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Abstract
In this paper, a finite volume discretization scheme for partial integro-differential
equations (PIDEs) describing the temporal evolution of protein distribution in gene
regulatory networks is proposed. It is shown that the obtained set of ODEs can be
formally represented as a compartmental kinetic system with a strongly connected
reaction graph. This allows the application of the theory of nonnegative and compart-
mental systems for the qualitative analysis of the approximating dynamics. In this
framework, it is straightforward to show the existence, uniqueness and stability of
equilibria. Moreover, the computation of the stationary probability distribution can be
traced back to the solution of linear equations. The discretization scheme is presented
for one and multiple dimensional models separately. Illustrative computational exam-
ples show the precision of the approach, and good agreement with previous results in
the literature.
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1 Introduction

Gene expression is a fundamental biological process of actually realizing DNA infor-
mation in the form of proteins in living organisms. Therefore, the (quantitative)
modeling of gene expression has been in the focus of research during the last decades
(Smolen et al. 2000; Ay and Arnosti 2011). Gene regulatory networks (GRNs) are
complex mechanisms through which cells are able to react to internal and external
signals in a controlled way (Peter and Davidson 2015). The set of techniques success-
fully applied for the modeling of GRNs is really wide (De Jong 2002; Karlebach and
Shamir 2008; Barbuti et al. 2020). It was pointed out already in the 1970s that the
stochastic nature of gene expression has to be taken into consideration during mod-
eling (Berg 1978). Experimental results and model analysis clearly show that both
translational and transcriptional bursting contribute to stochasticity in prokaryote and
eukaryote gene expression (Kaern et al. 2005; Dar et al. 2015). It is also known that in
many cases, stochasticity in gene expression is functionally advantageous, and it can
even result in robust phenotypes (MacNeil and Walhout 2011). In Mackey and Tyran-
Kamińska (2015), the dynamics of a bistable genetic switch was analyzed, and it was
shown that the qualitative properties of the stationary distribution are not significantly
influenced by stochastic terms describing bursting and degradation. A theoretically
sound hybrid modelling and simulation framework was proposed and applied to study
the transcriptional dynamics of an autoregulation loop and a toggle switch in Bokes
et al. (2013). An interesting computation result is that there exist two qualitatively
different scenarios called "fluctuating" and “simultaneous” in the behaviour of the
toggle switch in the presence of gene expression noise.

The dynamical model studied in this paper is originated in Friedman et al. (2006),
where a symbolic approach is proposed for describing the stationary distribution of
protein concentration in living cells in the form of partial integro-differential equations
(PIDEs). The model is based on the master equation, and considers protein production
in random bursts (see, also Elgart et al. 2011; Dar 2012) extended by transcription
autoregulation. Feasible stationary distributions for this PIDE model with a slightly
modified transcription rate were derived and classified in Pájaro et al. (2015). The gen-
eralized Friedman (or multidimensional PIDE) model was later introduced in Pájaro
et al. (2017) which describes the operation of a genetic circuit of n genes expressed
into n different protein types. Since finding symbolic solutions for the stationary distri-
butions of the generalized Friedman model is not straightforward due to its generality,
Pájaro et al. (2017) proposed a numerical procedure for the computation. The approach
is based on a semilagrangian method for the discretization of the PIDE, and the com-
putational results show that it is suitable to describe the behaviour of a wide class
of GRNs with several different regulatory interactions and protein degradation rates.
The generalized Friedman model and the subsequently developed simulation frame-
work SELANSI (Pájaro et al. 2017) has since been widely used for design (Sequeiros
et al. 2022), identification (Sequeiros et al. 2022) and control (Bokes and Singh 2019;
Fernández et al. 2022) of GRNs. In Pájaro et al. (2019) a truncated version of the
master equation corresponding to a special version of the one-dimensional Friedman
model was proposed. As we will show later, this can be formally seen as a semi-
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discretization of the PIDE and can be generalized to both variable degradation rates
and multidimensional GRNs.

Compartmental models are used to describe the transmission of modeled entities
(material, particles, vehicles, people, information, etc.) between physical or abstract
storage units, called compartments (Haddad et al. 2010). Accordingly, the application
field of compartmental systems is really wide including (bio)chemistry, pharma-
cokinetics, ecological, epidemiological and transportation modeling (Godfrey 1983).
Mathematically, the descriptive power of compartmental models is quite good as they
are capable of representing numerous complex dynamical phenomena (Rap 1986;
Brown 1980). Additionally, one of their main benefits is the associated directed graph
structure (called the compartmental graph) representing possible transitions, and the
related strong results on qualitative dynamical properties (Jacquez and Simon 1993;
Cobelli and Romanin-Jacur 1976). Naturally, there is a vast literature on the dynamics
of linear compartmental systems and the algebraic properties of the corresponding
compartmental matrices (see, e.g. Anderson 2013; Berman and Plemmons 1994;
Meshkat et al. 2015; Bortner and Meshkat 2022). Another important related fam-
ily of models is the class of chemical reaction networks (CRNs) or kinetic systems
which includes dynamical models that can be formally represented by a set of trans-
formations (reactions) between abstract chemical complexes. The theory of CRNs is
an intensively studied area, where deep results have been achieved on the properties of
kinetic systems such as the structure and stability of equilibria (Feinberg 2019; Angeli
2009; Chellaboina et al. 2009). Linear kinetic systems with one-species complexes
are trivially compartmental, where the compartments correspond to chemical species,
and the reaction graph is identical to the compartmental graph (Érdi and Tóth 1989).

