iterative algorithm to identify every pole of a rational func-66

tion based on periodic Malmquist-Takenaka coefficients. We discuss some numerical67

considerations of the proposed methods in section 6, then conclude our work with an68

overview and future plans in section 7.69

2. A generalization of Bernoulli’s method. In Bernoulli’s pole finding70

method, the coefficients cn refer to the Fourier coefficients of the rational function R71

with respect to the trigonometric system (ϵn, n ∈ Z) [11]:72

cn = ⟨R, ϵn⟩ :=
1

2π

∫ 2π

0

R(eit)e−intdt (n ∈ N).73

Provided that the function values of R are available on the torus, cn can be74

calculated. We note that Bernoulli’s method can also be applied using discrete Fourier75

coefficients instead of cn. For the elementary rational functions76

(2.1) rα(z) :=

∞∑
n=0

αnzn =
1

1− αz
.77

Bernoulli’s algorithm can easily be verified. The number α∗ := 1/α is the pole of the78

function rα. Since α is the reflection of α∗ accross the torus T := {z ∈ C : |z| = 1},79

we will refer to α as the inverse pole of rα henceforth.80

Let A denote the set of analytic functions on the closed disk. The classical81

Bernoulli method is summarized by the next theorem.82

Theorem 2.1 (Bernoulli’s algorithm). Suppose the multiplicity of each inverse83

pole of the rational function R ∈ A is 1. If α0 ∈ D is the dominant inverse pole of R,84

or in other words for any α ̸= α0 inverse pole, |α0| > |α| holds, then85

(2.2)
⟨ϵn, R⟩

⟨ϵn−1, R⟩
= α0 +O(qn),86

where q = maxα0 ̸=α |α|/|α0|.87

We note that the convergence also holds when R has higher multiplicity inverse88

poles, however in this case the rate of convergence is O(1/n).89

The main contribution of this paper is the generalization of (2.2) to Malmquist-90

Takenaka systems generated by periodic sequences (or in short PMT systems), which91

contain the Laguerre and trigonometric systems as special cases. In this section we92

introduce a generalized version of (2.2), which allows us to identify a single inverse93

pole of a rational function. We also generalize the concept of dominant inverse poles94

and specify the inverse poles which can be found by the proposed method. Later95

in section 5 we introduce an algorithm based on the findings in this section, which96

will allow us to iteratively find every inverse pole of the rational function in question.97

Malmquist-Takenaka (or MT) systems [24, 35] can be described with the help of98

Blaschke factor [3]:99

(2.3) Ba(z) :=
z − a

1− az
(a ∈ D, |z| ≤ 1).100
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4 T. DÓZSA, A. SOUMELIDIS AND F. SCHIPP

It is well-known [25, 31] that every Blaschke factor in101

(2.4) B := {εBa : (a, ε) ∈ D× T}102

is a bijection on D and T, furthermore B forms a transformation group on D with103

respect to function composition. This group describes the congruence transformations104

of the Bolyai-Lobachevsky geometry in the Poincaré disc model [6, 34].105

The pseudo-hyperbolic distance106

(2.5) ρ(a, b) := |Ba(b)| (a, b ∈ D)107

is a metric on D which shows invariance towards Blaschke-transformations [25, 31]:108

ρ(T (a), T (b)) = ρ(a, b) (a, b ∈ D, T ∈ B).109

Every sequence a = (an, n ∈ N) ∈ U := D×D× . . . defines the MT-system [24, 36]110

Φa := {Φa
n : n ∈ N}, where111

(2.6) ϕa
n :=

√
1− |an|2 ran

n−1∏
j=0

Baj (n ∈ N, a ∈ U).112

It is well-known [16, 31] that MT-functions form a complete function system in113

the Hardy space H2(D) if and only if114

∞∑
n=0

(1− |an|) = ∞.115

Furthermore, for any a ∈ U, the function system Φa is orthogonal with respect to the116

scalar product in H2(D) defined as117

(2.7) ⟨f, g⟩ := 1

2π

∫ 2π

0

f(eit)g(eit)dt (f, g ∈ H2(D)).118

We say that the MT system Φa is p-periodic if there exists a number p ∈ N∗ :=119

{n ∈ N : n ≥ 1}, such that an+p = an (n ∈ N). Such p-periodic sequences from U can120

be identified with the elements of the space Up := Dp. Periodic MT-systems can be121

described with p-order Blaschke-products:122

(2.8) Ba(z) =

p−1∏
j=0

Baj (z) (a ∈ Up, z ∈ D).123

Using (2.6) and (2.8) the p-periodic MT functions can be written as124

(2.9) ϕa
kp+n = ϕa

nB
k
a (0 ≤ n < p, k ∈ N).125

Using Cauchy’s formula, we get that for any ϕ ∈ A analytic function and elemen-126

tary rational function (2.1)127

This manuscript is for review purposes only.



