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a b s t r a c t

The Koopman framework proposes a linear representation of finite-dimensional nonlinear systems
through a generally infinite-dimensional globally linear embedding. Originally, the Koopman formalism
has been derived for autonomous systems. In applications for systems with inputs, generally a linear
time invariant (LTI) form of the Koopman model is assumed, as it facilitates the use of control
techniques such as linear quadratic regulation and model predictive control. However, it can be
easily shown that this assumption is insufficient to capture the dynamics of the underlying nonlinear
system. Proper theoretical extension for actuated continuous-time systems with a linear or a control-
affine input has been worked out only recently, however extensions to discrete-time systems and
general continuous-time systems have not been developed yet. In the present paper, we systematically
investigate and analytically derive lifted forms under inputs for a rather wide class of nonlinear systems
in both continuous and discrete time. We prove that the resulting lifted representations give Koopman
models where the state transition is linear, but the input matrix becomes state-dependent (state
and input-dependent in the discrete-time case), giving rise to a specially structured linear parameter-
varying (LPV) description of the underlying system. We also provide error bounds on how much the
dependency of the input matrix contributes to the resulting representation and how well the system
behavior can be approximated by an LTI Koopman representation. The introduced theoretical insight
greatly helps for performing proper model structure selection in system identification with Koopman
models as well as making a proper choice for LTI or LPV techniques for the control of nonlinear systems
through the Koopman approach.

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Nowadays, most dynamic systems exhibit nonlinear behavior
hat needs to be handled to meet the ever increasing performance
equirements. Nonlinear control techniques, e.g., backstepping,
ontrol Lyapunov functions (Isidori, 1995; Khalil, 2002), are com-
lex and generally only provide stability guarantees. In contrast,
he control methods developed for linear systems offer strong
uarantees on performance and easy to use design principles.
owever, using linearized models allows only limited perfor-
ance, as they are only valid locally. For this reason, in recent
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years, there has been a significant research interest on embedding
nonlinear systems into linear models. A possible way to achieve
this is through the Koopman framework (Koopman, 1931) that
proposes a trade-off in complexity by representing a nonlinear
system through a generally infinite-dimensional, but linear de-
scription. By applying a nonlinear state transformation through
so-called observable functions, the states are projected into a
higher dimensional space where their dynamic relation can be ex-
pressed as a linear mapping. While the framework is well worked
out for autonomous systems, treating systems with inputs is not
understood well.

In the continuous-time (CT) case, for input-linear or control-
affine nonlinear systems, applying the chain rule of differentia-
tion leads to not entirely linear Koopman models (Kaiser, Kutz, &
Brunton, 2020). More specifically, using state-dependent observ-
ables results in a constant state-transition matrix, while the input
matrix becomes state-varying. Hence, the Koopman form can be
interpreted as a linear parameter-varying (LPV) model (Moham-
madpour & Scherer, 2012). Furthermore, if the resulting input
matrix function is in the span of the observables, the result-
ing Koopman model associated with a nonlinear control-affine
system can be written in a bilinear form (Goswami & Paley,
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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017; Huang, Ma, & Vaidya, 2018). How to systematically obtain
oopman forms suitable for control of general nonlinear systems
ith input is still an open question even for CT systems. For
xample, the authors of Klus et al. (2020) consider a finite set of
iscrete input values and derive a family of Koopman generators
hich are defined only for these specific constant inputs. This
esults in a switched linear system and the control approach
ims to optimize the switching sequence. Alternatively, one could
onsider the Koopman operator acting on an extended state-
nput space (Kaiser et al., 2020). However, the resulting lifted
odel is autonomous in the extended state and the construction

s difficult to be used for control purposes. As such, the current
vailable methods to derive an associated Koopman form of non-
inear systems with input in a general form offer limited control
ossibilities.
In discrete time (DT), the derivation of Koopman models is

ot as straightforward even for linear input and control-affine
onlinear systems due to the lack of chain rule for the differ-
nce operator. However, for system identification and embedded
ontrol purposes, the DT models are predominantly used. In
he literature, there are several different methods that treat
T nonlinear systems with inputs. For example, the authors
f Williams, Hemati, Dawson, Kevrekidis, and Rowley (2016)
uggest to identify an autonomous LPV Koopman model with the
nput representing the scheduling variable. A more commonly
sed approach is detailed in the work of Proctor, Brunton, and
athan Kutz (2018), which uses a dictionary of state, input
nd mixed-dependent observables. While the representation is
utonomous, it is common to restrict the output space of the
oopman operator to observables only dependent on the state.
his idea has been used mostly in identification-related works,
.g. Bonnert and Konigorski (2020), Liu, Kundu, Chen, and Yeung
2018), and works that investigate the relation of system the-
retic properties between the Koopman form and the original
onlinear representation, such as Yeung, Liu, and Hodas (2018).
urthermore, the input might also be projected through the
onlinear lifting, which complicates the control problem. As an
lternative to observable-based lifting, several works, e.g., Kaiser
t al. (2020), Korda and Mezić (2020), use the spectral properties
f the Koopman operator and lift the autonomous dynamics using
igenfunction coordinates. However, the problem of deriving
oopman forms with direct inputs still remains unresolved.
Given its simplicity, a linear time invariant (LTI) Koopman

odel with nonlifted input is generally used in practice, es-
ecially for control methods such as linear quadratic regulation
LQR) and model predictive control (MPC), (Korda & Mezić, 2018;
amakoukas, Castaño, Tan, & Murphey, 2020; Ping, Yin, Li, Liu,
Yang, 2021). However, there is no discussion on the validity of

hese models or on the approximation error that is introduced.
urthermore, as we show in this paper, the involved approxi-
ation error can be substantial. There also exist works that use
odels of different complexities, e.g. bilinear (Zinage & Bakolas,
023), control-affine or nonlinear input function (Shi & Meng,
022), or employ reinforcement learning techniques together
ith an autonomous Koopman model with observables depen-
ent on the state and policy parameters (Zanini & Chiuso, 2021).
owever, while the control applications show promising results,
t is clear that a theory to formulate exact Koopman models under
nputs that are useful for control purposes is lacking.

Based on these, the present paper investigates the analytic
erivation of Koopman forms of general nonlinear systems with
nputs both in CT and DT. The contributions can be summarized
s follows.

C1 A systematic factorization method is devised to obtain, for
a wide class of nonlinear systems, an exact continuous-time

Koopman model suitable for control purposes.

2

C2 A method to analytically compute an exact Koopman form of
a wide class of discrete-time nonlinear systems with inputs
is developed.

C3 Providing an interpretation of the resulting Koopman forms
as LPV models both in continuous and discrete time.

C4 A 2-norm based magnitude bound of the state response
error between the derived exact Koopman model and its
LTI approximations is devised to give characterization of the
expected model uncertainty.

The paper is structured as follows. Section 2 gives an intro-
duction to Koopman forms in CT and presents our Contributions
C1 and C3 in terms of a general approach for obtaining Koopman
representations under inputs together with their LPV interpreta-
tion. In Section 3, we further extend our results for the Koopman
framework to DT systems, which is the main contribution (see C2
and C3) of our work. In Section 4, we develop an error bound to
characterize how well the system behavior can be captured using
an LTI Koopman model, constituting Contribution C4. Next, in
Section 5, we apply our proposed approach to nonlinear systems
both in CT and DT to demonstrate the utilization potential of
the developed theory. Finally, in Section 6, conclusions on the
presented results are drawn.