Many hyperbolic conservation laws are derived in an integral form, which, in the
case of sufficiently smooth solutions and fluxes, can be rewritten in their usual differ-
ential form (LeVeque 2002). However, many practical problems involve discontinuous
solutions, where shocks or singularities can develop quickly even from smooth ini-
tial data. We highlight that the (generalized) Friedman model can have this problem
too, see Sect. 5 for a special single gene example where the symbolic solution is
known and has a singularity in the origin. Thus, numerical methods derived from the
differential form, such as finite differences, are expected to lose accuracy near discon-
tinuities. This problem can for example be mitigated by an appropriate Finite Volume
Method (FVM) based on the integral form of the PDE. Instead of computing possibly
unreliable pointwise approximations we define grid cells and approximate the cell
averages of the solution. This approach introduces a clear compartmental interpreta-
tion of semi-discretized PDEs and can naturally capture the underlying conservation
law, too (Eymard and Gallouët 2000). As a consequence, in many applications the
result of an FVM is guaranteed to be nonnegative and conservative, thus it is bounded;
that is, FVM can be robust to the singularities of the solution.

Motivated by the above mentioned preliminary results, the aim of this paper is
to propose an efficient novel computational approach based on compartmental dis-
cretization for the numerical solution of the multidimensional PIDEmodel introduced
in Pájaro et al. (2017). It is shown that the dynamics of the approximating model
can be written as a nonnegative linear time-invariant ODE. Therefore, the stationary
distribution can be computed by solving a set of linear equations. The structure of
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the paper is the following. In the next section we introduce the PIDE model and the
compartmental and kinetic systems. Next, in Sect. 3, we describe the kinetic finite
volume discretization proposed to solve the PIDE model. A qualitative analysis of the
proposed method is addressed in Sect. 4 and several illustrative numerical examples
are shown in Sect. 5. Finally, in Sect. 6, we end up with a summary of the work.

2 Notations and Background

In this section we give a brief introduction of multidimensional GRNs and (linear)
compartmental and kinetic systems.

2.1 Multidimensional Gene Regulatory Networks

The following short introduction is based on Friedman et al. (2006), Pájaro et al.
(2017). We consider a gene regulatory network consisting of n genes G =
{DN A1, DN A2, . . . , DN An} that express n proteins X = {X1, X2, . . . , Xn} via the
corresponding messenger RNAs M = {mRN A1,mRN A2, . . . ,mRN An}. We fol-
low the still relevant central dogma of molecular biology, which asserts that the gene
instructions are transcribed into messenger RNAs, that are translated into proteins.
The continuous number of mRNA molecules and proteins are denoted by m, x ∈ R

n ,
respectively.

The promoters corresponding to each gene are assumed to switch between active
and inactive states, denoted by DN Ai,on and DN Ai,off, respectively. The transition is
controlled by the binding of proteins. Note that in general, the feedback mechanism
may require the binding of multiple types of proteins besides the one expressed by the
givengene. For the sake of generality,we assume that anyprotein can repress or activate
any gene in the network. This mechanism is typically modelled by multivariate Hill
functions. We define the matrix H ∈ Z

n×n , where Hi j represents the Hill coefficient
of the cross-regulation. If Hi j is positive (respectively, negative), then X j inhibits
(respectively, promotes) the expression of Xi .

The transcription of DN Ai into mRN Ai is assumed to be a first order process
occurring with rate kim per unit time and with transcriptional leakage εi ∈ (0, 1). Then
the transcription can be written as

Ri
T (x) = kimci (x),

where ci : R
n+ → [εi , 1] depend on the feedback regulation mechanism. In a single

gene setting we could consider

c1(x1) = K H + ε1xH

K H + xH
,

for some appropriate K and H constants; see Sect. 5 for more examples of ci Hill
functions. We emphasize that the transcriptional leakage directly affects the range of
these coefficient functions. Finally, the translation rate of protein Xi is defined as
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Ri
X (mi ) = kixmi .

The messenger RNA and protein degradation is assumed to take the form

Gi
m(mi ) = −γ i

mmi Gi
X (x) = −γ i

x (x)xi ,

where γ i
m > 0 and γ i

x : R
n+ −→ R+. Following Pájaro et al. (2017) it is assumed that

γ i
m

γ i
x (x)

� 1 in order to ensure the validity of the subsequent model.

We use the standard exponential distribution to model protein bursting; that is, the
conditional probability of the protein level jumping from yi > 0 to xi > yi is

ωi (xi − yi ) = 1

bi
exp

[
− xi − yi

bi

]
,

where bi = kix
γ i
m
.

With the above assumptions the probability density function (PDF) of the protein
level, p(t, x), can be modelled with the following PIDE:

∂ p(t, x)

∂t
=

n∑
i=1

∂

∂xi

[
γ i
x (x)xi p(t, x)] +

n∑
i=1

kim

∫ xi

0
βi (xi − yi )ci ( yi )p(t, yi )dyi ,

(1)

where yi = x + (yi − xi )ei and the βi functions have the following form:

βi (x) = ωi (x) − δ(x).

In Cañizo et al. (2019) the authors show the well-posedness of (1) in the gener-
alized (mild) sense; that is, for p0 ∈ L1(Rn) there exists a unique mild solution
p ∈ C (

R+;L1(Rn)
)
with the following properties:

(i) nonnegativity: if p0 is nonnegative, then so is the solution p(t, .) for all t ≥ 0,
(ii) mass conservation:

∫
R
n+
p(t, x)dx =

∫
R
n+
p0(x)dx, ∀t ≥ 0.

In fact, if the initial data is in the space C1,b(Rn+) of Hölder-continuous functions for
some appropriate b > 0 (e.g., in one dimension b = b1), then there exists a unique
classical solution p ∈ C1 (R+;L1(Rn+)

)
. Note, that in the probabilistic setting in

applications we usually assume that p0 is nonnegative and its integral is one.

2.2 Compartmental and Kinetic Systems

We briefly introduce compartmental systems based on Jacquez and Simon (1993).
Compartmental differential equations are often used to model physical phenomena
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governed by a conservation law such as conservation of mass. A compartment can
represent a certain amount of a material that is kinetically homogeneous; that is, the
entering material is instantly mixed with that of the compartment. As long as we can
interpret the conservation law, a compartment can even describe abstract quantities,
such as probabilities in our case. Despite this, we will usually refer to the amount of
the modeled quantity in the compartment as the mass in the compartment, and to the
conservation law as conservation of mass.

