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A B S T R A C T

In this work, a family of finite volume discretization schemes for LWR-type first order traffic
flow models (with possible on- and off-ramps) is proposed: the Traffic Reaction Model (TRM).
These schemes yield systems of ODEs that are formally equivalent to the kinetic systems used
to model chemical reaction networks. An in-depth numerical analysis of the TRM is performed.
On the one hand, the analytical properties of the scheme (nonnegative, conservative, capacity-
preserving, monotone) and its relation to more traditional schemes for traffic flow models
(Godunov, CTM) are presented. Finally, the link between the TRM and kinetic systems is
exploited to offer a novel compartmental interpretation of traffic models. In particular, kinetic
theory is used to derive dynamical properties (namely persistence and Lyapunov stability) of
the TRM for a specific road configuration. Two extensions of the proposed model, to networks
and changing driving conditions, are also described.

1. Introduction

Macroscopic traffic flow models play an important role in the analysis, simulation, and control of traffic flows on networks (Siri
et al., 2021; Piccoli and Rascle, 2013; Treiber et al., 2013; Papageorgiou, 1983; Karafyllis et al., 2018; Karafyllis and Papageorgiou,
2019; Coogan and Arcak, 2016; Jin, 2021). In this line of research, first order traffic flow models, that describe the spatio-temporal
evolution of the vehicular density through conservation laws, predominate in the literature (Garavello et al., 2016; Tordeux et al.,
2018). These models, e.g. Garavello et al. (2016), Haight (1963), Lighthill and Whitham (1955) and Daganzo (1994), express the
conservation of vehicles on the road by linking the density and the flux of vehicles in space and time. In particular, Lighthill and
Whitham (1955), and Richards (1956) suggested to further assume that the flux of vehicles can be expressed as function of the density
called flux function (or fundamental diagram). The resulting traffic model, called Lighthill–Whitham–Richards (LWR) model, has
been extensively studied and takes the form of a nonlinear hyperbolic Partial Differential Equation (hPDE) satisfied by the density
of vehicles (Bressan, 2000; Treiber et al., 2013). In general, no closed-form solution is available to solve such hPDEs and therefore
appropriate numerical approximations must be introduced.
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Finite Volume Methods (FVMs) have been particularly praised for deriving numerical solutions of conservation laws, especially
or their ability to accurately describe the singularities specific to these hPDEs (e.g. shock waves) (Leveque, 1992; Bressan,
000). The Godunov scheme (Godunov, 1959) is an instance of such methods widely used in traffic flow modeling for its
dvantageous theoretical and convergence properties (Leveque, 1992). For instance, Daganzo proposes to equip the traditional
odunov scheme (Godunov, 1959) with static saturation functions (capacitated sending-receiving flows between cells), thus yielding

he so-called Cell Transmission Model (CTM) (Daganzo, 1994). This model is convenient in terms of describing capacity changes
nd has been the basis of many traffic network control solutions e.g. Csikos and Kulcsar (2017).

The choice of numerical scheme is instrumental in deriving proper approximations of the solution of the considered hPDEs. First,
he numerical approximations at hand need to preserve several important properties of the original hPDE like the nonnegativity
f the solution or the fact that it should be bounded by the road capacity at all times. Besides, when it comes to FVMs, their
tability (Eymard et al., 2000) can be assessed by analyzing the systems of ordinary differential equations (ODEs) resulting from
he space discretization of the PDE. These systems of ODEs may then have a connection to an already existing modeling framework
hus facilitating their analysis.

On the other hand, positive (or nonnegative) systems having the property that the state variables are always nonnegative
ave a distinguished role in systems and control theory due to the wide field of possible applications e.g., in thermodynamics,
hemistry, biology or economy (Farina and Rinaldi, 2000). Moreover, the positivity of the states efficiently supports dynamical
nalysis and control design (Haddad et al., 2010). Within nonnegative systems, kinetic models (also called chemical reaction
etworks or CRNs) and the closely related compartmental models are good descriptors of complex nonlinear dynamics, and their
athematical and corresponding graph structure are intuitive and useful to state strong results on qualitative dynamics (Érdi and
óth, 1989; Jacquez and Simon, 1993). The theory of kinetic systems is a rapidly developing area of increasing interest where
he most significant contributions are related to the existence and uniqueness of equilibria and robust stability even when several
odel parameters (possibly including time delays) are not precisely known or unknown (Feinberg, 2019). Therefore, it is of general

nterest to transform originally non-chemical models to kinetic form, and interpret or discover their properties from this point of
iew (Samardzija et al., 1989).

Building on these ideas, we propose and study a family of finite volume approximations of the LWR model, called Traffic
eaction Model (TRM), with direct links to the positive kinetic systems used to model chemical reaction networks (Feinberg,
019; Szederkényi et al., 2018). The benefits of this analogy are multiple. On the one hand, the resulting model provides a new
nterpretation of the discrete dynamics of the LWR model as a compartmental chemical system in which the concentration of
‘particles’’ of free and occupied space are exchanged between adjacent road cells. This analogy also allows to straightforwardly
xtend the LWR model to better represent traffic conditions that can occur in real life (e.g. merging, changing road conditions,
raffic lights).

Invariance and symmetry properties have extensively been researched in kinematic wave theory e.g. Newell (1993a,b,c), Daganzo
2005) and Laval and Leclercq (2013). In the latter two papers, duality plays a key role to bridge the gap between coordinates in
hich traffic flow models are presented. A key consequence is that variational theory enables us to connect homogeneous first
rder traffic flow models with proper initial and boundary value problems. In Laval and Chilukuri (2016), the authors explore the
ymmetry of kinematic wave models under coordinates transformation and dual variable changes. When dualized, it is shown that
ravel time, delay, and flow remain invariant. In our paper, flow invariance is in the epicenter of TRM (through the re-definition
f the flux by the dual state variable). The dual state variable is the free space concentration or dual density, which ensures
he invariance of the nonlinear flux function via a non-unique parametrization and decomposition. However, unlike in Laval and
hilukuri (2016), we do not try to explicitly transform the conservation laws and define new coordinates to ease delay or capacity
alculations (for triangular fundamental diagrams). Instead, we use a nonlinear flux function, and decompose and parameterize it
ith the dual state variable (free space), where no coordinates transformation is required. Via the dual state variable and with the
elp of the flux decomposition, the numerical segmentation of the hyperbolic PDE (TRM) preserves several fundamental properties
e.g. non-negativity, capacity, etc.). Furthermore, TRM can handle (under some mild conditions) inhomogeneity in PDEs and can
ccommodate a wide set of nonlinear flux functions. Finally, the system of nonlinear ODEs obtained by the TRM scheme can be
nterpreted as particular instances of kinetic dynamical systems which can be formally represented as chemical reactions. This special
escription opens the way to leverage the extensive literature on reaction networks to derive and analyze the dynamical properties
f the system (such as robustness or stability) (Feinberg, 1987; Chaves and Sontag, 2002; Sontag, 2001; Shinar and Feinberg, 2010),
nd even propose novel optimal control strategies and traffic management techniques (Shinar and Feinberg, 2010; Coogan and
rcak, 2015) towards (Csikós et al., 2017; Dabiri and Kulcsár, 2015; Dabiri et al., 2017).

The main contributions of this work are as follows. Firstly, we propose an in-depth analysis of the TRM as a numerical scheme. We
rove that it defines is consistent, monotone, nonnegative, capacity-preserving, and conservative numerical schemes. We also draw
arallels between the TRM and existing methods, showing in particular that the TRM is in fact equivalent to a generic formulation
f Daganzo’s CTM, and that the Godunov scheme can be seen as particular instance of TRM. Consequently, both methods can also
e treated as particular kinetic systems and the results from kinetic system theory can also be extended to them.

Secondly, we provide the arguments allowing to bridge the gap between numerical schemes for traffic models and kinetic systems
or chemical reaction networks. We provide detailed physical interpretations of how traffic flow is apprehended when seen as a
inetic system. We then leverage the link between the TRM and kinetic systems to provide an analysis of some dynamical properties
f the TRM in a particular case. Persistence is introduced as new concept for traffic flow models based on this parallel. Also the
tructure and stability of the equilibria of the system are studied using Lyapunov theory for kinetic systems.
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Finally, we present two direct extensions of the TRM that directly follow from the kinetic interpretation of traffic proposed in
his work. The first one accounts for changing road conditions. Such extensions can be used to accurately model real traffic data set
n state estimation and short-term prediction applications, as advocated in Pereira et al. (2022a,b). The second extension allows us
o describe traffic on road networks. In this aspect, the TRM hints to model the link and node behavior identically using reaction
ate governed mixing compartments, giving rise to a smooth interface between link and node modeling framework. Furthermore,
he network extension of TRM fits in the genealogy of first order node models presented in Tampère et al. (2011). The network
xtended TRM fulfills the requirements for node models described in Tampère et al. (2011), where most of the properties are
reserved thanks to the applied non-negative discretization scheme. Interestingly, many of the requirements are of continuous nature
e.g. conservation, capacity, non-negativity, or invariance) and no external constraints need to be enforced to guarantee them. It is
mportant to note that the Network TRM presented in this paper covers only non-signalized intersections.