2. Embedding of continuous-time systems

The present section briefly details the embedding of autono-
mous CT nonlinear systems into Koopman forms, followed by the
extension of the embedding under inputs. Additionally, we pro-
pose a factorization method to describe the resulting Koopman
models in an LPV form which is useful for control.

2.1. Koopman representation of autonomous systems

Consider an autonomous CT nonlinear time-invariant system:

˙t = fc(xt ), x0 ∈ X ⊆ Rnx , (1)

where fc : Rnx → Rnx is Lipschitz continuous, xt := x(t) is
the state variable and t ∈ R denotes the continuous time. The
solution xt of (1) at time t starting from an initial condition x0
can be described by the induced flow:

xt = Fc(t, x0) = x0 +

∫ t

0
fc(xτ ) dτ . (2)

The set X is considered to be compact and forward invariant
under Fc(t, ·), i.e. Fc(t,X) ⊆ X, ∀t ≥ 0 (assuming a weak form
of stability). The Koopman family of operators

{
Kt

}
t≥0 associated

with Fc(t, ·) for a given F ⊆ C1 (continuously differentiable)
Banach function space is defined as the composition:

Ktφ(x0) = φ ◦ Fc(t, x0), ∀φ ∈ F, (3)

where φ : X → R denotes scalar observable functions in
F . As shown in Mauroy, Mezić, and Susuki (2020), the family
{Kt

}t≥0 is a (one-parameter) semigroup and characterizes the
linear embedding of (1) in terms of the observables φ ∈ F .
Furthermore, as X is a compact forward-invariant set and the
flow Fc is uniformly Lipschitz continuous w.r.t. t , the Koopman
semigroup {Kt

}t≥0 is strongly continuous on F (Mauroy et al.,
2020). Hence, the infinitesimal generator L : DL → F of the
Koopman semigroup of operators is defined as

Lφ(x0) = lim
Ktφ(x0) − φ(x0)

, ∀φ ∈ DL, (4)

t↓0 t
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ee Lasota and Mackey (1994), Mauroy et al. (2020), where the
omain DL ⊆ F is a dense set in F and the limit (4) exists in the
trong sense (Lasota & Mackey, 1994):

im
t↓0

Lφ(x0) −
Ktφ(x0) − φ(x0)

t

 = 0, (5)

with ∥·∥ being the norm associated with F (Mauroy et al., 2020).
In CT, the notion of the infinitesimal generator is important, as it
is used to describe the dynamics in the lifted space of observables.
As shown in Engel and Nagel (2000), if the previous assumptions
hold true, then the generator L is linear. Let zφ(t) = Ktφ(x0).
Then, zφ(t) is the solution of the equation:

żφ = Lzφ, (6)

with initial condition zφ(0) = φ(x0) (Bakker, Nowak, & Rosenthal,
2019). Solving the initial value problem for (6) results in Kt

= eLt .
As described in Bakker et al. (2019), Bevanda, Sosnowski, and
Hirche (2021), the application of L on φ(xt ) gives:

φ̇ =
∂φ

∂x
fc = Lφ, (7)

which defines a linear, but infinite-dimensional representation of
the underlying system. In this paper, we consider that there exists
a finite-dimensional Koopman invariant subspace Fnf ⊆ DL,
.e., L : Fnf → Fnf . As shown in Bakker et al. (2019), if Fnf
is invariant under the Koopman generator L, then, due to the
linearity of L, Lφ is a linear combination of the elements of Fnf .
Consider Φ⊤

= [ φ1 · · · φnf ] to be a basis of Fnf . Following the
derivations in Mauroy et al. (2020), the effect of the infinitesimal
generator on a component φj can be described as:

φ̇j = Lφj =

nf∑
i=1

Li,jφi, (8)

where L is a matrix representation of the Koopman generator and
the jth column of L contains the coordinates of Lφj in the basis Φ .
By introducing A = L⊤

∈ Rnf×nf , the lifted form of the dynamics
of (1) can be written as:

Φ̇(xt ) = AΦ(xt ). (9)

Based on (7), the following relation also holds true:

Φ̇(xt ) =
∂Φ

∂x
(xt )fc(xt ), (10)

here ∂Φ
∂x is the Jacobian of Φ . Hence, the generally used con-

dition in the literature to have a finite-dimensional Koopman
embedding (i.e. lifting) for (1) is to find a set of observables Φ

for which:
∂Φ

∂x
fc ∈ span {Φ} . (11)

o recover the original states, the existence of an inverse trans-
ormation Φ†(Φ(xt )) = xt is often assumed. In practice, this is
achieved by either including the states as part of the observables
or by requiring that they are in the span of the observables.

Finally, to explicitly give the LTI dynamics implied by the
lifted form, introduce zt = Φ(xt ), which gives the Koopman
representation of (1) as:

żt = Azt , with z0 = Φ(x0). (12)

2.2. Koopman representation under inputs

The following section treats the derivation of the Koopman
representation for systems with inputs. The approach is based
on a sequential method that uses state-dependent observables,
as done in Kaiser et al. (2020), Surana (2016), for control-affine
3

systems and in Surana (2016) for nonlinear systems in general
form. As a new result, we describe a factorization method for
general nonlinear systems to obtain a model useful for control.
Furthermore, we interpret the resulting Koopman representations
as LPV models.

2.2.1. General nonlinear systems
Consider the CT nonlinear time-invariant system:

ẋt = fd(xt , ut ) (13)

with x0 ∈ X, ut ∈ U ⊆ Rnu , and fd : Rnx × U → Rnx is
Lipschitz continuous. It is assumed that U is given such that X
is compact and forward invariant under the induced flow. To
avoid ending up with a Koopman model of (13) without explicit
external inputs that is difficult to control, we use a construction
based on only state-dependent observables. First, we decompose
the function fd(xt , ut ) into the sum between the contributions of
the autonomous and input-related dynamics:

fd(xt , ut ) = fd(xt , 0)  
fc(xt )

+ fd(xt , ut ) − fd(xt , 0)  
gc(xt ,ut )

, (14)

here gc(xt , 0) = 0. Note that decomposition (14), which has
lso been described in Surana (2016), is trivial and always ex-
sts for any fd. Next, we give the analytically derived Koopman
epresentation associated with (13).

heorem 1. Given a nonlinear CT system in the general form (13),
here fd is written as (14), with the observables Φ : X → Rnf

n C1 such that (11) holds for fc(xt ), then there exists an exact
inite-dimensional lifted form

˙ (xt ) = AΦ(xt ) + B(xt , ut ), (15a)

ith A ∈ Rnf×nf and B : X × U → Rnf defined as:

(xt , ut ) =
∂Φ

∂x
(xt )gc(xt , ut ). (15b)

Proof. Based on (11), lifting the autonomous dynamics gives the
finite-dimensional lifted representation form:

Φ̇(xt ) =
∂Φ

∂x
(xt )fc(xt ) = AΦ(xt ). (16)

Next, for ut ̸= 0, the dynamics are described by (14). Taking the
time derivative of Φ , the chain rule gives:

Φ̇(xt ) =
∂Φ

∂x
(xt )fd(xt , ut )

=
∂Φ

∂x
(xt )fc(xt ) +

∂Φ

∂x
(xt )gc(xt , ut )

= AΦ(xt ) + B(xt , ut ) (17)

with B given by (15b). ■

Eq. (15a) represents an exact lifted form of (13), consistent
with the lifting in (16) under Φ . Note that the input enters
through the nonlinear function B(xt , ut ), which limits the applica-
tion of (15a) for control purposes. To address this, we can recast
the representation into a so-called LPV form by the help of the
following Lemma:

Lemma 1. Let B : X × U → Rnf be continuously differentiable
in u , continuous in x and satisfying B(x , 0) = 0, and let U be a
t t t
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onvex set containing the origin.1 Then,

B(xt , ut ) =

∫ 1

0

∂B
∂u

(xt , λut ) dλ, (18)

rovides a factorization of B such that B(xt , ut ) = B(xt , ut )ut for any
(xt , ut ) ∈ (X,U).