Let us consider a system with m compartments and let qi represent the mass of
the i th compartment. In general, any compartment can be connected to any other
compartment and to the environment in both directions. We denote with Fi j the flow
from the compartment q j to the compartment qi , with Ii the material inflow from the
environment to compartment qi and with F0i the material outflow from compartment
qi to the environment. Loop flows are not allowed, i.e. i �= j in Fi j . Then the time-
evolution of the system is given by the following system of differential equations:

q̇i =
∑
j �=i

(−Fji + Fi j ) + Ii − F0i . (2)

We impose the following physical assumptions to the system:

1. for any i, j, t ≥ 0, i �= j we have that Fi j (q(t)) ≥ 0, Ii (t) ≥ 0 and F0i (q(t)) ≥ 0,
2. for any i, t ≥ 0 if qi (t) = 0, then F0i (q(t)) = Fji (q(t)) = 0 for each j .

These properties ensure the invariance of the nonnegative orthant; that is, assuming a
nonnegative initial condition, our solution is guaranteed to be nonnegative. In general,
the above functions can depend on the mass of any compartment and possibly on t as
well. Then it can be shown that if each Fi j and F0i belong to the class Ck , then we can
rewrite (2) as

q̇i = −
⎛
⎝ f0i +

∑
j �=i

f j i

⎞
⎠ qi +

∑
j �=i

fi j q j + Ii , (3)

where Fi j = fi j q j and the fractional transfer coefficients fi j belong to the class Ck−1,
for k ≥ 1. We can then naturally rewrite (3) in matrix form as

q̇ = f q + I ,

where { f }i j = fi j for i = 0, 1, . . . and j = 1, 2, . . . . If each fractional transfer
coefficient fi j only depends on q j , then the system is called a donor controlled system.
If each coefficient is constant, then the system is called a linear donor controlled system.

Linear donor controlled systems can naturally be represented as chemical reaction
networks, or kinetic systems. For a brief introduction, we refer to Angeli (2009). For
each compartment with index i , qi represents the mass (or alternatively, the concen-
tration) of the one-species complex Qi , and for each transition from compartment i to
j , we assign the reaction Qi → Q j . Using this construction, we can not only rely on
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the comprehensive theory of compartmental models but on that of kinetic systems as
well. While most qualitative properties of linear donor controlled systems we consider
can be derived from both modeling approaches, a notable piece of additional informa-
tion in chemical reaction network theory is the stability analysis using a logarithmic
Lyapunov function, discussed in more detail in 4.2.

3 Kinetic Finite Volume Discretization

In this section we formulate a finite volume discretization of (1), the result of which
is a mass conservative kinetic system. We also note that since (1) is linear (that is, if p
and q are solutions, then so is p+q), the result of the semi-discretization is anticipated
to also be linear.

3.1 One-Dimensional Case

Let us first consider the one-dimensional Friedman model describing the temporal
evolution of protein distribution given by

∂ p(t, x)

∂t
= ∂

∂x

[
γ 1
x (x)xp(t, x)

]
+ k1m

∫ x

0
β1(x − y)c1(y)p(t, y)dy, (4)

with initial condition p(0, x) = p0(x) that has integral one. The mass conservation of
(4) is well-known but the subsequent informal investigation provides further insight
that can be transferred to the design of the numerical scheme. Sinceω1 is the probability
density function of an exponential distribution its integral is one, and thus

∫ ∞

0
β1(x)dx = 0.

Integrating over R+ shows after a change of variables that

∫ ∞

0

∂ p(t, x)

∂t
dx = ∂

∂t

∫ ∞

0
p(t, x)dx =

∫ ∞

0

∂

∂x

[
γ 1
x (x)xp(t, x)

]
dx

+ k1m

∫ ∞

0

∫ x

0
β1(x − y)c1(y)p(t, y)dydx = lim

x→∞ γ 1
x (x)xp(t, x)︸ ︷︷ ︸

=0

−γ 1
x · 0 · p(t, 0)

+ k1m

∫ ∞

0

∫ ∞

y
β1(x − y)c1(y)p(t, y)dxdy

= k1m

∫ ∞

0
c1(y)p(t, y)

∫ ∞

y
β1(x − y)dxdy = 0,

(5)

so that the equality

∫ ∞

0
p(t, x)dx =

∫ ∞

0
p0(x)dx = 1
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holds for any t ≥ 0.
In afinite volume setting the coefficients are calculated as averages (that is, integrals)

over appropriate subdomains. Hence, as an intuition we should note that the mass
conservation property of the novel scheme should be the result of a calculation very
similar to (5).

Our main goal is to perform a spatial discretization (with resolution h) to obtain
an infinite dimensional dynamical system describing the temporal evolution of the
functions pi (t)i∈N with the usual properties of a PDF; that is, we should have that:

1. 0 ≤ pi (t) for all i ∈ N and t ≥ 0,
2.

∑∞
i=1 hpi (t) = 1 for all t ≥ 0.

In order to do so, consider the set of intervals

Ki =
[
xi− 1

2
, xi+ 1

2

]
= [(i − 1)h, ih] , i = 1, 2, . . .

for some h > 0 and introduce the set of variables pi (t), where

pi (t) ≈ 1

|Ki |
∫
Ki

p(t, y)dy = 1

h

∫
Ki

p(t, y)dy;

that is, the value pi (t) is assumed to approximate the average in the cell Ki and we
set the initial values accordingly. Further introduce the cell averages of the functions
γ 1
x and c1 given as

γ 1
i = 1

|Ki |
∫
Ki

γ 1
x (y)dy, c1i = 1

|Ki |
∫
Ki

c1(y)dy.

Let xi be the midpoint of Ki for i = 1, 2, . . . and define

b1i,i = 1

h/2

∫
[(i−1)h,(i−1/2)h]

β1(xi − y)dy = 1

h/2

∫
[xi−h/2,xi ]

β1(xi − y)dy,

b1i, j = 1

|K j |
∫
K j

β1(xi − y)dy, j = 1, 2, . . . , i − 1.