The outline of the paper is as follows. In Section 2, we introduce the TRM as a finite volume scheme for the LWR model and
describe its main properties. We then expose in Section 3 the coupling that exists between kinetic reaction theory and the TRM.
In Section 4, we provide an analysis of the TRM through its interpretation as particular case of CTM and a numerical experiment
testing the convergence and accuracy of the TRM. In Section 3.3, we derive some dynamical properties (namely persistence and
Lyapunov stability) of the TRM when considered on a circular road. Finally, we present in Section 5 the two extensions of the TRM
discussed above.

2. Nonnegative discretization of hyperbolic PDEs

The Lighthill–Whitham–Richards (LWR) traffic model (Lighthill and Whitham, 1955) is the first-order macroscopic traffic flow
model defined by the following partial differential equation (PDE) on the domain R × R+

𝜕𝑡𝜌 + 𝜕𝑥𝑓 (𝜌)𝑥 = 𝑟 − 𝑠, (1)

This PDE models the space–time evolution of a conserved quantity 𝜌(𝑥, 𝑡) ∈ 𝛺 =
[

0, 𝜌max
]

corresponding to to the traffic density on
a road, where 𝜌max denotes the maximal vehicle density. The flux of vehicles is represented 𝑓◦𝜌, for some continuous and at least
once differentiable 𝑓 ∶ R → R called flux function. In particular, we denote by 𝜌crit the critical density value at which the flux
attains its maximal value 𝑓max (i.e. 𝑓max = 𝑓 (𝜌crit)). Finally, the functions 𝑟, 𝑠 model the on- and off-ramps, respectively.

Remark 2.1. We consider physically-relevant (weak) solutions 𝜌 of PDE (1) also called entropy solutions. We refer the reader to
Appendix A for a result justifying the existence and uniqueness of an entropy solution, and the regularity of this solution under
non-zero sink and source terms.

To mirror the vehicle density 𝜌, we introduce a function 𝜈 modeling the density of free space (i.e. unoccupied by a vehicle) along
the road, and given by

𝜈 = 𝜌max − 𝜌.

We set 𝜈max = 𝜌max. Note then that the free space density 𝜈 can be seen as a dual or adjoint variable to the density 𝜌.1 In this work,
we consider the case where the flux function 𝑓 has the form

𝑓 (𝜌) = 𝑔(𝜌, 𝜈) = 𝑔(𝜌, 𝜌max − 𝜌), (2)

where 𝑔 ∶ 𝛺 ×𝛺 ↦ R+ satisfies the following assumptions2:

(A1) 𝑔 is Lipschitz continuous w.r.t. both arguments, with associated Lipschitz constants 𝐾1 > 0 and 𝐾2 > 0,
(A2) 𝑔 is non-decreasing in each arguments,
(A3) 𝑔(𝜌, 0) = 𝑔(0, 𝜈) = 0 for all 𝜌, 𝜈 ∈ 𝛺 which ensures that no vehicles is removed (resp. added) if the road is empty (resp. at

capacity).

xample 1. Any flux function 𝑓 that can be written as

𝑓 (𝜌) = 𝑔1(𝜌)𝑔2(𝜌max − 𝜌), 𝜌 ∈ 𝛺,

here 𝑔1 and 𝑔2 are non-decreasing Lipschitz-continuous functions such that 𝑔1(0) = 𝑔2(0) = 0 satisfy Assumptions (A1)–(A3). In
articular, if we take 𝑔1(𝜌) = 𝜌, then the function 𝜌 ↦ 𝑔2(𝜌max − 𝜌) can be interpreted as the speed-density relationship of the
undamental diagram. Within this framework, taking 𝑔2(𝜈) ∝ 𝜈 yields the Greenshields (quadratic) flux function (cf. Fig. 1). We can
lso retrieve trapezoidal fundamental diagrams by considering 𝑔2 as

𝑔2(𝜈) =

⎧

⎪

⎨

⎪

⎩

𝑣max
𝜌max−𝜈1
𝜌max−𝜈

𝜈
𝜈2

if 0 ≤ 𝜈 ≤ 𝜈2,

𝑣max
𝜌max−𝜈1
𝜌max−𝜈

if 𝜈2 ≤ 𝜈 ≤ 𝜈1,

𝑣max if 𝜈1 ≤ 𝜈 ≤ 𝜈max,

1 𝜈 is the concentration or density of free spaces.
2 These requirements are inspired by the properties of chemical reaction rates, as it will be explained in Section 3.
3
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Fig. 1. Comparison between quadratic and trapezoidal fundamental diagrams. The maximal density 𝜌max and the free flow speed 𝑣max are taken equal to 1. The
black dotted lines are placed at the critical density values 𝜌1 = 0.25 and 𝜌2 = 0.6.

where 𝑣max denotes the free flow speed, and 𝜌1 = 𝜌max − 𝜈1, 𝜌2 = 𝜌max − 𝜈2 denote the critical densities of the fundamental diagram
which satisfy 0 < 𝜌1 ≤ 𝜌2 < 𝜌max. Fig. 1 gives an example of a trapezoidal flux function obtained using this decomposition.

Regarding the source and sink terms, we assume that they can be written for any (𝑥, 𝜌, 𝑡) ∈ R ×𝛺 × R+ as:

𝑟(𝑥, 𝑡, 𝜌) = 1on(𝑥)𝑔on(𝜌on(𝑥, 𝑡), 𝜈), 𝑠(𝑥, 𝑡, 𝜌) = 1off(𝑥)𝑔off(𝜌, 𝜈off(𝑥, 𝑡)), (3)

where

• the functions 𝜌on and 𝜈off are the traffic density of the on-ramp and the free space density of the off-ramp, respectively, and
are assumed to be taking values in 𝛺;

• the functions 𝑔on ∶ 𝛺 × 𝛺 ↦ R+ and 𝑔off ∶ 𝛺 × 𝛺 ↦ R+ are the traffic flows of the on- and off-ramp, respectively, and are
assumed to satisfy Assumptions (A1)–(A3);

• the spatial position of the on- and off-ramp is described by indicator functions 1on and 1off defined as

1on(𝑥) =
{

1, if 𝑥on ≤ 𝑥 ≤ 𝑥on
0, otherwise , 1off(𝑥) =

{

1, if 𝑥off ≤ 𝑥 ≤ 𝑥off
0, otherwise ,

for some 𝑥on ≤ 𝑥on and 𝑥off ≤ 𝑥off.

We use the Finite Volume Method (FVM) to spatially discretize (i.e. semi-discretize) the conservation law model (1) with flux
(2), source and sink (3) functions. To do so, we start by slicing the road into cells of length 𝛥𝑥 > 0, and centered at the points
𝑥𝑖 = 𝑖𝛥𝑥, for 𝑖 ∈ Z. We denote by 𝐼 the set of road cell indices (hence 𝐼 = Z for an infinite road) and denote by 𝑥𝑖−1∕2 and 𝑥𝑖+1∕2 the
left and right boundary of the 𝑖th cell, respectively, and by 𝑖 = [𝑥𝑖−1∕2, 𝑥𝑖+1∕2] the 𝑖th cell. Then, the FVM scheme can be written as

𝜌̇𝑖(𝑡) =
1
𝛥𝑥

(

𝐹 (𝜌𝑖−1, 𝜌𝑖) − 𝐹 (𝜌𝑖, 𝜌𝑖+1) + 𝑅𝑖(𝜌𝑖, 𝑡) − 𝑆𝑖(𝜌𝑖, 𝑡)
)

, 𝑖 ∈ 𝐼, 𝑡 ≥ 0, (4)

where 𝜌𝑖 is an approximation of the average traffic density over the 𝑖th cell, the so-called numerical flux 𝐹 is given by 𝐹 (𝑢, 𝑣) =
𝑔(𝑢, 𝜌max − 𝑣), and the numerical source 𝑅𝑖 and sink 𝑆𝑖 terms are given (for 𝑡 ≥ 0, 𝑖 ∈ 𝐼) by

𝑅𝑖(𝜌, 𝑡) = ∫𝑖
𝑟(𝑥, 𝜌, 𝑡)𝑑𝑥, 𝑆𝑖(𝜌, 𝑡) = ∫𝑖

𝑠(𝑥, 𝜌, 𝑡)𝑑𝑥.

We call Traffic Reaction Model (TRM) the resulting model which describes traffic along a (discretized) road. Note that this model is
control-oriented since changing 𝑔 and/or 𝑔on, 𝑔off corresponds to speed limit control and/or ramp metering. We also take as initial
condition:

𝜌𝑖(0) =
1
𝛥𝑥 ∫𝑖

𝜌(𝑥, 0) 𝑑𝑥 ∈ 𝛺, 𝑖 ∈ 𝐼.

As such, the TRM defines a particular instance of finite volume scheme for scalar conservation laws (LeVeque et al., 2002;
Chainais-Hillairet and Champier, 2001).