Proof. See Appendix A.

The resulting lifted representation for continuous-time non-
linear systems in general form is:

Φ̇(xt ) = AΦ(xt ) + B(xt , ut )ut . (19)

To handle the possibly nonlinear dependency of the input matrix
B(xt , ut ) on the state xt and input ut , we can express (19) in an
LPV form. Let zt = Φ(xt ) and introduce a so called scheduling
map, pt = µ(zt , ut ), such that Bz ◦ µ = B and Bz belongs to
a predefined function class, such as affine, polynomial, rational.
Then, we can introduce an LPV form of the Koopman model of
(13) as

żt = Azt + Bz(pt )ut , (20)

with z0 = Φ(x0). LPV forms such as (20) are well suited to ad-
dress nonlinear control problems by the use of powerful convex
optimization based analysis of stability and performance together
with synthesis tools to obtain controllers, observers, etc. with
performance guarantees, see Briat (2016), Mohammadpour and
Scherer (2012), Tóth (2010). To arrive to an LPV form, the choice
of µ is often driven by the utilization of the resulting model.
Choosing a µ such that B(xt , ut ) is transformed to a Bz that is an
affine function of pt is highly advantageous as it enables the use of
the most simplest and often computationally efficient polytopic
analysis and synthesis tools. However, such a choice for µ can
result in a high dimension of pt , which increases the conser-
vativeness affecting the analysis and may render the synthesis
unfeasible. Alternatively, a much smaller dimension for pt can
be achieved by considering a function µ such that Bz becomes
polynomial or even rational. For such dependency classes, there
is also an extensive array of advanced analysis and synthesis tools
available based on linear fractional representations, µ-analysis,
full-block multipliers, and integral quadratic constraints (Briat,
2016; Mohammadpour & Scherer, 2012).

2.2.2. Control-affine or linear input cases
In case (13) is in a control-affine form:

ẋt = fc(xt ) + gc(xt )ut , (21)

with gc : Rnx → Rnx×nu and ut ∈ U ⊆ Rnu , Theorem 1 can be
applied to obtain the lifted representation:

Φ̇(xt ) = AΦ(xt ) + B(xt )ut , (22)

where B(xt )ut = B(xt , ut ) and

B(xt ) =
∂Φ

∂x
(xt )gc(xt ). (23)

gain, the lifted representation (22) can be expressed in an
PV form, but with only a state-dependent scheduling variable,
.e. pt = µ(zt ). Furthermore, nonlinear systems with linear input
gc(xt ) = b ∈ Rnx×nu is a constant matrix) are a particular case of
21), hence the associated lifted form is also described by (22) and
he Koopman representation (20). Note that the input matrix B is

1 For most real-world systems, convexity of U is not a strong assumption
ue to limited input range of actuators or operational limits of the system. If
̸∈ U, then, by re-centering u and modifying fd accordingly, the condition can
e satisfied.
4

still state-dependent due to the multiplication with the Jacobian
function, as B(xt ) =

∂Φ
∂x (xt )b.

As discussed in Goswami and Paley (2017), Huang et al. (2018),
Schulze, Doncevic, and Mitsos (2022), if ∂Φ

∂x gci ∈ span {Φ} with gci
being the ith column of gc, then there is a Bi ∈ Rnf×nf satisfying
∂Φ
∂x gci = BiΦ , giving the bilinear lifted form:

Φ̇(xt ) = AΦ(xt ) +

nu∑
i=1

BiΦ(xt )ut,i. (24)

with ut,i being the ith element of ut . Equivalently, let zt = Φ(xt ),
then a bilinear Koopman model of (21) is:

żt = Azt +

nf∑
j=1

zt,jB̃ju, (25)

where z0 = Φ(x0), zt,j is the jth element of zt , and B̃j =

[ B1,j · · · Bnu,j ] where Bi,j ∈ Rnf is the jth column of Bi.

3. Embedding of discrete-time systems

In this section, we extend the previously described results for
DT systems, which is our main contribution.

3.1. Koopman representation of autonomous systems

Consider the DT autonomous time-invariant nonlinear system:

xk+1 = f (xk), (26)

with initial condition x0 ∈ X ⊆ Rnx , nonlinear state transition
map f : Rnx → Rnx and k ∈ Z the discrete time. It is assumed
that X is compact and forward invariant under f (·), i.e. f (X) ⊆ X.
For DT systems, as expressed in Mauroy and Goncalves (2016),
the DT Koopman operator is generally ‘fixed’ to the sampling
interval, i.e. Kt , for t = Ts, to describe the evolution of the
observables between each time step. We drop the superscript to
ease readability. The Koopman operator K : F → F associated
ith the nonlinear map f is defined through the composition:

φ = φ ◦ f , ∀φ ∈ F, (27)

here F is a Banach function space of observables φ : X → R.
iven an arbitrary state xk ∈ X, (27) is equivalent to the following
elation:

φ(xk) = φ ◦ f (xk) = φ(xk+1). (28)

We assume there exists a finite-dimensional Koopman invariant
subspace Fnf ⊆ F , i.e., K : Fnf → Fnf . As K is a linear
operator (Mauroy et al., 2020), Kφ can be expressed as a linear
combination of the elements of Fnf . Let Φ⊤

= [ φ1 · · · φnf ] be a
basis of Fnf . As detailed in Mauroy et al. (2020), the effect of the
Koopman operator on φj is expressed as:

Kφj =

nf∑
i=1

Ki,jφi, (29)

where K is the matrix representation of the Koopman operator
and the jth column of K contains the coordinates of Kφj in the
basis Φ . By taking A = K⊤, a finite-dimensional representation of
(26) in the lifted space is

Φ(xk+1) = AΦ(xk). (30)

Based on (26), we can substitute the LHS of (30) in terms of
Φ(xk+1) = Φ(f (xk)) giving:

Φ ◦ f (x ) = AΦ(x ). (31)
k k
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ased on (31), the existence condition of a Koopman invariant
ubspace for a given choice of observables is

◦ f ∈ span {Φ} . (32)

imilar to the CT case, we can ensure the existence of an inverse
ransformation Φ†(Φ(xk)) = xk by requiring the identity function
x = id(x) to also be in the span of Φ , i.e., id ∈ span{Φ}. Given
zk = Φ(xk), the LTI Koopman model associated with (26) is:

zk+1 = Azk, with z0 = Φ(x0). (33)

3.2. Koopman representation under inputs

Next, we derive a Koopman representation for DT systems
with input. Compared to the CT case, the chain rule can no longer
be applied to derive the lifted representation. Hence, we propose
a method based on the FTC, to analytically derive the DT lifted
form.