ON BERNOULLI’S METHOD 5

(2.10)
1

2πi

∫
T

ϕ(z)

z − α
dz = ⟨ϕ, rα⟩ = ϕ(α) (α ∈ D).128

By (2.10) we can acquire simple formulas for the ratios of the PMT-Fourier co-129

efficients corresponding to the elementary rational function rα. The special case130

of choosing a single parameter a = (a) (a ∈ D) yields the so-called discrete La-131

guerre system [5, 16]. By (2.9) and (2.10) it is easy to see that in this case we have132

⟨ϕa
k, rα⟩ = ϕa

0(α)B
k
a(α), thus133

(2.11)
⟨ϕa

k, rα⟩
⟨ϕa

k−1, rα⟩
=

ϕa
k(α)

ϕa
k−1(α)

= Ba(α) (k ∈ N∗).134

From (2.11), the inverse pole α can be easily acquired by the inverse B−a of Ba.135

We now proceed to propose a pole reconstruction method similar to (2.11) in the136

general case, when we consider a ∈ Up p-periodic sequences. For example by taking137

the indices138

(2.12) νk := n+ pk (k ∈ N∗, 0 < n < p, p > 1)139

we get the ratios140

(2.13)
⟨ϕa

νk
, rα⟩

⟨ϕa
νk−1, rα⟩

=
ϕa
n(α)

ϕa
n−1(α)

(k ∈ N∗, n > 0, p > 1).141

In (2.13), if we choose p = 1 as a special case we get formula (2.11).142

Before we can formulate our main claim, we need to generalize the concept of143

dominant poles. Let A ⊂ D be a finite set. We say that α0 ∈ A is a Ba-dominant144

point in A, if145

(2.14) |Ba(α0)| > |Ba(α)| (α ∈ A,α ̸= α0).146

Using (2.13) and (2.14) we can generalize Bernoulli’s method with the following147

theorem.148

Theorem 2.2. Suppose that the inverse poles α ∈ A of the rational function R149

are simple and let α0 be the Ba-dominant inverse pole of R. Then, the limit150

(2.15) lim
k→∞

⟨ϕa
νk
, R⟩

⟨ϕa
νk−1, R⟩

=
ϕa
n(α0)

ϕa
n−1(α0)

(a ∈ Up, p ≥ 1)151

exists and the rate of convergence in (2.15) is O(qk), where152

q := max
α∈A, α ̸=α0

|Ba(α)|/|Ba(α0)|.153

Proof. Let R(z) :=
∑

α∈A λαrα(z) (z ∈ D ∪ T, λα ∈ C) be an analytic rational154

function on the closed disk. Then, by (2.14) Ba(α0) ̸= 0. Furthermore, by (2.9)155

and (2.10)156
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⟨ϕa
νk
, R⟩ = λα0ϕ

a
νk
(α0) +

∑
α∈A\{α0}

λαϕ
a
νk
(α) =

= Bk
a (α0)

λα0
ϕa
n(α0) +

∑
α∈A\{α0}

λαϕ
a
n(α)

Bk
a (α)

Bk
a (α0)

 =

= Bk
a (α0)

(
λα0

ϕa
n(α0) +O(qk)

)
,

157

from which (2.15) follows directly. We note that, if A \ {α0} = ∅, then q = 0 and the158

sequence (2.15) is constant.159

We note that a similar statement can be formulated for inverse poles with higher160

multiplicities, however in this case the rate of convergence cannot be guaranteed unless161

the multiplicity of α0 remains 1. Due to the special choice of the indices νk the above162

ratios can be written as163

(2.16) S(z) = Sa
n(z) =

ϕa
n(z)

ϕa
n−1(z)

= κn
z − an−1

1− anz
,164

where165

κ := κn :=
√
(1− |an|2)/(1− |an−1|2) (z ∈ D, 0 ≤ n ≤ p− 1).166

We can easily invert w = S(z) with the formula167

(2.17) z = Q(w) = Qa(w) =
w/κ+ an−1

1 + anw/κ
.168

Using the limit s(a) := limk→∞ sk(a), where169

(2.18) sk(a) = sRk (a) :=
⟨ϕa

νk
, R⟩

⟨ϕa
νk−1

, R⟩
(k ∈ N∗),170

we can rewrite (2.15) as171

(2.19) α0 = Qa(s(a)).172

In practice, applying formula (2.19) comes at the cost of numerical errors. The cause173

of these errors is that in practice we can only consider the value of sm∗ (for some174

finite m∗ index) instead of the limit s. This error can be expressed by175

(2.20) |Qa(s(a))−Qa(sm∗(a))| ≤ M(a) · |s(a)− sm∗(a)|,176

where M(a) := maxw∈S(D) |Q′(w)|. The value of Q′(w) can be expressed at a point177

w = S(z) as178

Q′(w) =
1

S′(z)
=

(1− anz)
2

κ(1− an−1an)
,179
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from which we get180

(2.21) M(a) =
(1 + |an|)2

κ|1− an−1an|
.181

Practical ways to choose the parameter a and estimate |s(a) − sm∗(a)| are discussed182

in section 6.183

We note that in the special case p = 1, we choose an−1 = an = a in the above184

formulas. We would like to highlight that choosing a = (0) yields ϕ0
n(z) = zn, the185

trigonometric system and in this case α0 is the dominant inverse pole in the usual186

sense. In this case equation (2.14) also has an obvious geometrical interpretation.187

Considering the 1-periodic parameter sequence a = (a) (a ∈ D) produces the188

discrete Laguerre-system and condition (2.14) becomes189

(2.22) ρ(a, α0) = |Ba(α0)| > |Ba(α)| = ρ(a, α) (α ∈ A),190

where ρ(·, ·) is the pseudo-hyperbolic metric as given in (2.5). We discuss the geometric191

interpretation of (2.22) in [32]. We note that in this special case n = 1, a0 = a1 = a,192

therefore193

M(a) =
(1 + |a|)2

1− |a|2
=

1 + |a|
1− |a|

.194

3. Geometric properties of dominant poles. In this section we summarize195

the geometric interpretations of the generalized dominant poles (2.14). From the196

point of view of our proposed pole identification scheme built around theorem 2.2,197

the results in this section help us visualize how to choose the parameters of the198