Finally, note that in practice, finite roads should be considered. To be able to use the TRM to model traffic on a finite road,
boundary conditions describing the incoming and outgoing traffic on the road have to be defined. Assuming that the road is now
discretized into 𝑃 cells with indices 𝑖 ∈ 𝐼 = {1,… , 𝑃 }, the density of vehicles on these cells is modeled using the system of ODEs
defined by (4) while assuming that the quantities 𝜌0 and 𝜌𝑃+1 are some specific time-dependent functions taking values in 𝛺. For
instance, these functions can be set so that the quantities 𝐹 (𝜌 , 𝜌 ) and 𝐹 (𝜌 , 𝜌 ) match some known incoming and outgoing fluxes
4
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in the road. Another possibility is to set 𝜌0 = 𝜌𝑃 and 𝜌𝑃+1 = 𝜌1, which corresponds to periodic boundary conditions, or equivalently
a circular road.

We now present a few numerical properties of the TRM, which hold whether the road is finite or not (cf. Appendix B.1 for proof).

Theorem 2.2. The numerical flux 𝐹 is consistent with the flux function 𝑓 (i.e. it satisfies for any 𝑢 ∈ 𝛺, 𝐹 (𝑢, 𝑢) = 𝑓 (𝑢)) and is monotone.
As for the TRM defined in (4), it preserves nonnegativity and capacity, and it is conservative finite volume scheme.

It is important to note that, for a given 𝑓 the choice of 𝑔 is not unique. Hence, the TRM defines a family of numerical discretization
schemes by means of the decomposition of the flux 𝑓 (𝜌) in (2), which all share the properties described in Theorem 2.2.

Example 2. Consider the so-called Greenshield flux function defined by

𝑓 (𝜌) = 𝜌 𝑣(𝜌), with 𝑣(𝜌) = 𝜔(𝜌max − 𝜌), 𝜌 ∈ 𝛺,

where 𝑣 is the average vehicle speed, and 𝜔 = 𝑣max∕𝜌max with the free flow speed 𝑣max > 0. Different decompositions of 𝑓 as in (2)
can be proposed, among which:

𝑔MAK(𝜌, 𝜈) = 𝜔𝜌𝜈, (5)

𝑔Gdnv(𝜌, 𝜈) = min(𝐷(𝜌), 𝑄(𝜌max − 𝜈)), (6)
𝑔Cap(𝜌, 𝜈) = 𝐷(𝜌)𝑄(𝜌max − 𝜈)∕𝑓max,

where𝐷(𝜌) = 𝑓 (min{𝜌, 𝜌crit}), 𝑄(𝜌) = 𝑓 (max(𝜌, 𝜌crit)) are the supply and demand functions, respectively, and 𝑓max denotes the maximal
value of the flux. Note in particular that the decomposition 𝑔Gdnv(𝜌, 𝜈) in (6) is the Godunov flux, meaning that the Godunov scheme
can be seen as a particular instance of TRM.

In the remainder of this text, we refer to the decomposition 𝑔MAK in (5) as a mass action kinetic (MAK) decomposition.

We further discretize the TRM by considering a time step 𝛥𝑡 > 0 and taking 𝑡𝑘 = 𝑘𝛥𝑡, 𝑘 ∈ N0. We then define the fully-discrete
TRM to be sequence of values {𝜌𝑘𝑖 ∶ 𝑖 ∈ 𝐼, 𝑘 ∈ N0} defined by the recurrence relations:

𝜌𝑘+1𝑖 = 𝜌𝑘𝑖 +
𝛥𝑡
𝛥𝑥

(

𝐹 (𝜌𝑘𝑖−1, 𝜌
𝑘
𝑖 ) − 𝐹 (𝜌

𝑘
𝑖 , 𝜌

𝑘
𝑖+1) + 𝑞

𝑘
𝑖
)

, (7)

𝜌0𝑖 = 𝜌𝑖(0) ∈ 𝛺,

where the term 𝑞𝑘𝑖 is given by

𝑞𝑘𝑖 = 1
𝛥𝑡

[

∫

𝑡𝑘+1

𝑡𝑘
𝑅𝑖(𝜌𝑘𝑖 , 𝑡)𝑑𝑡 − ∫

𝑡𝑘+1

𝑡𝑘
𝑆𝑖(𝜌𝑘𝑖 , 𝑡)𝑑𝑡

]

.

In particular, if the road is finite, the quantities 𝜌𝑘𝑗 , 𝑗 ∈ {0, 𝑃 + 1} are defined from the functions 𝜌𝑗 as 𝜌𝑘𝑗 = (1∕𝛥𝑡) ∫ 𝑡𝑘+1𝑡𝑘
𝜌𝑗 (𝑡)𝑑𝑡. The

next result exposes the conditions under which fully-discrete TRM converges to the solution of the PDE. It relies on the following
assumption on the source 𝑟 and sink 𝑠 terms.

Assumption 2.3. The source and sink term 𝑞 = 𝑟 − 𝑠 of PDE (1) is bounded and such that for any 𝜌 ∈ R, (𝑥, 𝑡) ↦ 𝑞(𝑥, 𝑡, 𝜌) is
Lipschitz-continuous (with a constant independent of 𝑢) and for any (𝑥, 𝑡) ∈ R × R+, 𝜌 ↦ 𝑞(𝑥, 𝑡, 𝜌) is locally Lipschitz-continuous
(with a constant independent of (𝑥, 𝑡) and bounded 𝐾1 and 𝐾2 as defined in (A1)).

Theorem 2.4. Let us assume that the source and sink term 𝑞 = 𝑟 − 𝑠 of PDE (1) satisfy Assumption 2.3 and that the following
Courant-Friedrichs-Levy (CFL) condition is fulfilled:

𝛥𝑡
𝛥𝑥

≤ 1
𝐾1 +𝐾2

, (8)

where 𝐾1 and 𝐾2 are defined in (A1). Then, the fully discrete TRM converges (in 𝐿1
loc(R×R+)) towards the entropy solution of PDE (1) as

𝑥, 𝛥𝑡→ 0, with 𝛥𝑡∕𝛥𝑥 kept fixed and satisfying the CFL condition.

roof. This result is a direct application of Theorem 1 of Chainais-Hillairet and Champier (2001), which holds since the discretized
cheme is monotone (cf. Theorem 2.2) and following from the assumptions on the regularity of the source and sink term 𝑞. □

emark 2.5. In the absence of source and sink terms (and with an infinite road), but under the CFL condition (8), the discretized
umerical scheme in (7) is 𝐿∞-stable, meaning that for any (𝑖, 𝑘) ∈ Z × N0, 𝜌𝑘𝑖 ∈ [min𝑗∈Z 𝜌0𝑗 ,max𝑗∈Z 𝜌0𝑗 ] (cf. Lemma 21.1 in Eymard
t al. (2000)). Consequently, the discrete numerical scheme preserves nonnegativity and capacity (as long as the initial condition is
n 𝛺). Furthermore, since the scheme is monotone and 𝐿∞-stable, it is Total Variation Diminishing (TVD) (Leveque, 1992, Theorems
5.4 & 15.5). As a consequence, the TRM is in particular shock-capturing. It implicitly incorporates correct jump conditions (without
scillations) near discontinuities when 𝛥𝑥 and 𝛥𝑡 tend to 0. Besides, the convergence of the (fully-discrete) TRM towards the PDE
5

olution is of order at most 1 (LeVeque et al., 2002). We retrieved this behavior in numerical experiments exposed in Appendix C.
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3. Kinetic and compartmental description

In this section, we will show that the discretized traffic flow model (4) (on a finite road) is formally kinetic with appropriate
ssumptions on 𝑔, and it can be interpreted in a compartmental context.

.1. Kinetic models

Here we characterize kinetic system models based on the notations used in Feinberg (2019), where more details can be
ound on this model class. We assume that a kinetic model contains 𝑀 species denoted by 1,… ,𝑀 , and the species vector is
 = [1 … 𝑀 ]𝑇 . The basic building blocks of kinetic systems are elementary reaction steps of the form

𝐶𝑗 → 𝐶 ′
𝑗 , 𝑗 = 1,… , 𝑅 (9)

where for 𝑗 = 1,… , 𝑅, 𝐶𝑗 = 𝑦𝑇𝑗  and 𝐶 ′
𝑗 = 𝑦′𝑗

𝑇 are the complexes and 𝑦𝑗 , 𝑦′𝑗 ∈ N𝑀0 are integer coefficients. The transformation
shown in (9) means that during an elementary reaction step between the reactant complex 𝐶𝑗 and product complex 𝐶 ′

𝑗 , [𝑦𝑗 ]𝑖 items
(molecules) of species 𝑖 are consumed, and [𝑦′𝑗 ]𝑖 items of 𝑖 are produced for 𝑖 = 1,… ,𝑀 . The reaction (9) is an input (resp. output)
reaction of species 𝑖 if [𝑦′𝑗 ]𝑖 > 0 (resp. [𝑦𝑗 ]𝑖 > 0).