3.2.1. General nonlinear systems
Consider a DT nonlinear system in the general form:

xk+1 = fd(xk, uk), (34)

with uk ∈ U ⊆ Rnu being the input, x0 ∈ X and fd : Rnx×U → Rnx .
It is assumed that U is given such that X is compact and forward
invariant under f . As in the CT case, we propose an approach that
uses only state-dependent observables to analytically derive the
Koopman form. Similar to the CT case, we decompose fd(xk, uk) to
autonomous and input-driven dynamics:

fd(xk, uk) = f (xk) + g(xk, uk). (35)

The first step is to lift the autonomous dynamics by considering
zero input, i.e., uk = 0:

xk+1 = fd(xk, 0) = f (xk), (36)

and g(xk, 0) = 0. Applying the function Φ , the lifted dynamics of
he autonomous part can be written as follows, assuming (32) is
atisfied:

(xk+1) = AΦ(xk) = Φ(f (xk)). (37)

ext, by considering the full dynamics of (34), we apply the lifting
:

(xk+1) = Φ
(
f (xk) + g(xk, uk)

)
. (38)

n contrast to the CT case, the absence of a chain rule under the
hift operator makes it hard to directly separate the autonomous
nd input-driven contributions. To solve this problem, we employ
he FTC to derive analytically an exact Koopman representation.

heorem 2. Given a nonlinear DT system in the general form (34),
here fd is written as (35), together with observables Φ : X → Rnf

n C1 with X convex,2 such that Φ(f (·)) ∈ span {Φ},3 then there
xists an exact finite-dimensional lifting:

(xk+1) = AΦ(xk) + B(xk, uk), (39a)

ith A ∈ Rnf×nf and

(xk, uk) =(∫ 1

0

∂Φ

∂x
(f (xk)+λg(xk, uk)) dλ

)
g(xk, uk). (39b)

2 To satisfy the convexity requirement, one can always construct a convex
orward invariant set in X.
3 This condition is taken to simplify the mathematical setting in terms of

inite dimensional operators. However, the implication of the results in this
aper are also valid for the Koopman form under inputs in an approximate
ense (when Φ(f (·)) /∈ span {Φ}).
5

Proof. As X is convex, for any two states p, q ∈ X ⊆ Rnx the
egment x(λ) = p + λ(q − p) is in X for all λ ∈ [0, 1]. Next, as
i, the ith component of Φ with i ∈ {1, . . . , nf}, is assumed to be
ontinuously differentiable, define the C1 function hi : R → R as
i(λ) = φi ◦ x(λ). Using the FTC (see Appendix B), we have

i(1) − hi(0) =

∫ 1

0
h′

i(λ) dλ, (40)

here h′

i =
∂hi
∂λ

. Next, substitute φi into (40) and apply the chain
rule to get

φi(q) − φi(p) =

∫ 1

0

∂φi

∂x
(x(λ))

∂x
∂λ

(λ) dλ (41)

hich in fact provides that

i(q) − φi(p) =

(∫ 1

0

∂φi

∂x
(x(λ)) dλ

)
(q − p) (42)

=

(∫ 1

0

∂φi

∂x
(p + λ(q − p)) dλ

)
(q − p).

y choosing qk+1 = f (xk) + g(xk, uk) = xk+1 and pk+1 = f (xk) we
get:

xk+1(λ) = pk+1 + λ(qk+1 − pk+1)

= f (xk) + λg(xk, uk). (43)

Substituting (43) into (42) at time moment k + 1 gives

φi(xk+1) = φi(f (xk)) +(∫ 1

0

∂φi

∂x
(f (xk) + λg(xk, uk)) dλ

)
g(xk, uk). (44)

Stacking all components of Φ and using (37), the exact lifted
representation of (34) is given by (39a) with the input matrix
function given by (39b). ■

In order to obtain a useful LPV form of (39a) as in the CT case,
we can factorize B in (39a) to get

Φ(xk+1) = AΦ(xk) + B(xk, uk)uk. (45)

As g(xk, 0) = 0 by construction in (35), Lemma 1 gives

B(xk, uk) =

∫ 1

0

∂B
∂u

(xk, λuk) dλ. (46)

et zk = Φ(xk). Similar to the CT case, the lifted form (45) can be
rewritten as the LPV form of the Koopman representation of (34):

zk+1 = Azk + Bz(pk)uk, (47)

where the scheduling map pk = µ(zk, uk) is introduced such that
Bz ◦ µ = B.

3.3. Control-affine or linear input case

For a control-affine nonlinear system given by:

xk+1 = f (xk) + g(xk)uk, (48)

Theorem 2 can be applied to obtain the lifted form (45), where
B(xk, uk) simplifies as (39b) directly reduces to

B(xk, uk) =(∫ 1

0

∂Φ

∂x
(f (xk) + λg(xk)uk) dλ

)
g(xk)  

B(xk,uk)

uk. (49)

The input can easily be factorized out in this case and the LPV
form of the Koopman representation follows as in (47). For non-
linear systems with linear input:

x = f (x ) + bu , (50)
k+1 k k



L.C. Iacob, R. Tóth and M. Schoukens Automatica 162 (2024) 111525

t

B

w
p
s
t

4

i
f
p
w
e
o
H
c

4

m
w
o
a

∥

F
v

i

4

z

w

P

e

A

∥

D
e

∥

∥

L
(

∥

U
t

he application of Theorem 2 leads to:

(xk, uk) =

(∫ 1

0

∂Φ

∂x
(f (xk) + λbuk) dλ

)
b  

B(xk,uk)

uk. (51)

ith an LPV form as in (47). It is important to note that, com-
ared to the CT case, for both the control-affine and input-linear
ystems, the input matrix function B also has a dependency on
he input uk in the DT case.

. Approximation error of LTI Koopman forms

In this section we investigate how much approximation error
s introduced if instead of the exact LPV Koopman representation
or nonlinear systems with input, one uses only strictly LTI ap-
roximations. Such LTI Koopman forms are of interest as they are
idely assumed in practice (Korda & Mezić, 2018; Mamakoukas
t al., 2020; Ping et al., 2021), however, a clear characterization
f the involved approximation error is lacking in the literature.
ere, we focus only on DT systems for brevity, but similar results
an be obtained for the CT case.

.1. Notation

We introduce the following mathematical notation. ρ(A) =

axr∈λ(A) |r| denotes the spectral radius of a matrix A ∈ Rn×n

ith eigenvalues λ(A) and σ̄ (P) is the maximum singular value
f P ∈ Rm×n. ∥v∥2 is the Euclidean norm of a real vector v ∈ Rn

nd ∥P∥2,2 represents the induced 2,2 matrix norm:

P∥2,2 = sup
v∈Rn\0

∥Pv∥2

∥v∥2
= σ̄ (P). (52)

or a DT signal v : Z+

0 → Rn, ∥v∥ℓ2 =

√∑
∞

k=0 ∥vk∥
2
2, where

k ∈ Rn is the value of v at time k, Z+

0 stands for non-negative
ntegers, and ∥v∥ℓ∞

= maxk∈Z+

0
∥vk∥2.