Malmquist-Takenaka expansions to identify specific poles of the rational function R.199

Formally, using the concept of Voronoi-mappings [4], we describe some regions of D.200

Choosing the parameters of the aforementioned MT-systems from these regions and201

applying theorem 2.2 will allow for finding specific poles of R. The results discussed202

here also show, that some poles may be ”hidden” in the sense, that independent of our203

choice of the parameter vector a, they will never be dominant (will not satisfy (2.14)),204

therefore cannot be recovered directly using theorem 2.2. In order to find such hidden205

poles with the proposed method, ”cancelling the effect” of other poles is necessary.206

We discuss such techniques in section 5.207

We begin by considering the p = 1 case, that is, when the periodic Malmquist-208

Takenaka system in theorem 2.2 depends on a single a ∈ D parameter. We are going209

to illustrate that in this case, the dominant poles of R can be described using the210

so-called pseudo hyperbolic metric and Voronoi mappings. Moreover, we are going to211

investigate an interesting relationship between these dominant, or ”visible” poles (the212

ones that we can recover using theorem 2.2), and the extreme points of the convex213

hull of the inverse poles. This observation will allow us to point out some interesting214

relationships between Voronoi-mappings generated by different types of metrics and215

corresponding variants of convex hulls. The notion of dominant poles as introduced216

in [32] can be geometrically described using farthest-point Voronoi-mappings [4]. Let217

FA denote the union of the hyperbolic bisectors ℓa,b := {z ∈ D : ρ(a, z) = ρ(b, z)} and218

let DA := D \ FA (a, b ∈ A, a ̸= b). Then, for each a ∈ DA there uniquely exists a219

point α ∈ A which is farthest from a in metric ρ. Let V = VA := DA → A denote the220

function which maps every a ∈ DA to the point in A farthest away from it. Then, VA221
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8 T. DÓZSA, A. SOUMELIDIS AND F. SCHIPP

is the farthest-point Voronoi mapping of the set A generated by the pseudo hyperbolic222

distance. The V −1
A (α) (α ∈ A) Voronoi-cells provide a disjoint partitioning of the set223

D \ A. Condition (2.22) is equivalent to VA(a) = α0, that is the set of inverse poles224

which are Ba (a ∈ D) dominant is exactly the range of the Voronoi mapping VA. Any225

inverse poles α for which V −1
A (α) = ∅ cannot be retrieved.226
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(a) Farthest-point Voronoi diagram
using pseudo hyperbolic distance. In
this case there were more than one
dominant inverse poles in the classi-
cal sense, however using the proposed
approach (2.15), we can reconstruct
any of them.
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(b) Farthest-point Voronoi diagram
using pseudo hyperbolic distance.
Not every a ∈ A is guaranteed to
have a nonempty Voronoi cell. In
this case the point labeled ”R” has
no corresponding region.

Fig. 2: Some example Voronoi cells generated by the pseudo hyperbolic distance.
Members of the set A are denoted by points of different colors and are labeled with
the letters ”R”, ”G” and ”B” for red, green and blue. The corresponding Voronoi cells
are shown in the same color. If A contains the inverse poles of a rational function R,
then choosing the parameter of the 1-periodic MT system (discrete Laguerre system)
from the set V −1

A (α) (α ∈ A) allows for the reconstruction of the inverse pole α
with (2.15).

In figure 2, we illustrate some farthest-point cells V −1
A (α). For the examples227

in figure 2, not considering points strictly on the border between two neighbouring228

Voronoi cells, the limit (2.15) exists for any a ∈ D parameter. The rate of convergence229

depends on the choice of the parameter a choosen from the Voronoi-cells. The choice230

of this parameter will be further discussed in section 6. Suppose that A contains the231

inverse poles of a rational function. Then, the examples in figure 2 also illustrate that232

if there is no dominant inverse pole (the points in A fall on a circle), each inverse pole233

can still be found using the proposed algorithm.234

We note that in the Euclidean plane (when we define the distance generating the235

Voronoi mappings as ρ(a, b) = ∥a− b∥2 (a, b ∈ R2) instead of (2.5)), we can describe236

VA using convex geometry. Namely, the range of VA can be described by the set of237

extreme points of the convex hull of A (see figure 4). The analogous statement does238

not hold for the hyperbolic case. In figure 4, we illustrate that the set of vertices239

of the hyperbolic convex hull of A is larger than the range of VA. In this case, one240
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can describe the range of VA on the hyperbolic plane using the notion of paracyclic241

convexity. We plan to investigate this phenomena in detail in a future work.242

Next, we would like to extend the idea of describing the dominant (or ”visible”)243

inverse poles of the rational function R for identification by periodic MT-systems,244

where p ≥ 2. In this case, the MT-Fourier coefficients used to identify the dominant245

inverse poles depend on a p dimensional parameter vector denoted by ap. We are246

interested in describing the Voronoi cells generated by the inverse poles of R, where247

instead of the hyperbolic metric discussed above, the notion of distance is given by248

the Blaschke product corresponding to ap. The case, when the first p− 1 components249