Let 𝜒(𝑡) ∈ R
𝑀
+ denote the state vector corresponding to  for any 𝑡 ≥ 0 (in a chemical context, 𝜒 is the vector of concentrations

of the species in ). Then the ODEs describing the evolution of 𝜒 in the kinetic system containing the reactions (9) are given by

𝜒̇ =
𝑅
∑

𝑖=1
𝑖(𝜒, 𝑡)[𝑦′𝑖 − 𝑦𝑖], 𝜒(0) ∈ R

𝑀
+ (10)

where 𝑖 ∶ R
𝑀
+ × R ⟶ R+ is the rate function corresponding to reaction step 𝑖, and determines the velocity of the transformation.

or the rate functions, we assume the following for 𝑖 = 1,… , 𝑅:

(A4) 𝑖(⋅, 𝑡) is locally Lipschitz continuous, and 𝑖(𝜒, ⋅) is piecewise locally Lipschitz continuous with a finite number of
discontinuities,

(A5) for 𝑗 = 1,… , 𝑚, 𝑖(⋅, 𝑡) depends on 𝜒𝑗 if and only if 𝑦𝑗 > 0,
(A6) 𝑖 ≥ 0, and for 𝑗 = 1,… , 𝑚, 𝑖(𝜒, 𝑡) = 0 whenever 𝜒𝑗 = 0 and 𝑦𝑗 > 0,
(A7) There exist continuous nonnegative and strictly monotone (w.r.t. a partial order on R

𝑀
+ ) functions 𝑖, 𝑖 ∶ R

𝑀
+ ⟶ R≥0 such

that 𝑖(𝜒) ≤ 𝑖(𝜒, 𝑡) ≤ 𝑖(𝜒) for all 𝑡 ≥ 0

These properties ensure the local existence and uniqueness of the solutions as well as the invariance of the nonnegative orthant for
the dynamics in (10). From now on, a reaction from complex 𝐶𝑖 to complex 𝐶 ′

𝑖 with rate function 𝑖 will be denoted as 𝐶𝑖
𝑖
⟶ 𝐶 ′

𝑖 .
e will also suppress the 𝑡 argument in the rate function if it does not explicitly depend on time.
A set of nonlinear ODEs given as 𝜒̇ = 𝑓 (𝜒) is called kinetic if it can be written in the form (10) with appropriate rate functions

𝑖. We remark that the representation (10) of a kinetic ODE is generally non-unique even if the rate functions are a priori fixed (Ács
t al., 2016).

.2. Kinetic representation of the traffic flow model

Using the above notions, we can give a kinetic interpretation for the TRM, where the species and the reaction steps have a clear
hysical meaning. For this purpose, we consider the TRM (4) on a finite road (with 𝑃 cells).

Let us model each road cell 𝑖 ∈ 𝐼 = {1,… , 𝑃 } as a compartment containing two homogeneously distributed species: units of
ccupied space 𝑁𝑖 and units of free space 𝑆𝑖. The flow of vehicles between the consecutive cells (compartments) 𝑖 − 1 and 𝑖 (for
∈ {2,… , 𝑃 }) is then represented by chemical reactions converting occupied space in one cell into occupied space on the next one,
s follows

𝑁𝑖−1 + 𝑆𝑖
𝑖−1,𝑖
⟶ 𝑁𝑖 + 𝑆𝑖−1, 𝑖 ∈ {2,… , 𝑃 }, (11)

here 1−1,𝑖 is the corresponding reaction rate. This model is represented in Fig. 2. Note that, in this representation, units of space
an flow from cell 𝑖−1 to cell 𝑖 provided that a unit of occupied space is present in cell 𝑖−1 and that a unit of free space is present
n cell 𝑖. By recalling condition (A6) in Section 3.1, it is easy to see that the model in Eq. (11) naturally enforces that there can be
o flow from cell 𝑖 − 1 to cell 𝑖 if cell 𝑖 − 1 is empty (i.e. there is no unit of occupied space 𝑁𝑖−1) or if cell 𝑖 is full (i.e. there is no
nit of free space 𝑆𝑖).

Regarding the on and off-ramps in a given cell 𝑖 ∈ 𝐼 , they are respectively described by the following reaction steps

𝑆𝑖
on,𝑖
⟶ 𝑁𝑖, 𝑁𝑖

off,𝑖
⟶ 𝑆𝑖 (12)

here on,𝑖 and off,𝑖 are the reaction rates. These transformations express that during an elementary step of on-ramp (resp. off-ramp)
eaction, a unit of free space (resp. occupied space) is consumed, and turned into a unit of occupied space. As for the boundary
ompartments 𝑗 ∈ {1, 𝑃 }, they are characterized by similar reaction steps, namely

in out
6

𝑆1 ⟶ 𝑁1, 𝑁𝑃 ⟶ 𝑆𝑃 (13)
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Fig. 2. Representation of the traffic reaction model interpretation of traffic flow. The discretized road (Top row) is seen as a sequence of compartments (Bottom
row) containing ‘‘molecules’’ of free space 𝑆 and occupied space 𝑁 (represented as circles). The flow of vehicles along the road is then modeled by chemical
reactions between the compartments (written in red).

where the reaction rates in and out are set to reflect the boundary conditions.
Let 𝑛 = (𝑛𝑖 ∶ 𝑖 ∈ 𝐼) and 𝑠 = (𝑠𝑖 ∶ 𝑖 ∈ 𝐼) denote the concentrations of occupied and free space in the compartment 𝑖 ∈ 𝐼 . Within

our analogy, these quantities can respectively be seen as the equivalent of the density of vehicles and the density of free space in
the cell. Then the kinetic differential system (10) corresponding to the kinetic model with reaction steps (11)–(12) is the system of
ODEs defined by

𝑛̇𝑖 = 𝑖−1,𝑖(𝑛𝑖−1, 𝑠𝑖) −𝑖,𝑖+1(𝑛𝑖, 𝑠𝑖+1) +on,𝑖(𝑠𝑖, 𝑡) −off,𝑖(𝑛𝑖, 𝑡), 𝑖 ∈ 𝐼, (14)

𝑠̇𝑖 = 𝑖,𝑖+1(𝑛𝑖, 𝑠𝑖+1) −𝑖−1,𝑖(𝑛𝑖−1, 𝑠𝑖) +off,𝑖(𝑛𝑖, 𝑡) −on,𝑖(𝑠𝑖, 𝑡), 𝑖 ∈ 𝐼, (15)

where we adopt the notation 0,1(𝑛0, 𝑛1) ≡ in(𝑛, 𝑡) and 𝑃 ,𝑃+1(𝑛𝑃 , 𝑛𝑃+1) ≡ off(𝑛, 𝑡).
Note that 𝑛̇𝑖 + 𝑠̇𝑖 = 0. Hence, 𝑐𝑖 = 𝑛𝑖 + 𝑠𝑖 is a first integral (conserved quantity) of the dynamics which can be interpreted as the

maximal vehicle density in cell 𝑖. It is also clear that the conservation of 𝑐𝑖 guarantees the boundedness of the solutions of (14)–(15).
Substituting then 𝑠𝑖 = 𝑐𝑖 − 𝑛𝑖 into (14) (and assuming that 0 ≤ 𝑛𝑖(0) ≤ 𝑐𝑖) gives (for 𝑖 ∈ 𝐼)

𝑛̇𝑖 = 𝑖−1,𝑖(𝑛𝑖−1, 𝑐𝑖 − 𝑛𝑖) −𝑖,𝑖+1(𝑛𝑖, 𝑐𝑖+1 − 𝑛𝑖+1) +on,𝑖(𝑐𝑖 − 𝑛𝑖, 𝑡) −off,𝑖(𝑛𝑖, 𝑡)

This last equation is equivalent to the TRM equation (4) when taking 𝑛𝑖 = 𝜌𝑖 to be the vehicle density of the 𝑖th cell, 𝑐𝑖 = 𝜌max
to be the maximal cell capacity, and defining the reaction rates as

𝑖,𝑖+1(𝜌, 𝜈) = 𝑔(𝜌, 𝜈)∕𝛥𝑥, 𝑖 ∈ {0,… , 𝑃 }, (16)

and for 𝑖 ∈ 𝐼 , on,𝑖(𝜌, 𝑡) = 𝑅𝑖(𝜌, 𝑡)∕𝛥𝑥, and off,𝑖(𝜌, 𝑡) = 𝑆𝑖(𝜌, 𝑡)∕𝛥𝑥. A notable case is when we consider TRM with the decomposition
𝑔 = 𝑔MAK introduced in Example 2. Then, the resulting reaction rates are exactly those obtained when considering the kinetic system
under the so-called mass action kinetics (Chellaboina et al., 2009) assumption.

More generally, the kinetic interpretation of the TRM provides a new insight into the definition of fundamental diagrams, as
modeled by the function 𝜌 ↦ 𝑓 (𝜌) linking the flux to the density of vehicles. Indeed, the decomposition 𝑔 used to define 𝑓 , which
involves both the density of vehicles 𝜌 and its dual the free space density 𝜈, has a clear physical and kinetic interpretation: it
models how free space is turned into occupied space by the flow of vehicles. It is clearly visible from Eq. (16) that there is a simple
proportional relationship between the kinetic reaction rates and the speed-density relationship of the fundamental diagrams. This
gives a transparent and physically meaningful mapping between traffic flows and kinetic models. Therefore, two main conclusions
can be drawn. First, the TRM offers a complementary microscopic point-of-view on traffic where the particles being modeled are
not vehicles but units of free and occupied space, and which has a clear and straightforward link to the quantities modeled by the
macroscopic traffic model. Second, the TRM allows to propose and to interpret fundamental diagram relations based on a microscopic
model for the transformations of free space and occupied space.