.2. Characterization of the approximation error

The approximate LTI Koopman model is given by:

ˆk+1 = Aẑk + B̂uk. (53)

here ẑk is the associated state vector. The state matrix A satisfies
the embedding condition (31), but B̂ is obtained via either an
approximation of Bz or by a data-driven scheme like (extended)
dynamic mode decomposition with control (EDMDc), see Korda
and Mezić (2018), Proctor, Brunton, and Nathan Kutz (2016). Let
ek = zk − ẑk, where zk is the state of the exact Koopman form
(47). Denote Bk = Bz(pk) = Bz(µ(Φ(xk), uk)). Given the initial
conditions z0 = ẑ0 such that e0 = 0, the error dynamics between
the exact LPV Koopman form (47) and the LTI Koopman form (53)
are

ek = Aek−1 + (Bk−1 − B̂)uk−1. (54)

In order to characterize the expected magnitude of ek as k evolves,
we formulate the following theorem.

Theorem 3. Consider the exact Koopman embedding (47) of a
general nonlinear system (34) and the approximative LTI Koopman
form (53). Under any initial condition z0 = Φ(x0) = ẑ0 and input
trajectory u : Z+

0 → Rnu with bounded ∥u∥ℓ∞
, the state evolution

error ek between these representations given by (54) satisfies

(i) If ρ(A) < 1, ∥ek∥2 is finite for any k ∈ Z+

0 and limk→∞ ∥ek∥2
exists;
6

(ii) If σ̄ (A) < 1, (i) is satisfied and furthermore

∥ek∥2 ≤
β

1 − σ̄ (A)
∥u∥ℓ∞

, (55)

where β = maxx∈X,u∈U ∥Bz(µ(Φ(x), u)) − B̂∥2,2.

roof. By iterative substitution, we obtain:

k =

k−1∑
l=0

Ak−1−l(Bl − B̂)ul. (56)

pplying the 2-norm and using the triangle inequality:

ek∥2 ≤

k−1∑
l=0

∥Ak−1−l(Bl − B̂)ul∥2. (57)

ue to the submultiplicative property of (52), (57) can further be
xpanded as:

ek∥2 ≤

k−1∑
l=0

∥Ak−1−l(Bl − B̂)∥2,2∥ul∥2. (58)

Using ∥u∥ℓ∞
= maxl∈Z+

0
∥ul∥2,

ek∥2 ≤ ∥u∥ℓ∞

k−1∑
l=0

∥Ak−1−l(Bl − B̂)∥2,2. (59)

et β = maxx∈X,u∈U ∥Bz(µ(Φ(x), u)) − B̂∥2,2, then the inequality
59) becomes:

ek∥2 ≤ β∥u∥ℓ∞

k−1∑
l=0

∥Ak−1−l
∥2,2. (60)

nder the assumption that ρ(A) < 1, limr→∞ Ar
= 0, which,

ogether with (60), show that ∥ek∥2 is bounded for all k ∈ Z+

0 ,
proving the first part of the theorem.

For the second part, let σ̄ (A) < 1. Using ∥A∥2,2 = σ̄ (A) and
the closed-form of the resulting geometric series, the error can
be explicitly bounded by (55). ■

If β is large, which can be expected in case of significant input
nonlinearities, the error (55) can be substantial.

Given the LPV form of the exact Koppman representation, the
computation of β can be accomplished in a conservative manner
based on a polytopic test or by gridding. Usually, B̂ is computed
via EDMDc which comes down to a least-squares approximation
based on given trajectories of x and u. However, in terms of the
LPV form (47), one can also synthesize B̂ by minimizing the ℓ2-
gain of (54) using convex optimization (Iacob, Tóth, & Schoukens,
2022).

5. Examples

In this section, to demonstrate the applicability of the intro-
duced results, we study and compare the simulation results of
various Koopman models to the original system trajectories for
both CT and DT examples. Furthermore, we assess the tightness
of the proposed error bound for LTI Koopman approximations.

5.1. Continuous-time case

In this subsection, we drop the subscript t to simplify the
notation. Consider the following nonlinear system:

ẋ =

[
µx1 − x1

2

]
+

[
x1eu1

u2

]
, (61)
λ(x2 − x1) − x2 u1u2 + x2e
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here xi and ui denote the ith elements of the state x and input u
vectors, respectively. For simulations, the coefficient values µ =

0.05, λ = −1 are used. By computing the separation (14), we
et

˙ =

[
µx1

λ(x2 − x21)

]
  

fc(x)

+

[
x1eu1 − x1

u1u2 + x2eu2 − x2

]
  

gc(x,u)

. (62)

The choice of observables Φ⊤(x) = [φ1(x) φ2(x) φ3(x)] =

[x1 x2 x21] generates a Koopman invariant subspace, such that the
autonomous dynamics are represented through an exact finite-
dimensional lifting.4 Using (15b), the lifted representation of (62)
becomes

Φ̇(x) =

[
µ 0 0
0 λ −λ

0 0 2µ

]
  

A

Φ(x) +

⎡⎣ x1eu1 − x1
u1u2 + x2eu2 − x2

2x21e
u1 − 2x21

⎤⎦
  

B(x,u)

. (63)

Next, we apply the factorization (18) to obtain

B(x, u) =

⎡⎢⎣
x1
u1
eu1 −

x1
u1

0
1
2u2

1
2u1 +

x2
u2
eu2 −

x2
u2

2 x21
u1
eu1 − 2 x21

u1
0

⎤⎥⎦ . (64)

ote that when elements of u become 0 at specific time in-
tances, B(x, 0) is still well defined, as it is equal to the Jacobian

∂B
∂u |(x,0). For example, if both u1 = 0, u2 = 0, then B⊤(x, 0) =

x1 0 2x21
0 x2 0

]
.

he resulting lifted form of (61) is:

˙ (x) = AΦ(x) + B(x, u)u (65a)

x = CΦ(x). (65b)

y z = Φ(x), the LPV form of (65) becomes

˙ = Az + Bz(p)u (66a)

x = Cz (66b)

ith p = µ(z, u) = [z⊤ u⊤
]
⊤, Bz ◦ µ = B and C = [I2 02×1].

s B contains functions with only linear dependencies on the
bservables Φ(x), computing Bz is trivial and is omitted here for
revity.
To compare the responses of the original system and the

oopman form, the ODEs (61) and (66) are solved by Runge–Kutta
(RK4) with a sampling time Ts = 10−4 s under initial condition

0 = [1 1]⊤, corresponding to z0 = Φ(x0) = [1 1 1]⊤, and white
nput signals ui(tk) ∼ N (0, 0.1) (where tk represents the discrete
ime step of the numerical integration). The same simulations
ave been repeated under multisine inputs (no phase difference)
ith 6 excited frequencies equidistantly placed on the frequency
ange [0.1, 1] Hz for u1, and [1, 10] Hz for u2, respectively. To
uantify the approximation quality of the model we use the ∥·∥ℓ2
nd ∥ · ∥ℓ∞

norms of the difference between the ith component
f the state evolution, i.e., ϵi(tk) = xi(tk) − zi(tk). We collect

in ϵi the differences for all times, i.e., ϵi = [ϵi(t0) · · · ϵi(tN )],
ith i ∈ {1, 2}. Fig. 1 shows the state trajectories for the two
imulations for a time length of 25 s. Visually, there is a perfect
verlap between the state trajectories computed via the original
onlinear representation (61) and the Koopman representation
66). As detailed in Table 1, under both white noise and multisine