in ap are chosen as the inverse poles α0, . . . , αp−2 ∈ A will be of special interest to250

us (see figure 3 and section 5), however we discuss our findings for a general choice251

of a. In order to give a geometric description of the general case, let us consider the252

sequence a := (a0, a1, . . .) ∈ U and fixing the first p− 1 components define253

(3.1) ap := (a0, a1, . . . , ap−2, a) (a ∈ D).254

We are going to use the vector ap to construct a periodic MT system. Then, as stated255

in (2.14), we call α0 ∈ A the Bap -dominant element in A if for the mapping256

(3.2) ρp(a, α) := |Bap
(α)| (α ∈ D),257

the statement analogous to (2.14) holds:258

(3.3) ρp(a, α0) > ρp(a, α) (α ∈ A,α ̸= α0).259

Using the mappings ρp we can introduce the Voronoi mappings VA,p generated260

by them. For any interior point of the Voronoi cells, the limit (2.15) exists. We note261

that if α ∈ A and α is also a component in ap, then V −1
A,p(α) = ∅, or in other words α262

cannot be found using the proposed method. As discussed in detail in section 5, this263

property can be exploited to construct an iterative algorithm which finds every pole264

of the rational function. An example mapping VA,p is provided for p = 2 in figure 3.265

4. Discrete Malmquist-Takenaka systems. In numerical calculations in-266

stead of the Fourier coefficients f̂(n) [11] of a function f : T → C we often consider267

the N -periodic discrete Fourier-coefficients268

(4.1) f̂N (n) :=
1

N

∑
z∈TN

f(z)z−n (n,N ∈ N \ {0}),269

where270

TN := {e2iπk/N : 0 ≤ k < N}.271

The (finite) trigonometric system is orthogonal with respect to the discrete inner272

product [11]273

[f, g]N :=
1

N

∑
z∈TN

f(z)g(z) (N = 2, 3, . . .).274

Let r̂α(n) denote the n-th Fourier coefficient of the elementary rational function275

rα. From the formula276
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Fig. 3: An example of VA,p for p = 2. For p > 1, the borders between the Voronoi
cells can no longer be described with hyperbolic lines. In this case a0 is chosen as
the inverse pole denoted by the red point (hence its corresponding Voronoi cell is
empty). If we choose the parameter a1 from either of the two Voronoi cells and apply
theorem 2.2, then we can find the inverse pole corresponding to the color of the chosen
cell.
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(a) Farthest-point Voronoi mapping
on the Euiclidean plane (generated
by Euclidiean distance). The set of
vertices of the convex hull of A is the
range of VA.

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

(b) Farthest-point Voronoi mapping
generated by the pseudo hyperbolic
distance. Vertices of the hyperbolic
convex hull form a larger set than the
range of VA.

Fig. 4: Relationship between convex geometry and nonempty farthest-point Voronoi
cells in the Euclidean and hyperbolic cases.

rα(z) =

∞∑
n=0

αnzn (α ∈ D, |z| < 1)277

it follows that the discrete Fourier coefficients of the elementary rational function rα278

can be written as279
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ON BERNOULLI’S METHOD 11

(4.2) r̂α,N (n) =
αn

1− αN
=

r̂α(n)

1− αN
(0 ≤ n < N).280

Because of (4.2), we can use discrete Fourier coefficients to construct the ratios281

in (2.2).282

In order to formulate the discrete Malmquist-Takenaka system, let us consider an283

N -periodic MT system ϕa
n+Nk = ϕa

nB
k
a generated by the vector a ∈ DN . Taking the284

MTF coefficients of rα and considering (2.10) leads to285

(4.3) ⟨ϕa
n+Nk, rα⟩ = ϕa

n(α)B
k
a (α) (k ∈ N, 0 ≤ n < N).286

Because |Ba(α)| < 1, the Malmquist-Takenaka Fourier series with the coefficients (4.3)287

is absolutely and uniformly convergent on T. Furthermore (since the MT system is288

complete in the Hardy space H2(D)) the series produces rα:289

(4.4) rα(z) =

N−1∑
n=0

∞∑
k=0

ϕ
a

n(α)ϕ
a
n(z)B

k

a(α)B
k
a (z) =

1

1−Ba(α)Ba(z)

N−1∑
n=0

ϕ
a

n(α)ϕ
a
n(z).290

Taking the limit α → w ∈ T in (4.4) produces the Christoffel-Darboux formula for291

Malmquist-Takenaka systems (seel also [5, 7, 28]):292

(4.5)

N−1∑
n=0

ϕ
a

n(w)ϕ
a
n(z) =

1−Ba(w)Ba(z)

1− wz
(w, z ∈ D, w ̸= z).293

In order to acquire the discrete MT functions let us consider the set294

(4.6) Ta
N := {z ∈ T : Ba(z) = 1},295

where a ∈ DN . Since Ba : T → T is an N -fold mapping [25, 31], the number296

of elements in Ta
N is exactly N . We note that (4.6) can also be an appropriate297

choice of discretization points for a periodic MT system, whose period is less than298

N . For example, if we consider the 1-periodic (discrete Laguerre) system, choosing299

the discretization points (4.6) with a = (a, a, a, a, . . .) ∈ DN (N ≥ 1) is appropriate.300

Furthermore,301

(4.7)

N−1∑
n=0

ϕ
a

n(w)ϕ
a
n(z) =

{
0 (z, w ∈ Ta

N , z ̸= w)