3.3. Application: Dynamical analysis of the ring topology

We conclude thus section with an example of how the kinetic interpretation of the TRM can be leveraged to deduce some
properties of the model using kinetic system theory. In particular, we consider the special case when the TRM with 𝑃 compartments
has a ring topology (i.e. periodic boundary conditions) without on and off-ramps, and study the persistence of the dynamics and
then the stability of the equilibria.
7
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3.3.1. Persistence of the dynamics using kinetic theory
Following the kinetic interpretation made in Section 3, the TRM can be analyzed using the theory of kinetic systems. Indeed, the

RM is equivalent to the kinetic system defined by the reactions (11) and (13). Note in particular that the boundary reactions (13)
an be merged into a single reaction linking the first and last cells, and given by

𝑁𝑃 + 𝑆1
𝑃 ,1
⟶ 𝑁1 + 𝑆𝑃 .

Since the reaction rates 𝑖,𝑖+1 are given by (16) and do not depend explicitly on time, and assuming that they are real analytic
functions, we can use the results of Angeli et al. (2007) on the persistence of kinetic systems.

A nonnegative kinetic system is called persistent if no trajectory that starts in the interior of the orthant R𝑃+ has an 𝜔-limit point
on the boundary of R𝑃+ . A non-empty set of species 𝛴 ⊂  is called a siphon if each input reaction associated to 𝛴 is also an output
reaction associated to 𝛴. A siphon is minimal if it does not contain (strictly) any other siphons. Naturally, the union of siphons is a
siphon. The sufficient conditions for the persistence of the dynamics are the following Angeli et al. (2007): (1) there exists a positive
linear conserved quantity (i.e., a first integral) for the dynamics, and (2) each siphon contains a subset of species, the state variables
of which define a nonnegative linear first integral for the dynamics.

It is straightforward to see that Condition (1) is fulfilled, since 𝐼0 =
∑𝑃
𝑖=1 𝑠𝑖 + 𝑛𝑖 is a conserved quantity for the system. For

Condition (2), it can be checked that the only minimal siphons in the ring topology are: 𝛴𝑁 = {𝑁1,… , 𝑁𝑃 }, 𝛴𝑆 = {𝑆1,… , 𝑆𝑃 },
and 𝛴𝑖 = {𝑁𝑖, 𝑆𝑖} for 𝑖 = 1,… , 𝑃 . Since 𝐼𝑁 =

∑𝑃
𝑖=1 𝑛𝑖, 𝐼𝑆 =

∑𝑃
𝑖=1 𝑠𝑖, and 𝐼𝑖 = 𝑛𝑖 + 𝑠𝑖 for 𝑖 = 1,… , 𝑃 are also linear first integrals

containing the state variables of 𝛴𝑁 , 𝛴𝑆 , and 𝛴𝑖 respectively, Condition (2) is fulfilled. Therefore, the dynamics of the ring topology
are persistent for any numerical flux 𝐹 for which the corresponding reaction rates 𝑖,𝑖+1 satisfy the mild conditions described above.
Note that in order to prove the persistence of the dynamics for a wide class of flux functions just by exploiting the ring structure,
we needed both sets of state variables representing the density of vehicles as well as the density of free space.

3.3.2. Structure of equilibrium and stability
We first analyze the possible equilibrium points of the system. The proof of the next result can be found in Appendix B.2.

Proposition 3.1. For the system of ODEs (4) resulting from the mass action kinetic TRM with a ring topology, the only possible equilibrium
point (𝜌∗1 ,… , 𝜌∗𝑃 ) is the one satisfying for any 𝑘 ∈ 𝐼

𝜌∗𝑘 = 𝜌̄ = 1
𝑃

𝑃
∑

𝑖=1
𝜌𝑖(0)

Hence, as one could have expected, the only possible equilibrium point for the system is the one where the vehicles distribute
themselves uniformly across the (circular) road. Clearly there exist infinitely many equilibria for the system, but there is one unique
positive equilibrium within each equivalence class 𝑐 = {𝜌 ∈ 𝛺 ∣

∑𝑃
𝑖=1 𝜌𝑖 = 𝑐} defined by the conservation of vehicles. The next

result elaborates on the stability of this equilibrium.

Proposition 3.2. The equilibrium 𝜌̄ is stable on 𝛺.

Proof. We use the entropy-like Lyapunov function candidate well-known from the theory of reaction networks (Feinberg, 1987):

𝑉 (𝜌) =
𝑃
∑

𝑖=1

(

𝜌𝑖

[

log
(

𝜌𝑖
𝜌

)

− 1
]

+ 𝜌
)

. (17)

Then,

𝑉̇ = 𝜔
𝛥𝑥

𝑃
∑

𝑖=1
log

(

𝜌𝑖
𝜌

)

[

𝜌𝑖−1(𝜌max − 𝜌𝑖) − 𝜌𝑖(𝜌max − 𝜌𝑖+1)
]

,

which gives

𝑉̇ =
𝜔𝜌
𝛥𝑥

𝑃−1
∑

𝑖=1

𝜌𝑖(𝜌max − 𝜌𝑖+1)
𝜌

[

log
(

𝜌𝑖+1
𝜌

)

− log
(

𝜌𝑖
𝜌

)]

+
𝜌𝑃 (𝜌max − 𝜌1)

𝜌

[

log
(

𝜌1
𝜌

)

− log
(

𝜌𝑃
𝜌

)]

,

then we use the inequality 𝑒𝑎(𝑏 − 𝑎) ≤ 𝑒𝑏 − 𝑒𝑎 to give an upper bound such that

𝛥𝑥
𝜔
𝑉̇ ≤

𝑃−1
∑

𝑖=1
(𝜌max − 𝜌𝑖+1)

(

𝜌𝑖+1 − 𝜌𝑖
)

+ (𝜌max − 𝜌1)
(

𝜌1 − 𝜌𝑃
)

=
𝑃−1
∑

𝑖=1
𝜌𝑖+1𝜌𝑖 − 𝜌2𝑖+1 + 𝜌1𝜌𝑃 − 𝜌21 =

𝑃
∑

𝑖=1
−1
2
(𝜌2𝑖 − 2𝜌𝑖+1𝜌𝑖 + 𝜌2𝑖+1) =

𝑃
∑

𝑖=1
−1
2
(𝜌𝑖 − 𝜌𝑖+1)2 ≤ 0.

ote that the entropy-like Lyapunov function 𝑉 does not depend on the model parameters, and 𝑉̇ < 0 outside the equilibria. We
lso remark that the theory of kinetic and compartmental systems can still be used when the spatial discretization is non-uniform
long the ring. In such a case, the analytical computation of the equilibrium is not straightforward. However, we know that the
ynamics is persistent, and for any 𝑐 > 0, there exists a unique strictly positive equilibrium in 𝑐 which is stable with the Lyapunov
8

unction defined in Eq. (17), and asymptotically stable within 𝑐 . □
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It is important to add that the special case studied here can be greatly generalized using recent results. Persistence and stability
an be similarly proved not only for the MAK decomposition used here, but for very general reaction rates and thus for a really
ide set of fundamental diagrams for arbitrary strongly connected networks (Szederkényi et al., 2022). Moreover, we can handle
xplicitly time-varying transition rates (possibly resulting from changing conditions and/or external control) and determine a whole
amily of logarithmic Lyapunov functions in that case (Vághy and Szederkényi, 2023).

. Analysis of TRM: Comparison with the CTM

In this section, we formally show that the TRM is equivalent to the Cell Transmission Model (CTM) (Daganzo, 1994) under
ome specific parametrization of the input capacity (i.e. cell supply function). Further analysis of the TRM is proposed in the
upplementary materials of this paper, where we show how the TRM can be interpreted as a REA algorithm and we analyze how
t approximates shock waves (modified equations analysis).

In the CTM, the road is discretized into homogeneous cells of size 𝛥𝑥 (indexed in the ascending order in the direction of circulation
of the road). The number of vehicles inside a cell 𝑖 is represented by a time-dependent function 𝜂𝑖. Consider some time step 𝛥𝑡. The
volution of the number of vehicles 𝜂𝑖 from a time 𝑡 to a time 𝑡 + 𝛥𝑡 is described by the recurrence relation

𝜂𝑖(𝑡 + 𝛥𝑡) = 𝜂𝑖(𝑡) + 𝑦𝑖(𝑡) − 𝑦𝑖+1(𝑡), (18)

here the quantity 𝑦𝑖(𝑡) represents the number of vehicles entering the cell 𝑖 (from the cell 𝑖 − 1) between 𝑡 and 𝑡 + 𝛥𝑡. These flows
f vehicles are then assumed to be given, for any time 𝑡, by the relation

𝑦𝑖(𝑡) = min{𝜂𝑖−1(𝑡), 𝑄𝑖(𝑡), 𝑁𝑖(𝑡) − 𝜂𝑖(𝑡)}, (19)

here 𝑁𝑖(𝑡) denotes the maximal number of vehicles the cell 𝑖 can hold at time 𝑡, and 𝑄𝑖(𝑡) is the so-called input capacity of the
ell 𝑖, which describes the maximal number of vehicles that could flow into the cell. Note in particular that for any 𝑖 and any 𝑡,
𝑖(𝑡) ∈ [0, 𝑁𝑖(𝑡)].