4 This example can be extended to a larger class of polynomial systems,
or which it is possible to construct a finite dimensional Koopman embedding
rrespective of the system order (see Iacob, Schoukens, & Tóth, 2023 where an
lgorithm is given for the embedding).
7

Fig. 1. Continuous-time example: state response of the original nonlinear
system (61) given in black and its exact Koopman representation (66) given
in red under white noise (left panel) and multisine (right panel) excitation u.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

excitation, the error measures ∥ϵi∥ℓ2 are below 10−10 and ∥ϵi∥ℓ∞

are below 10−12, respectively, being close to numerical accuracy.
This shows that the Koopman form accurately represents the
original system up to numerical precision of the simulation.

5.2. Discrete-time case

In this subsection, the xk,i represents the value of the ith
state at time k. Consider the nonlinear system represented by the
following control-affine state–space form

xk+1 =

[
a1xk,1

a2xk,2 − a3x2k,1

]
  

f (xk)

+

[
1

x2k,1

]
  
g(xk)

uk. (67)

For simulation purposes, the used coefficient values are a1 =

a2 = 0.7 and a3 = 0.5. Using the same observable choice as for
the continuous-time example Φ⊤(xk) = [φ1(xk) φ2(xk) φ3(xk)] =

[xk,1 xk,2 x2k,1] yields an exact finite-dimensional lifting of the
autonomous part.

Based on (45) with (49), the lifted form is:

Φ(xk+1)=
[a1 0 0

0 a2 −a3
0 0 a21

]
  

A

Φ(xk)+

[
1

x2k,1
2a1xk,1 + uk

]
  

B(xk,uk)

uk, (68a)

xk = CΦ(xk). (68b)

Let zk = Φ(xk) and notice that x2k,1 and xk,1 are part of the
observables. Thus, we get Bz ◦ µ = B and write the Koopman
representation of (67) in an LPV form

zk+1 = Azk + Bz(pk)uk,

xk = Czk,
(69)

with pk = µ(zk, uk) = [z⊤

k uk]
⊤ and C = [I2 02×1]. The initial

conditions are taken as x0 = [1 1]⊤, z0 = [1 1 1]⊤. Fig. 2 shows
the state trajectories computed via the nonlinear model (67) and
the Koopman representation (69), for white noise uk ∼ N (0, 0.5)
and for multisine excitation as well. Similar to the CT case, the
multisine input is a sum of 6 sinusoids (no phase difference)
with a constant increment between the excited frequencies. In
a similar manner as in the previous example, we denote by ϵ the
i
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Table 1
Characterization of the state-evolution error between the original nonlinear system and the Koopman forms in the considered
simulation examples.

Input xi Continuous time Discrete time Discrete time with constant B̂

∥ϵi∥ℓ2 ∥ϵi∥ℓ∞
∥ϵi∥ℓ2 ∥ϵi∥ℓ∞

∥ϵi∥ℓ2 ∥ϵi∥ℓ∞

Multisine i = 1 3.12 · 10−13 1.77 · 10−15 0 0 1.60 · 10−14 8.88 · 10−16

i = 2 7.71 · 10−11 4.51 · 10−13 3.50 · 10−14 7.10 · 10−15 190.82 18.06

White noise i = 1 6.96 · 10−14 2.22 · 10−16 0 0 7.31 · 10−15 8.88 · 10−16

i = 2 2.96 · 10−12 1.34 · 10−14 1.23 · 10−14 3.55 · 10−15 58.12 9.17
w
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Fig. 2. Discrete-time example: state response of the original nonlinear system
(67) given in black and its exact Koopman representation (69) given in red
under white noise (left panel) and multisine (right panel) excitation u. (For
nterpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ector containing the differences between the ith element of the
tate evolution, i.e., ϵi = [ϵ0,i · · · ϵN,i] and ϵk,i = xk,i−zk,i, with i ∈

{1, 2}. As shown in Table 1, the first state is represented exactly
and, for the second state, there are negligible deviations which
are close to numerical precision. This shows that the general
Koopman representation accurately describes (67).

5.3. Approximation by an LTI Koopman form

While it has been shown that the proposed approach yields
an exact finite-dimensional Koopman form that accurately rep-
resents the dynamics of the original system, the input matrix is
dependent on the state (and on the input, in the DT case). One
can wonder if such dependency really contributes to the system
response and if one could get away with a fully LTI Koopman form
as it is done in the works (Korda & Mezić, 2018; Mamakoukas
et al., 2020; Ping et al., 2021). As we show in this section, the
accuracy of the resulting model can drastically decrease if only
an LTI approximation is used.

Consider the DT example (67). With a constant input matrix
B̂, the assumed Koopman form of the system is:

zk+1 = Azk + B̂uk. (70)

he original states, being part of the observables, are recovered
hrough xk = [I2 02×1]zk. One typical way to find B̂ is to
minimize the average 2-norm between B and B̂ by the follow-
ng approach. To get the most favorable computation of B̂ for
omparison, we take the grid points in (X,U) corresponding to
simulation trajectory of (67) and formulate the matrices Z =

Φ(x ) · · · Φ(x ) ], Z+
= [ Φ(x ) · · · Φ(x ) ] and U =
0 N−1 1 N

8

Fig. 3. Comparison to the approx. LTI form: state response of the nonlinear
system (67) given in black and its approx. LTI Koopman model (70) given in
red under white noise (left panel) and multisine (right panel) excitation u. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

[ u0 · · · uN−1 ]. With A derived analytically in (68), the input
matrix B̂ is numerically computed as:

B̂ = (Z+
− AZ)U†, (71)

here † denotes the pseudoinverse. This approach corresponds to
he least-squares method used in EDMD (Korda & Mezić, 2018)
ith the difference that we only need to compute the input
atrix B̂. The simulations are repeated according to Section 5.2.
ig. 3 shows large deviations between the second state trajectory,
omputed via the nonlinear dynamics (67) (black) and using the
oopman form (70) (red). The input term is nonlinear for the
econd state in (67), while the first state is affected linearly
y u and its evolution is independent of x2. Hence, the overall
pproximation error is expected to be larger for the second state
volution, whereas the first state is only slightly affected. The
ame conclusion is supported by the error measures reported
n Table 1. Furthermore, the evolution of the error ∥ek∥2 of the
pproximative LTI Koopman model (70) is displayed in Fig. 4
ogether with the error bounds (55) and (60). It can be observed
hat ∥ek∥2 satisfies both bounds and the time-varying bound (60)
onverges to a fixed value that is less conservative than the
bsolute bound (55).
To analyze how a large dictionary influences the approxima-

ion error of the LTI Koopman model, we have also applied the
tandard EDMD with a full dictionary of monomial sets of certain
egrees (terms of the form xa1x

b
2 where a + b ≤ degree) as

bservables. Note that the number of distinct functions depends
n the degree (e.g. for degree 3, the lifting set has 9 functions). To
ompute the A and Bmatrices numerically, we have employed the
ethod detailed in Korda and Mezić (2018), for larger datasets
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Fig. 4. Evolution of the state-response error ∥ek∥2 , the time-varying error bound
(60) (blue), and the absolute error bound (55) (red) for the approximative LTI
Koopman model under white noise (left panel) and multisine inputs (right
panel). Zoomed in view of the initial time steps is provided in the second row.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. ℓ2 error of simulated state trajectories of the LTI Koopman model
btained with observables of a full dictionary of monomials with increasing
egrees (blue circles), the model obtained using regularized EDMD (magenta
iamonds), the model obtained via (71) (black line), and the exact Koopman
epresentation (69) (red). (For interpretation of the references to color in this
igure legend, the reader is referred to the web version of this article.)