σ2(z) (z ∈ Ta
N , z = w),

302

where303

(4.8) σ(z) :=

N−1∑
n=0

1− |an|2

|1− anz|2
.304

From the equations (4.7) and (4.8) it follows that the function system ϕa
n (0 ≤305

n < N) is orthonormal with respect to the inner product306
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12 T. DÓZSA, A. SOUMELIDIS AND F. SCHIPP

(4.9) [f, g]aN :=
∑
z∈Ta

N

f(z)g(z)/σ(z),307

or in other words [ϕa
n, ϕ

a
m]aN = δmn. Since ϕ

a
n+kN = ϕa

n holds in any z ∈ Ta
N point,308

the discrete MTF coeffiecients are N -periodic. Using this and (4.4) we can arrive at309

a formula analogous to (4.2) for MTF coefficients:310

(4.10) [ϕa
n, rα]

a
N =

ϕ
a

n(α)

1−Ba(α)
=

⟨ϕa
n, rα⟩

1−Ba(α)
(0 ≤ n < N).311

By (4.10) we can also use discrete MTF coefficients to construct the ratios needed312

for the proposed pole finding method (2.15).313

5. Finding every pole of a rational function. In this section we are going314

to propose an iterative algorithm based on theorem 2.2, which allows for finding every315

inverse pole of a rational function R. As before, we are going to assume that every316

inverse pole is simple and denote the (finite) set of inverse poles by A ⊂ D.317

We begin by introducing a mechanism to eliminate inverse poles which have al-318

ready been found. From section 3 it is clear that using p-periodic MTF coefficients319

in (2.15), where the MT system is generated by a ∈ Dp allows for the identification320

of a single Ba-dominant inverse pole. Modifying the parameter vector a lets us find321

different inverse poles from A, however not every inverse pole can be acquired in this322

way (see figure 3). We will make use of the following observation:323

(5.1) Ba(α) = 0 (a := (a0, . . . , ap−2, α) ∈ Dp, p ≥ 1).324

In effect (5.1) states that if the inverse pole α ∈ A is also a component of a, then α325

cannot be Ba-dominant. This provides an opportunity to ”eliminate” already found326

inverse poles. Suppose we applied theorem 2.2 with a PMT system defined by a ∈ Dp327

to identify the inverse pole α ∈ D. Now applying (2.15) using the MTF coefficients328

determined by the vector b := (a, α) ∈ Dp+1 guarantees by (5.1) that α cannot be329

found again. Repeating this process and considering larger p-periodic MT systems in330

each step allows us to find every inverse pole of R.331

The question of when to stop the above described steps still needs to be considered.332

Many popular methods capable of identifying rational functions (for example the333

output error model [10]) assume the order of R to be known. If we can assume R has334

exactly p ∈ N poles, then it is possible to find every inverse pole of R by applying335

theorem 2.2 p times. In each step of this process, we can eliminate the inverse pole336

α found in the previous iteration by including it in the parameter vector that defines337

the current PMT system.338

One advantage of our proposed pole finding scheme is that it is possible to apply339

theorem 2.2 without making any assumptions on the order of R. In this case however,340

one has to define a condition on when to stop looking for new inverse poles. We341

now propose one such possible stopping condition for the iterative application of342

theorem 2.2. Let ϕk(z) := ϕak

k , ak := (a0, . . . , ak−1), (1 ≤ k ≤ p) and consider the343

p-th Malmquist-Takenaka partial sum of R344

(5.2) SpR(w) = Sa
pR(w) :=

p−1∑
k=0

ckϕk(w), (R ∈ A, w ∈ D),345
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ON BERNOULLI’S METHOD 13

where ck denote the k-th MTF coefficients.346

Consider the H2 norm347

∥f∥H2 =
√
⟨f, f⟩ (f ∈ H2(D),348

induced by the H2 scalar product defined in (2.7). Clearly, if ap := (a0, . . . , ap−1)349

exactly matches the inverse poles of R, then ∥R− SpR∥H2 = 0 is also true, therefore350

we can stop the iteration once the H2 norm of R − SpR is zero. Since the inverse351

poles of R can are simple and are contained in A = {α0, . . . , αp−1} ⊂ Dp, the rational352

function R belongs to the subspace spanned by ϕ0, . . . , ϕp−1. Thus, ∥R−SpR∥H2 = 0353

indicates, that for the parameter vector generating the partial sum SpR, we have354

ap = (α0, . . . , αp−1).355

The steps for the k-th iteration of the proposed pole finding scheme can be sum-356

marized as follows.357

1. Identify αk−1 ∈ A, by applying theorem 2.2. Let the PMT system involved in358

the application of the theorem be generated by ak = (α0, . . . , αk−2, a) ⊂ Dk,359

where α0, α1, . . . , αk−2 ∈ A.360

2. Use the newly identified αk−1 inverse pole to construct the parameter vec-361

tor bk := (α0, αk, . . . , αk−1) ∈ Dk. Construct the PMT system ϕj(z) :=362

ϕbk
j (z) (j = 0, . . . , k − 1).363

3. Consider the orthogonal projection of R onto the subspace spanned by364

ϕbk
0 , ϕbk

1 , . . . ϕbk

k−1. This projection can be expressed by the formula in (5.2).365

The error of the projection is given by ∥R − SkR∥H2 . If this error is zero,366

then we have successfully found every inverse pole of R (hence R is completely367