Consider now the case where the maximal number of vehicles a cell can contain is constant, i.e. there exists some constant 𝑁
uch that for any 𝑖 and any 𝑡, 𝑁𝑖(𝑡) = 𝑁 . Let us then take the input capacities 𝑄𝑖 defined by

𝑄𝑖(𝑡) = 𝛥𝑡 𝑔
( 𝜂𝑖−1(𝑡)

𝛥𝑥
,
𝑁 − 𝜂𝑖(𝑡)

𝛥𝑥
)

. (20)

hen, assuming that the CFL condition (8) is satisfied, we have 𝑦𝑖(𝑡) = 𝑄𝑖(𝑡) for any 𝑖 and any 𝑡. Indeed, using the properties of 𝑔,
e have on the one hand,

𝑄𝑖(𝑡) = 𝛥𝑡
(

𝑔
( 𝜂𝑖−1(𝑡)

𝛥𝑥
,
𝑁 − 𝜂𝑖(𝑡)

𝛥𝑥
)

− 𝑔
(

0,
𝑁 − 𝜂𝑖(𝑡)

𝛥𝑥
))

≤ 𝛥𝑡𝐾1
|

|

|

𝜂𝑖−1(𝑡)
𝛥𝑥

− 0||
|

= 𝐾1
𝛥𝑡
𝛥𝑥
𝜂𝑖−1(𝑡),

nd similarly on the other hand,

𝑄𝑖(𝑡) = 𝛥𝑡
(

𝑔
(𝑁
𝛥𝑥
, 𝑁
𝛥𝑥

)

− 𝑔
(𝑁
𝛥𝑥
, 0

))

≤ 𝐾2
𝛥𝑡
𝛥𝑥

(

𝑁 − 𝜂𝑖(𝑡)
)

.

sing then the fact that the CFL condition (8) implies that 𝐾1𝛥𝑡∕𝛥𝑥 ≤ 1 and 𝐾2𝛥𝑡∕𝛥𝑥 ≤ 1, we retrieve that 𝑦𝑖(𝑡) = 𝑄𝑖(𝑡).
Note then that the density of vehicles 𝜌𝑖(𝑡) inside the 𝑖th cell is obtained by dividing the number of vehicles 𝜂𝑖(𝑡) by the cell size

𝑥. Similarly, the maximal density of vehicles is 𝜌max = 𝑁∕𝛥𝑥. Hence, by dividing (18) by 𝛥𝑥, we obtain the relation:

𝜌𝑖(𝑡 + 𝛥𝑡) = 𝜌𝑖(𝑡) +
𝑦𝑖(𝑡)
𝛥𝑥

−
𝑦𝑖+1(𝑡)
𝛥𝑥

(21)

here for any 𝑖,

𝑦𝑖(𝑡)
𝛥𝑥

=
𝑄𝑖(𝑡)
𝛥𝑥

= 𝛥𝑡
𝛥𝑥

𝑔
(

𝜌𝑖−1(𝑡), 𝜌max − 𝜌𝑖(𝑡)
)

,

Hence, (21) coincide exactly with the recurrence relation defining the TRM (7). We then conclude that the CTM, when defined with
the input capacities (20), fits into the TRM framework proposed in this work. This particular choice of input capacities simplifies
greatly the expression (19) defining the flow of vehicles: the minimum disappears and we are left with the numerical fluxes of the
TRM. In conclusion, the TRM elegantly incorporates in a compact (analytic) form the restrictions on the flux of vehicles allowed to
travel from cell to the other. The resulting smoothness opens the door for the application of results on polynomial systems of ODEs
for the analysis of the numerical properties of the TRM.

5. Possible extensions of the TRM

In this section we present two straightforward extensions of the TRM that allow to model traffic in more complex situations that
those covered by the LWR model (1) on a unidirectional road.
9
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5.1. Accounting for changing driving conditions

The TRM can be adapted to model roads with non-homogeneous driving conditions, may they be due to changes in the maximal
ehicle density admissible along the road (due for instance to varying number of lanes) or more generally to external factors affecting
he optimal flow of vehicles. Indeed, consider once again a road discretized into cells 𝑖 ∈ 𝐼 , and let 𝜌(𝑖)max denote the capacity of the
th cell. We call Extended TRM the system of ODEs defined by

𝜌̇𝑖(𝑡) =
1
𝛥𝑥

(

𝐶𝑖(𝑡)𝐹𝑖(𝜌𝑖−1, 𝜌𝑖) − 𝐶𝑖+1(𝑡)𝐹𝑖+1(𝜌𝑖, 𝜌𝑖+1) + 𝑅𝑖(𝜌𝑖, 𝑡) − 𝑆𝑖(𝜌𝑖, 𝑡)
)

, 𝑖 ∈ 𝐼, 𝑡 ≥ 0

where for each 𝑖 ∈ 𝐼 , the numerical flux 𝐹𝑖 is given by

𝐹𝑖(𝑢, 𝑣) = 𝑔(𝑢, 𝜌(𝑖)max − 𝑣),

the function 𝑔 is defined in the same way as in Section 2, and the function 𝑡 ↦ 𝐶𝑖(𝑡) takes values in (0, 1] can be seen as local
capacity drop factor which scales down the ‘‘ideal’’ flow of vehicles 𝐹𝑖(𝜌𝑖−1, 𝜌𝑖) between cells 𝑖−1 and 𝑖, i.e. the flow of vehicles one
should expect between these cells given their density states. By identification with the usual TRM, this factor can essentially be seen
as a time-varying normalized free flow speed 𝑣max at the interface between cells 𝑖 − 1 and 𝑖, or within the kinetic compartmental
interpretation, as a time-varying normalized reaction rate coefficient between compartments 𝑖−1 and 𝑖. On the other hand, allowing
he maximal capacity 𝜌(𝑖)max to change across compartments allows for instance to account for changes in the number of lanes or for
on-uniform discretizations of the road.

Following the same arguments as the ones used in Theorem 2.2, it is clear that the Extended TRM will yield solutions that
reserve non-negativity and capacity. Besides, the extended TRM has been shown to accurately describe real-world traffic datasets
n applications related to traffic state estimation (Pereira et al., 2022a) and short-term prediction (Pereira et al., 2022b). This is
anly due to the local capacity drop factors 𝐶𝑖 which allow to locally change the conditions at which traffic flows on the roads,

hence allowing the TRM (which inherits from the seemingly simplistic LWR model) to recreate complex traffic patterns observed in
the data.

To illustrate this last property of the Extended TRM, we present in Fig. 3 the results of a simulation study where traffic along a
unidirectional road with a traffic light is modeled. To do so, we start by discretizing the road into compartments and consider that at
the position 𝑥 = 0 where the traffic light is located, the corresponding capacity drop coefficient 𝐶(𝑡) oscillates between two values:
1 when the traffic light is green, and 0 when it is red (cf. Figs. 3(a) and 3(b)). Following the kinetic interpretation of the TRM,
this choice will effectively stop the flow of vehicles at 𝑥 = 0 when the traffic light is red. The mass action kinetic decomposition
is chosen, which in particular yields a polynomial system of ODEs which can be solved at arbitrary time steps with high accuracy
using standard libraries.

The Extended TRM is run on a road of 5 km discretized into compartments of 5 m. The free flow speed of vehicles is set to 30
m/h and the simulation is run on a time horizon of 10 min, with light switches happening approximately every 2 min. The results
resented in Figs. 3(c)–3(e) seem to show that the model manages to recreate both the wave propagations and the oscillatory nature
he density variations due to the traffic light changes.

.2. Accounting for road networks

The TRM can also be directly adapted to model traffic on networks. Indeed, following the kinetic and compartmental
nterpretation given in Section 3, traffic on a network can be assimilated to a compartmental chemical reaction network for
hich each compartment is now allowed to have more than two other neighboring compartments. Starting from a road network,
odeled as a directed graph, each directed edge is discretized into compartments, and each intersection is replaced by an additional

ompartment. An example of such discretization is given in Fig. 4, and show in particular how the TRM can be extended to handle
omplex intersections. The Network TRM then takes the form of a system of ODEs defined as

𝜌̇𝑖(𝑡) =
1
𝛥𝑥

(
∑

𝑗∈in(𝑖)
𝐹 (𝜌𝑗 , 𝜌𝑖) −

∑

𝑘∈out (𝑖)
𝐹 (𝜌𝑖, 𝜌𝑘) + 𝑅𝑖(𝜌𝑖, 𝑡) − 𝑆𝑖(𝜌𝑖, 𝑡)

)

, 𝑖 ∈ 𝐼, 𝑡 ≥ 0 (22)

where for each compartment 𝑖 ∈ 𝐼 , in(𝑖) denotes the set of compartments 𝑗 that point to 𝑖 (i.e. such that vehicles can move from
𝑗 to 𝑖) and out (𝑖) denotes the set of compartments 𝑘 that 𝑖 points to (i.e. such that vehicles can move from 𝑖 to 𝑘).