As the b1i, j coefficients come from a discretization of an exponential function, the

series is geometric (apart from b1i,i that takes the Dirac delta into account), see Berg
(1978), Bokes et al. (2011), McAdams and Arkin (1997). As the derivative on the
right-hand side of (4) describes protein degradation (that is, a vector field pointing
towards the origin) we will approximate it with a difference quotient of the form

∂

∂x

[
γ 1
x (x)xp(t, x)

] ∣∣∣∣
Ki

≈ 1

h

(
γ 1
i+1xi+ 1

2
pi+1(t) − γ 1

i xi− 1
2
pi (t)

)
.
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Then approximating the integral in (4) with a sum yields the system

ṗi (t) = 1

h

(
γ 1
i+1xi+ 1

2
pi+1(t) − γ 1

i xi− 1
2
pi (t)

)
+ k1m

i∑
j=1

h1i, j b
1
i, j c

1
j p j (t);

pi (0) = 1

|Ki |
∫
Ki

p0(y)dy,

(6)

where

h1i, j =
{
h/2, i = j,

h, i �= j .

Observe, that the resulting infinite dimensional system (6) is clearly a linear donor
controlled compartmental system of the form

ṗ(t) = � p(t),

where the infinite matrix defined element-wise as

�i j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1mh
1
i, j b

1
i, j c

1
j , j < i,

− 1
h γ 1

i xi− 1
2

+ k1mh
1
i,i b

1
i,i c

1
i , j = i,

1
h γ 1

i+1xi+ 1
2
, j = i + 1,

0, j > i + 1

is an infinite Kirchhoff matrix; that is, it is a Metzler matrix with zero column-sums.
While the superdiagonal elements of � can be arbitrarily large, its sign structure
guarantees the well-posedness, in the 	1 space of absolutely summable sequences, of
the underlying continuous-time infinite Markov chain of (6), see Sects. 4 and 6 of
Reuter (1957). This further implies the well-posedness of (6), and thus relying on the
fact that β1 integrates to zero we have that

∞∑
i=1

ṗi (t) =
∞∑
i=1

1

h

(
γ 1
i+1xi+ 1

2
pi+1(t) − γ 1

i xi− 1
2
pi (t)

)
+ k1m

∞∑
i=1

i∑
j=1

h1i, j b
1
i, j c

1
j p j (t)

= lim
l→∞

1

h
γ 1
l+1xl+ 1

2
pl+1(t) − 1

h
γ 1
1 · 0 · p1(t) + k1m

∞∑
j=1

∞∑
i= j

h1i, j b
1
i, j c

1
j p j (t)

= k1m

∞∑
j=1

c1j p j (t)
∞∑
i= j

h1i, j b
1
i, j

= k1m

∞∑
j=1

c1j p j (t)

⎛
⎝∫

[x j−h/2,x j ]
β1(x j − y)dy +

∞∑
i= j+1

∫
K j

β1(xi − y)dy

⎞
⎠
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= k1m

∞∑
j=1

c1j p j (t)

⎛
⎝∫ h/2

0
β1(y)dy +

∞∑
i= j+1

∫
[(i− j−1/2)h,(i− j+1/2)h]

β1(y)dy

⎞
⎠

= k1m

∞∑
j=1

c1j p j (t)
∫ ∞

0
β1(y)dy = 0,

so that the equality

∞∑
i=1

hpi (t) =
∞∑
i=1

hpi (0) = 1

holds for any t ≥ 0. The above facts combined also show that pi (t) ≤ 1
h for any t ≥ 0.

Remark 1 The above calculation shows that the conservativity of the scheme only
requires that the b1i, j coefficients are averages of the β1 function; that is, the γ 1

i and

c1i coefficients could be just point values of the underlying coefficient functions on
the mesh points. Nevertheless, taking the averages might be more precise if those
functions change rapidly.

3.2 Multidimensional Case

Let us consider the multidimensional model (1) with n > 1. Define the positive step
sizes h1, h2, . . . , hn and sets

Kα =
n×

i=1

[(αi − 1)hi , αi hi ] ,

where α ∈ N
n is a multi-index. Let us note that each cell has the same size and define

h = |Kα| = ∏n
i=1 hi . Similarly to the one-dimensional case, for each cell Kα we

introduce the function pα(t) assumed to approximate the cell average as

pα(t) ≈ 1

h

∫
Kα

p(t, y)d y.

For i = 1, 2, . . . , n we also compute the variables

γ i
α = 1

h

∫
Kα

γ i
x ( y)d y,

ciα = 1

h

∫
Kα

ci ( y)d y.

Let xα = [x1α x2α . . . xnα]T be the midpoint (w.r.t. each dimension) of Kα and x
i± 1

2
α =

xiα ± hi
2 ; that is, the variables x

i± 1
2

α correspond to the coordinates of the boundaries of
Kα . For i = 1, 2, . . . , n define

123



A Kinetic Finite Volume Discretization of the… Page 11 of 26 22

biα,αi
= 1

hi/2

∫
[(i−1)hi ,(i−1/2)hi ]

βi (x
i
α − y)dy = 1

hi/2

∫
[xiα−hi /2,xiα]

βi (x
i
α − y)dy,

biα, j = 1

hi

∫
[( j−1)hi , jhi ]

βi (x
i
α − y)dy, j = 1, 2, . . . , αi − 1.

Similarly to the one-dimensional case the derivatives are approximatedwith difference
quotients of the form

∂

∂xi

[
γ i
x (x)xi p(t, x)

] ∣∣∣∣
Kα

≈ 1

hi

(
γ i
α+ei x

i+ 1
2

α pα+ei (t) − γ i
αx

i− 1
2

α pα(t)

)
.

Approximating the integrals in (1) with sums as before, yields the system

ṗα(t) =
n∑

i=1

1

hi

(
γ i
α+ei x

i+ 1
2

α pα+ei (t) − γ i
αx

i− 1
2

α pα(t)

)

+
n∑

i=1

kim

αi∑
j=1

hiα, j b
i
α, j c

i
αi, j

pαi, j (t);

pα(0) = 1

h

∫
Kα

p0( y)d y,

(7)

where αi, j = α + ( j − αi )ei and

hiα, j =
{
hi/2, j = αi ,

hi , j �= αi .