contained in the subspace), otherwise increase k and repeat the above steps.368

In practice, we have to consider a discrete version of the problem. That is, suppose369

that instead of R, we only have access to the vector r ∈ CN (N ∈ N), where the370

components of r are discrete samplings ofR on T. We may use an equidistant sampling371

of T, or the discrete point set defined in (4.6). If we consider an equidistant sampling,372

we have to approximate the integrals ⟨ϕa
νk
, R⟩ using a numerical quadrature such373

as the trapezoid rule when applying theorem 2.2. This approach is quick, however374

it introduces numerical errors especially for small N . Instead of this approach, we375

can also use the discrete scalar product and discrete orthogonal PMT systems as376

discussed in section 4. These allow us more precise computations from a numerical377

point of view. In this case however, we have to consider that each application of378

theorem 2.2 requires the calculation of the sampling points (4.6) as we modify the379

parameter vector defining the PMT system in each iteration of the proposed method.380

Thus, using discrete orthogonal PMT systems can increase computational cost. We381

note that since the error ∥R−SpR∥H2 depends heavily on R, many signal processing382

applications [8, 19] use normalized variations of it. In this work, we propose the use383

of percent root mean squared difference (PRD) (see e.g. [19]) to describe the error of384

the projection SpR:385

(5.3) PRD(a) :=

√
∥R− Sa

pR∥2H2

∥R∥2H2

· 100.386

The use of the PRD score allows us to express the error of the approximation with387

percentages, thus we can construct a stopping condition for the proposed method388

that is usable for any R. In our future work we also plan to explore alternative stop-389

ping criteria suited for specific applications, however our experiments (see section 6)390

This manuscript is for review purposes only.



14 T. DÓZSA, A. SOUMELIDIS AND F. SCHIPP

demonstrate the usefullness of the proposed approach (5.3). In a computer imple-391

mentation of the proposed method, the norm ∥ · ∥H2
is replaced by the ∥ · ∥2 vector392

norm, if R was sampled in an equidistant fashion or the norm induced by (4.9), if R393

was sampled on (4.6).394

In algortithm 5.1 we summarize the steps of the proposed inverse pole identifica-395

tion and elimination approach. Algorithm 5.1 should not be considered a pseudo-code,396

rather a summary of the different steps needed to find the inverse poles of R. In this397

formulation we assumed the order of R to be unknown and relied on the above de-398

scribed exit condition to stop the iteration. For a more thorough consultation on the399

implementation, we refer to our MATLAB implementation of the proposed method [9].400

Algorithm 5.1 Generalized Bernoulli’s method to find every inverse pole

Obtain r, a sampling of R on T.
Let PRD = 100 and the exit condition ε ∈ [0, 100].
Let p = 1.
Let a and b be empty vectors.
while ε < PRD do
If p = 1, then let a = (a) ∈ D. If p > 1, then let a = (b1, . . . , bp−1, a) ∈ Dp,
where bk denotes the k-th component of the vector b. In either of these cases, a
strategy to choose a is given in section 6.

Obtain αp−1 by applying theorem 2.2 with a. The practical application of theo-
rem 2.2 is discussed in section 6.

If p = 1, then let b = (αp−1) ∈ D. If p > 1, then let b = (b1, . . . , bp−1, αp−1) ∈ Dp.
The vector b contains the already found inverse poles.

Calculate a discrete version of the projection Sb
pR.

Let PRD = PRD(b), where the function PRD(b) is defined in (5.3).

Let p = p+ 1.
end while

6. Numerical considerations. In this section we consider some practical prob-401

lems that arise when we implement the proposed pole finding scheme. Namely, we402

investigate the behavior of the ratios in (2.15), when we can only calculate the MTF403

coefficients up to some finite index. In addition, we propose a strategy to choose the404

parameter vector a ∈ Dp that defines the Malmquist-Takenaka system in the p-th step405

of algorithm 5.1.406

For a function f ∈ H2(D), the modulus of the periodic Malmquist-Takenaka407

Fourier coefficients can := ⟨ϕa
n, f⟩ tends quickly to zero if n → ∞. This behavior408

means that as k increases, calculating the ratios409

(6.1) sk(a) := caνk
/caνk−1410

incurs large numerical errors. On the other hand, considering ratios where the indices411

νk are too small, the values (6.1) may not approximate the limit well. This problem412

is illustrated in Figure 5.413
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Fig. 5: LEFT: Inverse poles of R (small circles) and the parameter of the PMT system
(star) for p = 1. RIGHT: Real and imaginary parts of the ratios (6.1). If the index k
is too small, the ratios oscillate, and if it is too large numerical errors begin to appear.