Once again, following the same arguments as the ones used in Theorem 2.2, it is clear that the Network TRM will also yield
solutions that preserve non-negativity and capacity. This qualifies the Network TRM to act as a generic link and node model
for traffic networks according to the classification of Tampère et al. (2011). Following the categories in Tampère et al. (2011),
the Network TRM extension is an unsignalized node model where supply and capacity constraints are handled in a balanced and
continuous way. This latter property roots in fact in the balanced interaction of chemical species changing the concentrations in the
compartments. In terms of supply constraint interaction rules (Tampère et al., 2011), the Network TRM generates them implicitly :
free space concentrations are transformed into occupied ones dynamically, smoothly. In terms of the solution algorithm, the set of
nonlinear ODEs guarantees the existence of a unique solution to the density propagation across all link and node compartments
(via Lipschitz continuity Khalil, 2002). Node and link models are described in a unified way with TRM. Links and nodes rely on the
reaction rate governed exchange of material (vehicle) in- and outflows. Merging and diverging is handled by in- and outgoing flows
(see, Eq. (22)). Besides, the Network TRM can readily be further extended in order to account for varying road conditions using the
same approach as the one outlined for the Extended TRM. In practice, the link between the TRM and chemical reaction networks
can be leveraged to deduce persistence and Lyapunov stability results that generalize even to time-varying networks, the properties
of which are outlined in Section 3.3 (Vághy and Szederkényi, 2022; Szederkényi et al., 2022; Szederkenyi and Vaghy, 2022).
10
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Fig. 3. Extended TRM simulation of the normalized density on a road with a traffic light. The red and green lines indicate when the capacity drop factor is set
to 0 (red lines) or to 1 (green lines).

Fig. 4. TRM discretization (Right) of a roundabout (Left).

6. Conclusions

Traffic Reaction Model (TRM), a family of Finite Volume Methods for segmenting certain hyperbolic Partial Differential Equations
arising in traffic flow modeling, has been presented in the paper. First, the proposed numerical approximation scheme is consistent,
monotone, nonnegative, capacitated, and conservative, even under non-zero sink and source terms. Second, the resulting system
of nonlinear ODE models enables us to formally view traffic flow models as chemical reaction networks. In the kinetic model
formulation, two dual state variables appear representing traffic density and the density of free space, respectively. These dual
densities enable a proper factorization of the nonlinearity in the original PDE, as done by the function 𝑔(), and also allow us to
define multiple meaningful numerical fluxes.

We have compared the TRM to other known popular discretization schemes, and clarified their relations. Here we emphasize that
TRM is equivalent to the CTM for a particular choice of input capacities. Numerical results show that the convergence properties
of the proposed model are comparable to other popular schemes. The main benefits of the proposed modeling approach are the
possibility to represent the system model in the form of smooth ODEs which is often required to apply advanced nonlinear control
techniques, and to use the tools of compartmental systems and reaction network theory in the dynamical analysis of traffic models.
The latter one was illustrated through the example of the ring topology, where the robust persistence and stability of the dynamics
were shown using a Petri net representation (containing also both sets of state variables), and a parameter-free logarithmic Lyapunov
11
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function, respectively. Finally, we have presented the possible extensions of the model firstly in the form of a time-varying nonlinear
system, with basically the same physical interpretation, to describe capacity changes due to e.g., traffic lights, and secondly, as a
straightforward network formulation which can be used to model an arbitrary road (directed graph) structure, thus allowing to
better model real traffic data (Pereira et al., 2022a,b).

Further work will be focused on structured stability analysis, state estimation, and robust control design. An interesting research
irection can be to further analyze the dual variable triggered parametrization of 𝑓 (𝜌) within the framework of variational theory

in order to see how the Hamilton–Jacobi representation (see, Laval and Leclercq (2013)) is changed.
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ppendix A. Well-posedness of the traffic flow PDE

emma A.1. Let 𝑇 > 0. Let 𝑓 ∶ R → R be bounded and locally Lipschitz-continuous, and let 𝜓 ∶ [0, 𝑇 ] × R × R → R such that

• [(𝑡, 𝑥) ∈ [0, 𝑇 ] × R ↦ 𝜓(𝑡, 𝑥, 𝑢)] is bounded and Lipschitz-continuous, uniformly in 𝑢 ∈ R,
• [𝑢 ∈ R ↦ 𝜓(𝑡, 𝑥, 𝑢)] is bounded and locally Lipschitz-continuous, uniformly in (𝑡, 𝑥) ∈ [0, 𝑇 ] × R,
• the estimate |𝜓(𝑡, 𝑥, 𝑢)| ≤ 𝐶(1 + |𝑢|) holds when |𝑢| is sufficiently large, for some 𝐶 > 0 independent of 𝑡, 𝑥, 𝑢.

Finally, let 𝑢0 ∈ 𝐿1(R) such that 𝑢0 is bounded. Then, the Cauchy problem defined by
{

𝑢𝑡 + 𝑓 (𝑢)𝑥 = 𝜓(𝑡, 𝑥, 𝑢), (𝑡, 𝑥) ∈ [0, 𝑇 ] × R,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ R,

(23)

admits weak solutions, among which there is exactly one solution 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿1(R)) satisfying the so-called entropy inequalities: for any
convex function 𝜂 ∈ 𝐶2(R) and function 𝑞 such that 𝑞̇ = 𝜂̇ ̇𝑓 ,

∫

𝑇

0 ∫R

(

𝜂(𝑢)𝜙𝑡 + 𝑞(𝑢)𝜙𝑥 − 𝜂̇(𝑢)𝜓(𝑡, 𝑥, 𝑢)𝜙
)

𝑑𝑥𝑑𝑡 ≥ 0 (24)

for any 𝜙 ∈ 𝐶1
𝑐 ([0, 𝑇 ] × R) such that 𝜙 ≥ 0. This particular solution is called entropy solution of the Cauchy problem Eq. (23). Moreover,

the entropy solution 𝑢 depends continuously on the initial condition 𝑢0 and is bounded.

Proof. This result a direct application of Theorems 3.1 and 6.1 of Chen and Karlsen (2005) in the case where the diffusion coefficient
of the quasilinear anisotropic degenerate parabolic equation is zero.

Note that since the entropy solution satisfies 𝑢 ∈ 𝐶([0, 𝑇 ];𝐿1(R)), it implies that for all 𝑡0 > 0, lim
𝑡→𝑡0

∫R |𝑢(𝑡, 𝑟) − 𝑢(𝑡0, 𝑟)| 𝑑𝑟 = 0, and
lim
𝑡→0+

∫R |𝑢(𝑡, 𝑟) − 𝑢0(𝑟)| 𝑑𝑟 = 0. Hence, the regularity in time (measured in the above 𝐿1-norm sense) of the conserved quantity under
12

nonzero sink and source terms is guaranteed.
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Appendix B. Additional proofs

B.1. Proof of Theorem 2.2

Proof. The numerical flow 𝐹 is consistent since by definition and following Eq. (2), we have 𝐹 (𝑢, 𝑢) = 𝑔(𝑢, 𝜌max − 𝑢) = 𝑓 (𝑢) for any
𝑢 ∈ 𝛺. It is monotone due to the continuity assumption on 𝑓 , consistency and the non-decreasing properties of 𝑔.

The TRM preserves non-negativity, since, for any 𝑖 ∈ 𝐼 , the right-hand side of Eq. (4), evaluated on the boundary 𝜌𝑖 = 0, is
nonnegative. Indeed, following the definitions of 𝑔, 𝑔on, 𝑔off, if 𝜌𝑖 = 0, then

𝜌̇𝑖 =
1
𝛥𝑥

[

𝑔(𝜌𝑖−1, 𝜌max) + 𝑅𝑖(0, 𝑡)
]

≥ 0.

since for any 𝑡 ≥ 0, 𝑅𝑖(𝜌max, 𝑡) = 𝑆𝑖(0, 𝑡) = 0. Similarly, the TRM preserves bounded capacity, because the right-hand side of Eq. (4),
valuated on the capacity bound 𝜌𝑖 = 𝜌max, yields 𝜌̇𝑖 ≤ 0.

Finally, the discretization scheme Eq. (4) is conservative, because for any 𝑛𝑙 , 𝑛𝑟 ∈ 𝐼 such that 𝑛𝑙 < 𝑛𝑟, the following is true:

𝛥𝑥
𝑛𝑟
∑

𝑖=𝑛𝑙

𝜌̇𝑖 = 𝐹 (𝜌𝑛𝑙−1, 𝜌𝑛𝑙 ) − 𝐹 (𝜌𝑛𝑟 , 𝜌𝑛𝑟+1) +
𝑛𝑟
∑

𝑖=𝑛𝑙

𝑅𝑖(𝜌𝑖, 𝑡) − 𝑆𝑖(𝜌𝑖, 𝑡),

meaning that the variation of the number of vehicles on a section of the road (i.e. the left hand side of this equation) is equal to the
difference between the number of vehicles entering the section (at the boundary or through on-ramps) and the number of vehicles
leaving the section (at the boundary or through off-ramps).