Again, the system is clearly kinetic and the mass conservation follows from a calcu-
lation very similar to the one-dimensional case:

∑
α

ṗα(t) =
∑
α

n∑
i=1

1

hi

(
γ i
α+ei x

i+ 1
2

α pα+ei (t) − γ i
αx

i− 1
2

α pα(t)

)

+
∑
α

n∑
i=1

kim

αi∑
j=1

hiα, j b
i
α, j c

i
αi, j

pαi, j (t)

=
∑
α

n∑
i=1

kim

∞∑
j=αi

hiαi, j , j
biαi, j , j

ciα pα(t) =
n∑

i=1

kim
∑
α

ciα pα(t)
∞∑
j=αi

hiαi, j , j
biαi, j , j

︸ ︷︷ ︸
=0

= 0.

This shows for any t ≥ 0 that

∑
α

hpα(t) =
∑
α

hpα(0) = 1,

further implying that pα(t) ≤ 1
h for each α.
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3.3 Discretization on a Truncated Domain

In practical applications we may assume that there can only be a finite number of
proteins of each kind. This consideration is naturally backed by the fact that the
solution of (1) is integrable so that lim‖x‖Rn→∞ p(t, x) = 0 for any t ≥ 0. Thus,
we discretize over the finite domain � =×n

i=1(0, Li ) for appropriately large Li > 0
values. According to these considerations we also assume that

∫
�
p0(x)dx = 1.

We divide the (0, Li ) intervals into Ni equal subintervals and proceed to calculate
the variables pα(0) and the coefficients γ i

α and cij as before. We similarly compute

biα, j for j = 1, 2, . . . , αi − 1, but modify biα,αi
to capture the fact that the number of

i th kind of protein is maximalized in Li .
Note, that the resulting system can still be given by (7) with the difference that the

set of variables {pα} is finite.While the bursts and degradations inherently define some
“spatial” structure between the pα variables (discussed in detail later), it might bemore
useful to think of the truncated semi-discretized model as a flattened N -dimensional
system of the form

ṗ(t) = �̃(N ) p(t) with N :=
n∏

i=1

Ni . (8)

4 Qualitative Analysis

In this section we show that the result of the truncated kinetic finite volume discretiza-
tion is not only amass conservative nonnegative system but it has several advantageous
qualitative properties.

4.1 Structural Descriptions

While we could rely on the linearity of (8) to investigate its dynamical behaviour, the
large number of variables and the complexity of the coefficient matrix �̃(N ) renders
this approach futile. Instead, let us focus on the inner structure of the system through its
compartmental and CRN representations. These observations will immediately imply
most qualitative properties of interest.

Compartmental representation
Consider the N -dimensional truncated system of the form (7). Based on the burst and
degradation structure the system has a compartmental topology as follows:

• Each compartment Kα has an incoming edge from Kα+ei due to protein degrada-
tion if αi < Ni for i = 1, 2, . . . , n.

• Each compartment Kα has an incoming edge from Kαi, j for i = 1, 2, . . . , n and
j = 1, 2, . . . , αi − 1 due to protein production in bursts.
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Fig. 1 Compartmental topology of a two-dimensional model. Each subsystem is isomorphic to that of a
one-dimensional model

Clearly, the compartmental topology is strongly connected, which property is essential
for our further analysis. Based on this structure (and the flattening method) one can
easily determine the elements of the matrix �̃(N ) ∈ R

N×N of (8).
To gain further insight into the compartmental topology, let us focus on some

low-dimensional (in terms of the PIDE) examples. Figure1 shows the structure of
compartments for a two-dimensional PIDE. Degradations and bursts are denoted with
red and blue arrows, respectively. Let G(N1,N2) denote the graph in Fig. 1; that is, a
compartmental graph of appropriate size corresponding to (8). Notice, that the graph
G(N1,N2) can be decomposed to the interconnected G(N1)

1 ,G(N1)
2 , . . . ,G(N1)

N2
graphs

that are isomorphic to the compartmental graph of a one-dimensionalmodel of size N1.
This shows thatG(N1,N2) is isomorphic to the Cartesian productG(N1)×G(N2). In fact,
the G(N1,N2,...,Nn) compartmental graph of an n-dimensional model (8) is isomorphic
to×n

i=1 G
(Ni ).

CRN representation
For each continuous variable pα we introduce the species Pα and assign the complex
Pα to the compartment Kα . Then the complex composition matrix containing the
stoichiometric coefficients of the complexes as its columns is the identity matrix I ∈
R

N×N , and the reaction structure is identical to the above compartmental topology;
that is, the reaction graph is identical (isomorphic) to the compartmental graph and,
in particular, is strongly connected. This readily shows that the deficiency of the
reaction graph, as defined in CRN theory (Feinberg 2019), is zero as there are N
distinct complexes, one linkage class and a spanning tree in the reaction graph of size
N − 1. Since the system is linear, the reaction vectors corresponding to the edges of
the spanning tree span the stoichiometric subspace. Hence the deficiency is indeed
δ = N − 1 − (N − 1) = 0.
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4.2 Long Time Behaviour

Asymptotic stability
By standard results on compartmental systems, since the truncated system (8) is
strongly connected, there is a unique positive equilibrium (that is, a stationary PDF)
p ∈ R

N+ that attracts every admissible initial value (Maeda et al. 1978, Theorem 6).

Remark 2 As a conclusion of the above assertions a mass-action CRN can be assigned
to the truncated conservative system (8) whose reaction graph is strongly connected
and has deficiency zero. thus, the same assertion follows from CRN theory and, in
particular, from the deficiency zero theorem (Feinberg 2019; Anderson 2011).

Furthermore, we also know that the system is Lyapunov stable with the standard
entropy-like logarithmic Lyapunov function

V (p, p) =
∑
α

(
pα log

pα

pα

+ pα − pα

)
.