In order to select the ratios which approximate the limit s(a) := limk→∞ sk(a)414

closely enough, we have to find an interval J = [k, k+ℓ] of indices, where sk(a) exhibit415

”near constant” behavior. To do this, we propose to measure the oscillation in the416

window J by417

(6.2) ω(J, a) := max
i,j∈J

|si(a)− sj(a)|.418

For a fixed a we can approximate the limit of (6.1) using419

(6.3) ω∗(a) = min
J

ω(J, a) = ω([m∗,m∗ + ℓ], a), s(a) ≈ sm∗(a).420

As shown in section 2, the inverse pole can be recovered by421

α0 = Qa(s(a)),422

where the mapping Qa is defined in (2.17). Consequently, the error formula (2.20)423

given as424

|Qa(s(a))−Qa(sm∗(a))| ≤ M(a) · |s(a)− sm∗(a)|425

can be used to estimate the error of the reconstruction, whereM(a) is defined in (2.21).426

Unfortunately, in practice we cannot calculate the exact value of s(a). In this work,427

we approximate the error |sk(a) − s(a)| with |sk(a) − sk+l(a)| (l, k ∈ N). We now428

proceed to show that this error decreases quickly and is therefore appropriate for429

most practical cases. By theorem 2.2, there exists 0 ≤ q < 1 and M ∈ R for which430

(6.4) |sk(a)− s(a)| ≤ M · qk (k ∈ N).431

From this, we get432

|sk(a)− sk+l(a)| ≤ M(q + 1) ·
(
qk + qk+1 + . . .

)
= M · qk · 1 + q

1− q
(l > 0).

(6.5)433
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16 T. DÓZSA, A. SOUMELIDIS AND F. SCHIPP

By (6.5), the proposed practical error estimate |sk(a) − sk+l(a)| has the same order434

of decay as |sk(a)− s(a)| and can be used in applications. If q is close to 1, then the435

proposed estimate is not as reliable, however we did not see a large difference between436

the proposed estimate |sk(a)− sk+l(a)| and the actual error (6.4) in our experiments.437

Finally, we remark, that the MTF coefficients contain information about every pole438

of R. Methods for the p = 1 case have already been developed, where multiple439

poles are identified using the PMT expansion of R with p = 1 [13]. Based on our440

numerical experiments, we conjuncture that if we approximate s(a) with sn(a), where441

sn(a) falls into a ”relatively constant” part of the sequence sk(a), then Qa(sn(a)) will442

approximate one of the inverse poles of R (not necessarily α0). We plan to study this443

phenomenon and formalize our findings in a future work.444

We found in our experiments that estimating the value of the error formula (2.20)445

with446

(6.6) E(m∗, a) := M(a) · ω∗(a)447

suffices whenever the order of R is not too large.448

Next, we propose an approach to automatically choose the parameter a ∈ Dp449

in the p-th step of algorithm 5.1. By the error formulas (2.20) and (6.6) it is clear450

that the error of the inverse pole reconstruction depends heavily on the parameter451

vector a. A poor choice of a can mean that the sequence (6.1) converges slowly. This452

phenomenon is illustrated in figure 6. In this sense we can find a good parameter453

vector a by minimizing the function454

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

0 10 20 30

-2

-1.5

-1

-0.5

0

0.5

1

Fig. 6: LEFT: Inverse poles of R (small circles) and the parameter of the PMT
system (star) for p = 1. RIGHT: Real and imaginary parts of the ratios (6.1). If the
parameters of the PMT system lie close to the border of the Voronoi cells discussed
in section 3, then convergence of the ratios (6.1) is slow.

(6.7) Em∗(a) := E(m∗, a),455

where, for any given a, the index m∗ is determined by (6.3). Minimizing (6.7) leads456

to a nonlinear optimization problem. We note that in the p-th step of the algorithm,457

the first p− 1 components of a are fixed (they are the inverse poles reconstructed in458

previous steps), therefore we only have to find a single ap ∈ D parameter which mini-459

mizes (6.7). In this work we considered two algorithms to solve the above mentioned460
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optimization problem. In the first case, we considered 10 random a ∈ D at each step461

of the algorithm and selected the one for which (6.7) was minimal. In the second case,462

we used the hyperbolic variant of the Nelder-Mead simplex method [23]. The Nelder-463

Mead method [26] can be used to solve nonlinear optimization problems. It applies464

successive geometric transformations to a simplex, whose vertices represent the cur-465

rent state of the minimization. The applied transformations depend on the objective466

function’s values at the vertices. The hyperbolic Nelder-Mead algorithm introduced467

in [23] replaces these geometric transformations with their hyperbolic variants. When468

minimizing the objective (6.7) this is useful, as it naturally ensures all components of469

the vector a remain strictly inside D. We note that the proof of convergence can only470

be given in simple cases, even in the original variant of the Nelder-Mead method (see471

e.g. [23]). Despite this, it remains a popular minimization method based on empirical472

evidence and the results of our experiments also confirm its usefulness for the problem473

stated above. In particular, our below numerical results demonstrate the effectiveness474

of the proposed method when used with the above mentioned optimization schemes.475

We created a MatLab implementation of the proposed methods which can be476

accessed at [9]. To calculate periodic MT systems and the corresponding coefficients,477

we relied on the library introduced in [21]. Below, we provide an example to demon-478

strate the effectiveness of the proposed algorithm. We consider the rational function479

R given by the inverse poles A := {0.3 + 0.4i, −0.5 − 0.4i, 0.7 − 0.3i} and zeros480

z0 = 0.8 + 0.4i, z1 = 0.8 + 0.4i. We choose parameter a in each step of the algorithm481

by minimizing (6.7) by the above described optimization methods. The results for482

this example can be found in table 1. The rows of the table represent the iterations483

of algorithm 5.1.484

Hyperbolic Nelder Mead Monte Carlo optimization

Step |α0 − Qa(sm∗(a))| Em∗(a) |α0 − Qa(sm∗(a))| Em∗(a)

1 5.03 · 10−12 4.26 · 10−11 1.86 · 10−9 1.83 · 10−8

2 5.02 · 10−15 3.73 · 10−14 5.39 · 10−11 2.71 · 10−10

3 1.48 · 10−15 1.35 · 10−14 1.04 · 10−15 1.28 · 10−14

Table 1: Results for the above described example problem. The columns |α0 −
Qa(sm∗(a))| and Em∗(a) refer to the actual error of the reconstruction and the error
estimate with the optimized parameters (6.6).