B.2. Proof of Proposition 3.1

Proof.
Since (𝜌∗1 ,… , 𝜌∗𝑃 ) is an equilibrium point, it must satisfy

𝐹 (𝜌∗𝑖−1, 𝜌
∗
𝑖 ) = 𝐹 (𝜌∗𝑖 , 𝜌

∗
𝑖+1), 𝑖 ∈ {1,… , 𝑃 }

where we write in particular 𝜌∗0 = 𝜌∗𝑃 and 𝜌∗𝑃+1 = 𝜌∗1. This gives in turn,

𝜌∗𝑃 (𝜌max − 𝜌∗1) = 𝜌∗1(𝜌max − 𝜌∗2) = ⋯ = 𝜌∗𝑃−1(𝜌max − 𝜌∗𝑃 ).

Without loss of generality, assume that 𝜌∗1 = max𝑖∈𝐼 𝜌∗𝑖 . We can then write,

𝜌∗1(𝜌max − 𝜌∗2) − 𝜌
∗
1(𝜌max − 𝜌∗1) = 𝜌∗𝑃 (𝜌max − 𝜌∗1) − 𝜌

∗
1(𝜌max − 𝜌∗1)

which gives

𝜌∗1(𝜌
∗
1 − 𝜌

∗
2) = (𝜌max − 𝜌∗1)(𝜌

∗
𝑃 − 𝜌∗1)

and therefore

𝜌∗1
⏟⏟⏟

≥0

(𝜌∗1 − 𝜌
∗
2)

⏟⏞⏟⏞⏟
≥0

+ (𝜌max − 𝜌∗1)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

≥0

(𝜌∗1 − 𝜌
∗
𝑃 )

⏟⏞⏞⏟⏞⏞⏟
≥0

= 0

We have three cases.

• If 𝜌∗1 = 0, then since 𝜌∗1 = max𝑖∈𝐼 𝜌∗𝑖 , we have 𝜌∗1 = 𝜌∗2 = ⋯ = 𝜌∗𝑃 = 0.
• If 𝜌∗1 = 𝜌max, then since 𝜌∗1(𝜌max − 𝜌∗2) = 𝜌∗𝑃 (𝜌max − 𝜌∗1) = 0, we have 𝜌∗2 = 𝜌max. And since 𝜌∗2(𝜌max − 𝜌∗3) = 𝜌∗1(𝜌max − 𝜌∗2) = 0, we

have 𝜌∗3 = 𝜌max. By continuing this process, we then prove that 𝜌∗1 = 𝜌∗2 = ⋯ = 𝜌∗𝑃 = 𝜌max.
• If 𝜌∗1 ≠ 0 and 𝜌∗1 ≠ 𝜌max: then we must have 𝜌∗𝑃 = 𝜌∗1 = 𝜌∗2 = max𝑖∈𝐼 𝜌∗𝑖 . Hence we can apply the same result to prove that
𝜌∗1 = 𝜌∗2 = 𝜌∗3 = max𝑖∈𝐼 𝜌∗𝑖 , and continue to do iteratively until we prove that 𝜌∗𝑃−2 = 𝜌∗𝑃−1 = 𝜌∗𝑃 = max𝑖∈𝐼 𝜌∗𝑖 . Hence we have
𝜌∗1 = 𝜌∗2 = ⋯ = 𝜌∗𝑃 .

In all three cases we proved that 𝜌∗1 = 𝜌∗2 = ⋯ = 𝜌∗𝑃 , which is clearly equal to (1∕𝑃 )
∑

𝑖∈𝐼 𝜌
∗
𝑖 .

Note then that the quantity

𝜌̄(𝑡) = 1
𝑃

𝑃
∑

𝑖=1
𝜌𝑖(𝑡)

atisfies

̇̄𝜌(𝑡) = (𝐹 (𝜌𝑃 , 𝜌1) − 𝐹 (𝜌𝑃 , 𝜌1))∕𝑃 = 0

since the TRM is conservative. Hence, 𝜌̄(𝑡) is conserved through time, meaning that 𝜌̄(𝑡) = (1∕𝑃 )
∑

𝑖∈𝐼 𝜌
∗
𝑖 = 𝜌̄(0) = 𝜌̄. We can then

∗ ∗ ∗
13

conclude that 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑃 = 𝜌̄.
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Fig. C.5. 𝐿1-norm and 𝐿∞-norm errors of the shock wave discretization for various numbers of segments 𝑃 .

Appendix C. Empirical accuracy and convergence test for the trm

Consider a source and sink term free traffic flow model. The empirical accuracy tests are carried out with the parameters 𝜔 = 1,
max = 100, and 𝛥𝑥 = 𝐿∕𝑃 , where 𝐿 = 20 is the length of the examined segment, and 𝑁 is the number of discrete segments. The
nd time is 𝑇 = 2∕60. We also consider that we have reflexive boundary conditions, i.e. we set 𝜌−1 = 𝜌0 and 𝜌𝑃+1 = 𝜌𝑃 . We compare

the performances of the semi-discrete scheme Eq. (4) and of the fully-discrete scheme Eq. (7) in terms of accuracy, for increasing
numbers of space discretization points 𝑃 . First, the system of ODEs of the semi-discrete scheme is solved numerically (Runge-Kutta
approximation). Second, the time step of the fully discrete scheme is systematically set to 𝛥𝑥∕(2𝑣max) (following Theorem 2.4).

First, we introduce the time dependent error function 𝑒, which is the spatial 𝐿1-norm error in each time 𝑡 as follows

𝑒(𝑡) =
𝑃
∑

𝑖=1
∫

𝑥𝑖+1∕2

𝑥𝑖−1∕2

|

|

𝜌(𝑥, 𝑡) − 𝜌𝑖(𝑡)|| 𝑑𝑥, (25)

where 𝜌(𝑥, 𝑡) denotes the value of the true solution of the PDE and 𝜌𝑖(𝑡) denotes, for the 𝑖-th cell, either the solution of the ODE
system of the semi-discrete scheme or a piecewise constant reconstruction obtained from the quantities computed by the fully
discrete scheme (and equal to 𝜌𝑛𝑖 in each interval [𝑡𝑛, 𝑡𝑛+1]). This spatial error term is computed analytically for each 𝑡 and arbitrary
values of 𝜌𝑖(𝑡), in the case of Riemann problems, using the closed forms for 𝜌(𝑥, 𝑡) provided by Leveque (1992). After that, we can
define the 𝐿1- and 𝐿∞-norm of the spatial error function 𝑒 as follows

‖𝑒‖1 = ∫

𝑇

0
𝑒(𝑡) 𝑑𝑡 and ‖𝑒‖∞ = max

0≤𝑡≤𝑇
𝑒(𝑡).

C.1. Shock wave

Consider the Riemann-problem with the initial condition

𝜌(𝑥, 0) =

{

0.1𝜌max if 𝑥 < 𝐿∕2
0.8𝜌max otherwise,

which induces a solution consisting of a shock wave. Fig. C.5 shows the discretization errors of various monotone discretization
schemes (both semi and fully discrete): the mass action kinetic (MAK) TRM Eq. (5), the Godunov (Gdnv) scheme Eq. (6), and the
modified Lax-Friedrichs (LxF) scheme.3 The errors decrease approximately as (𝑃−1) for all (semi and fully discrete) schemes, and
the semi-discrete formulation of a given scheme systematically over-performs its fully discrete formulation. This is expected as the
fully-discrete formulation add additional error due to the time discretization. If we compare the semi or fully discrete schemes with
one another, the Godunov scheme systematically overperforms the other two, which display similar errors.

C.2. Rarefaction wave

Consider the Riemann-problem with the initial condition

𝜌(𝑥, 0) =

{

0.8𝜌max if 𝑥 < 𝐿∕2
0.1𝜌max otherwise,

3 Numerical flux given by 𝐹 (𝑢, 𝑣) = (𝑓 (𝑢) + 𝑓 (𝑣))∕2 + 𝑑(𝑢 − 𝑣) for 𝑑 ≥ 𝜔𝜌 ∕2. Note that LxF is not a kinetic scheme.
14

max
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Fig. C.6. 𝐿1-norm and 𝐿∞-norm errors of the rarefaction wave discretization for various numbers of segments 𝑃 .

which induces this time a solution consisting of a rarefaction wave. The discretization errors associated with this choice of initial
condition are given in Fig. C.6. Once again, the semi-discrete formulations overperform compare to the fully-discrete ones, and the
Godunov scheme overperforms compared to the other two schemes, that display similar errors. But this time, the errors at a slightly
lower order of (𝑃−3∕4). This difference could be explained by the fact that (spatially) piecewise constant reconstructions are used
here to approximate a continuous rarefaction fan.

Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.trc.2023.104435.
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