where N ≫ nf):

A B] = VG†, V =

[
Z
U

][
Z
U

]⊤

, G = Z+

[
Z
U

]⊤

. (72)

Note that EDMD is inherently a one step predictor and, while
increasing the dictionary size may improve results, it can also be a
cause of numerical errors. Furthermore, as described in Brunton,
Budišić, Kaiser, and Kutz (2022), increasing the dictionary may
create spurious eigenvalues that can produce worse results in
simulation based testing of the resulting model. To avoid such
problems, we have also added a Thikonov regularization term to
perform the lifting. We used the following estimator:

[A B] = Z+Y⊤(YY⊤
+ αI)−1 (73)

with Y = [Z⊤ U⊤
]
⊤ and α the scalar regularization term. To

optimize α, a grid search is performed over a logarithmic grid
scale between [10−15, 1020

] ∪ {0}, to minimize the cost ∥ϵ1∥ℓ2 +

∥ϵ ∥ . The simulations are performed using the same initial
2 ℓ2

9

values and inputs detailed in Section 5.2. As can be observed
in Fig. 5, increasing the number of observables does not bring
big improvements in the approximation quality of the second
state and has an adverse effect for the first state. The regularized
approach improves the quality of approximation in the white
noise input case, but mixed results can be observed when the
system is excited with a multisine input. It can be seen that the
model still fails to capture the dynamics of the original system.
Also, note that for the monomial set of degree 20, the system
becomes unstable in the case of the multisine input and this was
omitted from the figure to increase readability. While the model
with the exactly lifted autonomous part generally shows better
accuracy, these results support the conclusion that LTI models
cannot capture the dynamics of (67) correctly, whereas the LPV
form of the Koopman description (69) is an exact representation
of the dynamics (up to machine precision).

6. Conclusion

We have developed a systematic approach to analytically de-
rive a Koopman representation of both continuous and discrete-
time general nonlinear systems with inputs. Furthermore, we
have shown that the resulting lifted forms can be interpreted
as LPV models, allowing for powerful LPV tools to be used for
analysis and control of nonlinear systems. As seen through the
examples, this approach results in an exact representation of
the original dynamics in contrast to the often assumed purely
LTI form of Koopman models which are heavily limited in their
representation capability. To characterize the approximation ca-
pability of LTI Koopman models, an error bound has been derived.
We have shown that in case of systems with inputs, although
LTI Koopman models are inaccurate compared to the exact LPV
type of Koopman representations, their simulation error remains
bounded and has a predictable behavior.

Appendix A. Proof of the factorization lemma

This section details the proof of Lemma 1.
Proof. Let λ ∈ R, p, q ∈ U ⊆ Rnu and define an arbitrary input
function u as the convex combination u(λ) = p + λ(q − p), with
u ∈ [p, q] (element wise) and λ ∈ [0, 1]. Define the function
ζi(λ) = Bi(x, u(λ)), where Bi denotes the ith row of B and i ∈

{1, . . . , nf}. By applying the FTC (see Appendix B), the following
statement holds true:

ζi(1) − ζi(0) =

∫ 1

0
ζ ′

i (λ) dλ, (A.1)

here ζ ′

i =
∂ζi
∂λ

. This is equivalent to:

Bi(x, q) − Bi(x, p) =

∫ 1

0

∂Bi

∂u
(x, u(λ))(q − p) dλ. (A.2)

ext, the row elements can be vertically stacked giving:

(x, q)−B(x, p)=
(∫ 1

0

∂B
∂u

(x, u(λ)) dλ
)
(q−p). (A.3)

y choosing q = u and p = 0, the function B(x, 0) = 0 (as
c(x, 0) = 0) and the factorized formulation of B is B(x, u) =

(x, u)u with

(x, u) =

∫ 1 ∂B
(x, λu) dλ. (A.4)
0 ∂u
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ppendix B. Fundamental theorem of calculus

The following theorem and its proof can be found in Thomas,
eir, and J. R. Hass (2005). We only reproduce the theorem here

or completeness.

heorem 4. If a function f is continuous over an interval [a, b] and
F is any antiderivative of f on [a, b], then:∫ b

a
f (x) dx = F (b) − F (a). (B.1)

References

Bakker, C., Nowak, K. E., & Rosenthal, W. S. (2019). Learning Koopman operators
for systems with isolated critical points. In Proc. of the 58th conf. on dec. and
cont..

Bevanda, P., Sosnowski, S., & Hirche, S. (2021). Koopman operator dynamical
models: Learning, analysis and control. Annual Review of Control, Robotics,
and Autonomous Systems, 52, 197–212.

Bonnert, M., & Konigorski, U. (2020). Estimating Koopman invariant subspaces of
excited systems using artificial neural networks. In 21st IFAC world congress,
Vol. 53, no. 2 (pp. 1156–1162).

Briat, C. (2016). Linear parameter-varying and time-delay systems. Heidelberg:
Springer-Verlag.

Brunton, S. L., Budišić, M., Kaiser, E., & Kutz, J. N. (2022). Modern Koopman
theory for dynamical systems. SIAM Review, 64(2), 229–340.

Engel, K. J., & Nagel, R. (2000). One-parameter semigroups for linear evolution
equations. Springer.

Goswami, D., & Paley, D. A. (2017). Global bilinearization and controllability of
control-affine nonlinear systems: A Koopman spectral approach. In Proc. of
the 56th conf. on dec. and cont..

Huang, B., Ma, X., & Vaidya, U. (2018). Feedback stabilization using Koopman
operator. In Proc. of the 57th conf. on dec. and cont..

Iacob, L. C., Schoukens, M., & Tóth, R. (2023). Finite dimensional Koopman form
of polynomial nonlinear systems. In 22nd IFAC world congress, Vol. 56, no. 2
(pp. 6423–6428).

Iacob, L. C., Tóth, R., & Schoukens, M. (2022). Optimal synthesis of LTI Koopman
models for nonlinear systems with inputs. In 5th IFAC workshop on linear
parameter varying systems, Vol. 55, no. 35 (pp. 49–54).

Isidori, A. (1995). Nonlinear control systems. Springer.
Kaiser, E., Kutz, J. N., & Brunton, S. L. (2020). Data-driven approximations of

dynamical systems operators for control. In The Koopman operator in systems
and control: concepts, methodologies, and applications (pp. 197–234). Springer
International Publishing.

Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Prentice-Hall.
Klus, S., Nüske, F., Peitz, S., Niemann, J. H., Clementi, C., & Schütte, C. (2020).

Data-driven approximation of the Koopman generator: Model reduction,
system identification, and control. Physica D: Nonlinear Phenomena, 406.

Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert space.
In Proc. of the national academy of sciences of the united states of america, Vol.
17, no. 5 (pp. 315–318).

Korda, M., & Mezić, I. (2018). Linear predictors for nonlinear dynamical systems:
Koopman operator meets model predictive control. Automatica, 93, 149–160.

Korda, M., & Mezić, I. (2020). Optimal construction of Koopman eigenfunctions
for prediction and control. IEEE Transactions on Automatic Control, 65(12),
5114–5129.

Lasota, A., & Mackey, M. C. (1994). Chaos, fractals, and noise: stochastic aspects of
dynamics. Springer.

Liu, Z., Kundu, S., Chen, L., & Yeung, E. (2018). Decomposition of nonlinear dy-
namical systems using Koopman gramians. In Proc. of the american cont. conf.
(pp. 4811–4818).

Mamakoukas, G., Castaño, M. L., Tan, X., & Murphey, T. (2020). Derivative-based
Koopman operators for real-time control of robotic systems. IEEE Robotics
and Automation Society, 37(6).

Mauroy, A., & Goncalves, J. (2016). Linear identification of nonlinear systems: A
lifting technique based on the Koopman operator. In Proc. of the 55th conf. on
dec. and cont..

Mauroy, A., Mezić, I., & Susuki, Y. (Eds.), (2020). The Koopman operator in systems
and control: concepts, methodologies and applications. Springer.

Mohammadpour, J., & Scherer, C. W. (2012). Control of linear parameter varying
systems with applications. Springer.
10
Ping, Z., Yin, Z., Li, X., Liu, Y., & Yang, T. (2021). Deep Koopman model predictive
control for enhancing transient stability in power grids. International Journal
of Robotics and Control Systems, 31(6).

Proctor, J. L., Brunton, S. L., & Nathan Kutz, J. (2016). Dynamic mode decom-
position with control. SIAM Journal on Applied Dynamical Systems, 15(1),
142–161.

Proctor, J. L., Brunton, S. L., & Nathan Kutz, J. (2018). Generalizing Koopman
theory to allow for inputs and control. SIAM Journal on Applied Dynamical
Systems, 17(1), 909–930.

Schulze, J. C., Doncevic, D. T., & Mitsos, A. (2022). Identification of MIMO Wiener-
type Koopman models for data-driven model reduction using deep learning.
Computers and Chemical Engineering, 161, Article 107781.

Shi, H., & Meng, M. Q.-H. (2022). Deep Koopman operator with control for
nonlinear systems. IEEE Robotics and Automation Letters, 7(3), 7700–7707.

urana, A. (2016). Koopman operator based observer synthesis for control-affine
nonlinear systems. In Proc. of the 55th conf. on dec. and cont..

homas, G. T., Weir, M. D., & J. R. Hass, F. G. (2005). Thomas’ calculus (11th Ed.).
Pearson.

óth, R. (2010). Modeling and identification of linear parameter-varying systems.
Springer.

illiams, M. O., Hemati, M. S., Dawson, S. T. M., Kevrekidis, I. G., & Rowley, C.
W. (2016). Extending data-driven Koopman analysis to actuated systems. In
10th IFAC symp. on nonlinear control systems, Vol. 49, no. 18 (pp. 704–709).

eung, E., Liu, Z., & Hodas, N. O. (2018). A Koopman operator approach for
computing and balancing gramians for discrete time nonlinear systems. In
Proc. of american cont. conf. (pp. 337–344).

anini, F., & Chiuso, A. (2021). Data-driven control of nonlinear systems: Learning
Koopman operators for policy gradient. In Proc. of the 55th conf. on dec. and
cont..

inage, V., & Bakolas, E. (2023). Neural Koopman Lyapunov control.
Neurocomputing, 527, 174–183.

Lucian Cristian Iacob received his B.Sc. degree in
Systems Engineering at the Technical University of
Cluj-Napoca, in 2017. He obtained his M.Sc. degree
in Systems and Control at Eindhoven University of
Technology (TU/e) in 2019, with distinction (great ap-
preciation). He is currently pursuing a Ph.D. degree
in the Control Systems Group at TU/e. His research
interests are on modeling and identification of nonlin-
ear systems for control using the Koopman and linear
parameter-varying (LPV) frameworks.

Roland Tóth received his Ph.D. degree with cum laude
distinction at the Delft Center for Systems and Con-
trol (DCSC), Delft University of Technology (TUDelft),
Delft, The Netherlands in 2008. He was a Post-Doctoral
Research Fellow at TUDelft in 2009 and Berkeley in
2010. He held a position at DCSC, TUDelft in 2011–12.
Currently, he is an Associate Professor at the Control
Systems Group, Eindhoven University of Technology
and a Senior Researcher at SZTAKI, Budapest, Hungary.
His research interests are in identification and control
of linear parameter-varying (LPV) and nonlinear sys-

tems, developing machine learning methods with performance and stability
guarantees for modeling and control, model predictive control and behavioral
system theory.

Maarten Schoukens is an Assistant Professor in the
Control Systems group of the Department of Electrical
Engineering at the Eindhoven University of Technology
(TU/e). He received his Ph.D. degree in engineering
from the Vrije Universiteit Brussel (VUB), Brussels, Bel-
gium in 2015. He has been a Post-Doctoral Researcher
with the ELEC Department, VUB, and the Control Sys-
tems research group, TU/e, Eindhoven, The Netherlands.
In 2018 he became an Assistant Professor in the Control
Systems group, TU/e. His main research interests in-
clude the measurement and data-driven modeling and

control of nonlinear dynamical systems using system identification and machine
learning techniques.

http://refhub.elsevier.com/S0005-1098(24)00017-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb1
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb2
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb3
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb4
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb4
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb4
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb5
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb5
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb5
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb6
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb7
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb8
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb8
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb8
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb9
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb10
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb11
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb12
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb13
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb14
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb15
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb16
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb17
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb18
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb18
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb18
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb19
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb20
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb21
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb22
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb22
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb22
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb23
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb23
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb23
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb24
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb25
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb26
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb27
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb28
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb29
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb29
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb29
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb30
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb30
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb30
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb31
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb32
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb33
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb34
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb35
http://refhub.elsevier.com/S0005-1098(24)00017-7/sb35

	Koopman form of nonlinear systems with inputs
	Introduction
	Embedding of continuous-time systems
	Koopman representation of autonomous systems
	Koopman representation under inputs
	General nonlinear systems
	Control-affine or linear input cases


	Embedding of discrete-time systems
	Koopman representation of autonomous systems
	Koopman representation under inputs
	General nonlinear systems

	Control-affine or linear input case

	Approximation error of LTI Koopman forms
	Notation
	Characterization of the approximation error

	Examples
	Continuous-time case
	Discrete-time case
	Approximation by an LTI Koopman form

	Conclusion
	Appendix A. Proof of the Factorization Lemma
	Appendix B. Fundamental Theorem of Calculus
	References