Finally, a well-known result (Maeda and Kodama 1979) shows that for two solutions
p(t) and q(t) of (8), the following inequality holds:

‖p(t1) − q(t1)‖L1 ≤ ‖p(t2) − q(t2)‖L1 t1 ≥ t2 ≥ 0.

In particular, if we set q = p this shows that the convergence to the unique equilibrium
is monotone in the L1 norm.

4.3 Computing the Equilibrium

We can easily approximate p by simulating the system on an appropriately large time
interval. However, such a simulation can be computationally expensive and it is not
trivial to determine the necessary time interval. Furthermore, in many applications we
may not be interested in the time evolution of the system, only in the equilibrium p.
Instead, relying on the linear nature of the system (8) we may explicitly compute the
equilibrium with the following approach.

We can incorporate the conservation into the equilibrium condition as

�̂(N ) p =

⎡
⎢⎢⎢⎢⎢⎣

1
0
0
...

0

⎤
⎥⎥⎥⎥⎥⎦

=: e1 (9)

where �̂(N ) is obtained from �̃(N ) by replacing the first row with h1TN ∈ R
N . Since

�̃(N ) has a one-dimensional left kernel (by virtue of the rank-nullity theorem and the
fact that zero is a simple eigenvalue, see Foster and Jacquez 1975) spanned by 1N , any
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N − 1 rows are independent. To see this, assume by contradiction that not any N − 1
rows are independent. Then there exists a nonzero vector in the left kernel of �̃(N ) that
has a zero coordinate, but then the left kernel cannot be spanned by 1N . Clearly 1N is
not in the left kernel of �̂(N ) and Im�̃(N )

� Im�̂(n), and thus rank �̂(N ) = N , hence
we can find the equilibrium p by simply solving the linear system of equations (9).

5 Numerical Experiments

In this section we present some examples from the literature and discuss the memory
requirement of the kinetic FVM.

5.1 Examples

In this section we compare the performance of our method to that of SELANSI (Pájaro
et al. 2017). For more information about the examples the reader is referred to Pájaro
et al. (2017). The numerical simulations have been performed on a computer with
Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz and 16 GB of RAM in MATLAB
R2022b. The solution (9) is solved with built-in iterative solvers. The final time and
time step of the SELANSI simulations are noted for each example.

Example 1: Single Gene Self-Regulation with Positive Feedback

The first example is a GRN consisting of a single gene. The regulation is described
by the Hill function

c1(x1) = K H11
1 + ε1x

H11
1

K H11
1 + xH11

1

.

We consider a negative Hill coefficient, corresponding to a positive self-regulation.
In this case, as described in Pájaro et al. (2015) (see also Friedman et al. 2006) the
stationary solution of (4) can be explicitly calculated as follows:

p(x) = Cρ
k1m (1−ε1)

H11 (x)x−(1−k1mε1)e
− x

b1 ,

where ρ(x) = xH11

K
H11
1 +x

H11
1

and C > 0 is a constant ensuring that p(x) integrates to

one. As discussed before, the solution has a singularity at x = 0, since it has a factor of
x−(1−k1mε1). Clearly the exponent is larger than −1, hence the average of the solution
over the first mesh cell will be finite.

Figure2 shows the simulation results for various L1 values. Observe that if the
domain size is set ideally (Fig. 2a), then both approaches provide a good approximation
of the symbolic solution. However, SELANSI cannot handle caseswhere the domain is
too small or too large and skews the solution, see the highlighted section of Fig. 2c. This
is assumed to be because (i) SELANSI imposes zero Dirichlet boundary conditions,
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(ii) the semilagrangian method is not conservative, thus SELANSI has to manually
renormalize in each iteration. Compared to this, our kinetic FVM is nonnegative and
conservative and, as noted in Sect. 4, the equilibrium is strictly positive. Thus it can
capture the qualitative behaviour of the PIDEeven if the domain is not knownprecisely,
which might be the case for previously untested gene regulatory network structures
or parameter sets, see Fig. 2b. Table 1 shows the relative error (in the L2 norm) of the
different methods compared to the symbolic solution, computed as follows:

E(p, pre f ) = ‖p − pre f ‖L2

‖pre f ‖L2
=

√∑N
i=1

(
p(xi ) − pre f (xi )

)2
√∑N

i=1 p
2
re f (xi )

.

The computational times of both methods are depicted in Table 2, from where we can
observe that the FVM has also better computational efficiency compared to that of
SELANSI.

Example 2: Mutual Activation of Two Genes

In this example we consider Hill functions in the form of

c1(x) = K H12
12 + ε1x

H12
2

K H12
12 + xH12

2

,

c2(x) = K H21
21 + ε2x

H21
1

K H21
21 + xH21

1

,

where H12 < 0 and H21 < 0, corresponding to positive cross-regulation or activation.
Figure3a, b respectively show the stationary joint PDF, while Fig. 3c, d respectively
show the stationary marginal PDF on various domains, for FVM and SELANSI. Note,
that the GRN is symmetric w.r.t. the proteins, thus we only plot one set of marginal
PDFs. We can observe the sensitivity of SELANSI to the domain, while the finite
volume discretization is quite robust to it. In this example we can see that the solution
computed by SELANSI deteriorates not just for too small, but even for too large
domains. Since for multidimensional GRNs the symbolic solution of (1) cannot be
computed in a straightforward manner, we cannot compute the empirical error as in
the case of the one-dimensional example. Instead, we only compare the running times
of the two methods, the results of which are collected in Table 3.