In table 2, we present the results of a larger simulation. In this case, we construc-485

ted rational functions of the form R(z) :=
∑M

k=1 ck · rαk
(z) (ck ∈ C, αk ∈ D, z ∈ D),486

where the coefficients ck and the inverse poles αk were chosen randomly. We con-487

ducted 100 such experiments for each M = 1, . . . , 5, with table 2 showing the mean488

distance of the estimates from the actual inverse poles of R. The proposed method489

was applied with hyperbolic Nelder-Mead optimization. To simplify the evaluation of490

the results, the number of poles of R was assumed to be known in these experiments.491

In table 2, the error values for each M are given by492

(6.8) Err(M) :=
1

100

100∑
k=1

 1

M

M−1∑
j=0

|αk,j −Qa
k,j(sm∗(a))|

 ,493

where αk,j denotes the j-th inverse pole of the k-th rational function which is defined494
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by M poles and Qa
k,j(sm∗(a)) denotes the estimate of αk,j produced by our proposed495

method. The results in table 2 show, that our proposed method can be used reliably496

to find the inverse poles of R. For elementary rational functions (when M = 1),497

the reconstruction is almost perfect even for a large number of experiments. When498

increasing the number of inverse poles that define R, we can see a decrease in precision,499

however the average error defined in (6.8) remains in the order of 10−5 even if M = 5.500

Finally, we conducted an experiment to measure the effectiveness of the stopping501

criteria for our algorithm proposed in section 5. In particular we generated 100502

rational functions, each with 5 poles and applied the proposed method to find every503

inverse pole. This time however, we did not assume the number of poles to be known504

in advance, instead we stopped our iteration once the value of the PRD error (5.3)505

became less than ε = 10. We found that the average number of identified inverse506

poles throughout the 100 experiments in this case was 4.3. A perfect score could not507

be expected, because some inverse poles contribute very little to the energy (∥R∥H2
)508

of R, however the results show that we can rely on this scheme to accurately identify509

most significant inverse poles. We note that lowering the threshold ε increases the510

number of identified inverse poles, however it also increases computational cost (as511

the algoirthm will keep looking for new inverse poles even after the most dominant512

ones have been found).513

M 1 2 3 4 5

Err(M) see (6.8) 3.0 · 10−16 1.5 · 10−6 4.2 · 10−7 1.9 · 10−5 2.9 · 10−5

Table 2: Results of a larger experiment with different numbers of poles.

In our experiments we found that the proposed algorithm can be used to reliably514

identify the inverse poles of rational functions. Even though both described optimiza-515

tion methods provided good estimates on the inverse poles, applying the hyperbolic516

variant of the Nelder-Mead optimization showed slightly better precision. In the ex-517

periment detailed in table 1, the average distance between the estimated and true518

inverse poles was 1.68 · 10−12 with the Nelder-Mead method and 6.39 · 10−10 if we519

used a Monte Carlo approach. Every experiment was conducted using the algorithm520

in our implementation [9]. The above results justify using nonlinear optimization al-521

gorithms adapted to hyperbolic geometry to minimize (6.7). In our future work, we522

plan to experiment using further hyperbolic optimization methods such as [20].523

7. Conclusion. In this work we introduced a generalization of Bernoulli’s clas-524

sical method of finding the poles of a rational function. The generalization uses525

periodic Malmquist-Takenaka Fourier coefficients to construct the sequence of ratios526

used by Bernoulli’s original algorithm. We generalized the concept of dominant poles527

using Blaschke-products and gave a description of the poles which can be found with528

the proposed method. Furthermore, we showed that discrete orthogonal Malmquist-529

Takenaka systems can also be used with the proposed method. Using our results, we530

proposed an iterative algorithm which applies the generalized Bernoulli’s method to531

find every inverse pole of the rational function. Finally, we proposed a method to532

automatically select the parameters of our algorithm by minimizing an intuitive cost533

function with different optimization techniques.534

The proposed method is an interesting generalization of a classical numerical al-535

gorithm, which in our opinion is worthy of attention by itself. In addition however, the536
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proposed method exhibits great practical potential in the field of system identifica-537

tion. Specifically, in our future work we plan to investigate ways in which to apply the538

proposed algorithm to identify the poles of the transfer functions of SISO-LTI (single539

input single output, linear time invariant) systems [2]. One promising property of the540

proposed algorithm is that the order of the transfer function to be identified need not541

be known in advance.542

Another area of future investigation will be the description of identifiable inverse543

poles through convex geometry. As mentioned in section 3, when the generalized al-544

gorithm is used with Laguerre (1-periodic Malmquist-Takenaka) Fourier coefficients,545

the set of identifiable inverse poles can be given by calculating their so-called para-546

cyclic convex hull. This result and further generalizations for the case p > 1 will be547

considered in our future research.548
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detection using piezoresistive force sensors and adaptive signal models, IEEE Transactions570
on Instrumentation and Measurement, 71 (2022), pp. 1–11.571
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