Example 3: Mutual Repression of Two Genes

In this example we consider Hill functions in the form of

c1(x) = K H12
12 + ε1x

H12
2

K H12
12 + xH12

2

, c2(x) = K H21
21 + ε2x

H21
1

K H21
21 + xH21

1

,
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Fig. 2 Self-regulated single gene network with parameters H11 = −4, K1 = 45, ε1 = 0.15, k1m =
3.2×10−3, b1 = 16 and γ 1

x (x) = 4×10−4. The simulations are performedwith N1 = 2000, τ = tγ 1
x = 50

and �t = 0.002 (color figure online)

Table 1 Relative error of the simulation of a one-dimensional GRN on various domains

Mesh FVM (×10−3) SELANSI (×10−3)
L1 = 300 L1 = 350 L1 = 400 L1 = 300 L1 = 350 L1 = 400

2.5 × 104 × 800 7.4358 8.6799 9.9106 29.6010 5.4881 9.2314

2.5 × 104 × 1200 4.9886 5.8169 6.6366 28.6252 4.3113 8.3388

2.5 × 104 × 1600 3.7665 4.3870 5.0013 29.5308 3.4255 8.0746

2.5 × 104 × 2000 3.0335 3.5298 4.0209 29.9408 2.8899 7.2511

2.5 × 104 × 5000 1.4271 1.4761 1.6675 31.0859 2.5960 6.0042
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Table 2 Average runtime of 100
simulations of a
one-dimensional GRN with
various mesh sizes

Mesh FVM SELANSI

2.5 × 104 × 800 0.0335 s 1.8208 s

2.5 × 104 × 1200 0.0899 s 2.1993 s

2.5 × 104 × 1600 0.1460 s 2.5510 s

2.5 × 104 × 2000 0.3561 s 2.8866 s

2.5 × 104 × 5000 3.8066 s 7.9131 s

Fig. 3 Mutual activation with parameters H12 = H21 = −4, K12 = K21 = 70, ε1 = ε2 = 0.2,
k1m = k2m = 3.4 × 10−3, b1 = b2 = 18, γ 1

x (x) = γ 2
x (x) = 4 × 10−4, N1 = N2 = 400, τ = tγ 1

x =50 and
�t = 0.005 (color figure online)

where H12 > 0 and H21 > 0, corresponding to negative cross-regulation or repression.
Figure4 shows the stationary joint PDF and the marginal stationary PDF on multiple
domains. Again, the GRN is symmetric w.r.t. the proteins and the same dependence
on the domain can be observed in the case of SELANSI. The running time of both
methods with various mesh sizes are presented in Table 3.
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Table 3 Average runtime of 100 simulations of several two-dimensional GRNs with various mesh sizes

GRN FVM SELANSI
1002 2002 3002 4002 1002 2002 3002 4002

Ex. 2 0.2223 s 1.6485 s 5.2159 s 11.5707 s 9.0423 s 21.5449 s 40.6726 s 71.1792 s

Ex. 3 0.2128 s 1.3679 s 4.5709 s 10.3817 s 9.0443 s 21.3982 s 40.7456 s 72.3397 s

Ex. 4 0.3241 s 1.8639 s 5.7925 s 12.3953 s 9.1355 s 22.0259 s 41.9351 s 73.4001 s

Ex. 5 0.7064 s 4.9921 s 17.0973 s 45.0809 s − − − −

Example 4: Self and Mutual Regulation

In this example we consider two genes, one of which is activated by both, the other is
repressed by both. The corresponding Hill functions can be given as follows:

c1(x) = ε11x
H11
1 xH12

2 + ε12K
H11
11 xH12

2 + ε13x
H11
1 K H12

12 + K H11
11 K H12

12

xH11
1 xH12

2 + K H11
11 xH12

2 + xH11
1 K H12

12 + K H11
11 K H12

12

,

c2(x) = ε21x
H21
1 xH22

2 + ε23K
H21
21 xH22

2 + ε12x
H21
2 K H22

22 + K H21
21 K H22

22

xH21
1 xH22

2 + K H21
21 xH22

2 + xH21
2 K H22

22 + K H21
21 K H22

22

,

where H11 < 0, H21 < 0, H12 > 0 and H22 > 0. We note that the above functions
are generalized Hill functions, and thus have to be defined in a separate file for the
SELANSI simulation. Figure5 shows the stationary joint PDF and the marginal sta-
tionary PDF on multiple domains. This example is not symmetric w.r.t. the different
kind of proteins, thus we plot both marginal density functions. The running time of
both methods with various mesh sizes are presented in Table 3.

Example 5: Bacterial Competence

InBacillus subtilis, competence is a probabilistic and transiently differentiated state. In
this physiological state bacteria has the capability of DNA uptake from their environ-
ment. The phenomena is modelled with a two-dimensional gene regulatory network,
consisting of the master regulator self-activated ComK which represses the transcrip-
tion factor ComS (Süel et al. 2007). Protein degradation is mediated by the MecA
complex. After ComK (ComS) binds to the complex an intermediate complex MecA-
ComK (MecA-ComS) complex is formed, in which the ComK (ComS) protein is
degraded by the ClpP-ClpC proteases (Süel et al. 2006). Instead of explicitly mod-
elling the effects of the MecA complex, the authors consider a variable degradation
rate. Using this reduced order stochastic differential equation developed in Süel et al.
(2006) a discrete stochastic CME model is presented in Dandach and Khammash
(2010), simulated using a Monte-Carlo based Stochastic Simulation Algorithm. A
corresponding PIDE is presented in Pájaro et al. (2017) with parameters adapted
from the CME model of Dandach and Khammash (2010) as follows: αk = 0.0028,
βk = 0.049, βs = 0.057, Kk = 100, Ks = 110, δk = δs = 0.0014, �k = 500,
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Fig. 4 Mutual repression with parameters H12 = H21 = 4, K12 = K21 = 45, ε1 = ε2 = 0.15,
k1m = k2m = 3.2 × 10−3, b1 = b2 = 16, γ 1

x (x) = γ 2
x (x) = 4 × 10−4, N1 = N2 = 400, τ = tγ 1

x = 50
and �t = 0.005 (color figure online)

�s = 50, b1 = 2, b2 = 5, k1m = αk+βk
b1

, k2m = βs
b2
, ε1 = αk

αk+βk
, ε2 = 0, H11 = −2,

H21 = 5. The coefficient functions are set as:

c1(x) = K H11
k + ε1x

H11
1

K H11
k + xH11

1

, γ 1
x (x) = δk�k�s

�k�s + �s x1 + �k x2
,

c2(x) = K H21
s + ε2x

H21
1

K H21
s + xH21

1

, γ 2
x (x) = δs�k�s

�k�s + �s x1 + �k x2
.

We note that the currently publicly available SELANSI version cannot handle variable
degradation rates, thuswe could not reproduce the plots of Pájaro et al. (2017). Figure6
shows the stationary PDFs and its contour plot, both of which are in accordance with
the plots of Pájaro et al. (2017). The running times of the kinetic FVM for various
mesh sizes are shown in Table 3.
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Fig. 5 Mutual repression with parameters H11 = −4, H21 = −6, H12 = H22 = 2, K11 = K12 = 45,
K21 = K22 = 70, ε11 = ε21 = 0.002, ε12 = 0.02, ε22 = 0.1, ε13 = ε23 = 0.2, k1m = 4 × 10−3,
k2m = 8 × 10−3, b1 = 10, b2 = 20, γ 1

x (x) = γ 2
x (x) = 4 × 10−4, N1 = N2 = 400, τ = tγ 1

x = 50 (color
figure online)
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Fig. 6 Kinetic FVM of Example 5 with N1 = N2 = 400 (color figure online)

5.2 Memory Requirement of the Kinetic FVM

A notable technical challenge in our method is the efficient assembly and storage of
the coefficient matrix �(N ). For n ≥ 2 one should store �(N ) in a sparse represen-
tation, but even then the memory requirement can grow quickly. However, we can
explicitly calculate the number of nonzero elements of the matrix to aid the design
of the simulation. To be precise, the number of nonzero elements of the coefficient
matrix corresponding to an n-dimensional PIDE discretized on a grid of size

∏n
i=1 Ni

is as follows:

n∑
i=1

⎛
⎝ Ni∑

k=1

(Ni − k)

⎞
⎠ n∏

j=1
j �=i

N j

︸ ︷︷ ︸
bursting of protein Xi

+
n∑

i=1

(Ni − 1)
n∏
j=1
j �=i

N j

︸ ︷︷ ︸
degradation of Xi

+
n∏

i=1

Ni

︸ ︷︷ ︸
diagonal

=
n∑

i=1

1

2

(
N 2
i − Ni

) n∏
j=1
j �=i

N j + n
n∏

i=1

Ni −
n∑

i=1

n∏
j=1
j �=i

N j +
n∏

i=1

Ni

= −1

2
n

n∏
i=1

Ni + 1

2

(
n∑

i=1

Ni

)(
n∏

i=1

Ni

)
+ (n + 1)

n∏
i=1

Ni −
(

n∑
i=1

1

Ni

)(
n∏

i=1

Ni

)

= 1

2

(
n + 2 +

n∑
i=1

Ni −
n∑

i=1

2

Ni

)(
n∏

i=1

Ni

)
.

Figure7 shows the number of nonzero elements on an equidistant grid for a matrix
corresponding to a mesh of size N = 1010 (that is, the matrix has 1020 total elements)
as a function of n. The logarithmic scaling suggests that as the dimension of the PIDE
is increased, we can increase the number of finite volume cells on the grid evenwithout
exceeding the memory limits.
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Fig. 7 Memory requirement of an n-dimensional GRN with N = 1010 total number of cells

6 Conclusions

A novel discretization scheme was proposed in this paper for the simulation and
analysis of multidimensional PIDE models used in the stochastic dynamical descrip-
tion of gene regulatory networks. It was shown that using an appropriate finite volume
scheme, a fully conservative linear compartmental dynamics is obtained in ODE form.
This representation can be particularly useful for studying the dynamics of the process
from a systems biology perspective, since the interpretation of the system of ODEs of
a process is usually more intuitive than the original PIDE. In particular, the proposed
compartmental description can serve as a basis for designing experiments and solving
various analysis and control problems of stochastic gene regulatory networks, since
the theoretical properties of the model class are well-known regardless of the dimen-
sion of the state variable (van Kampen 2007). The interconnection structure of the
discretized system was studied in detail, and it was shown that the associated directed
graph is always strongly connected. Therefore, the theory of kinetic and compartmen-
tal systems can be used to conclude that the equilibrium of the discretized dynamics
representing the stationary distribution of molecules is unique and globally stable
for any biologically meaningful parameter values in the PIDE model. Moreover, the
stationary distribution can be obtained by solving a set of linear equations without per-
forming the time-domain simulation. The memory requirement of the method can be
precisely pre-computed based on which the applicable resolution can be determined.
Five illustrative exampleswere presented to show the operation and performance of the
method. Whenever possible, the obtained solutions and running times were compared
with those given by the SELANSI toolbox, and these comparisons clearly justified
the advantageous properties of the proposed approach both in terms of precision and
performance. Further work will be focused on feedback control design based on the
semidiscretized models.
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stability. In: Češka M, Paoletti N (eds) Hybrid systems biology. Springer, Cham, pp 80–97
Bokes P, King JR, Wood ATA, Loose M (2011) Multiscale stochastic modelling of gene expression. J Math

Biol 65:493–520
Bokes P, King JR,Wood ATA, LooseM (2013) Transcriptional bursting diversifies the behaviour of a toggle

switch: hybrid simulation of stochastic gene expression. Bull Math Biol 75:351–371
Bortner C, Meshkat N (2022) Identifiable paths and cycles in linear compartmental models. Bull Math Biol

84:53
Brown RF (1980) Compartmental system analysis: state of the art. IEEE Trans Biomed Eng BME–27:1–11
Cañizo JA,Carrillo JA, PájaroM (2019) Exponential equilibration of genetic circuits using entropymethods.

J Math Biol 78:373–411
Chellaboina V, Bhat SP, Haddad WM, Bernstein DS (2009) Modeling and analysis of mass-action kinetics.

IEEE Control Syst 29:60–78
Cobelli C, Romanin-Jacur G (1976) Controllability, observability and structural identifiability ofmulti input

and multi output biological compartmental systems. IEEE Trans Biomed Eng BME–23:93–100
Dandach SH, Khammash M (2010) Analysis of stochastic strategies in bacterial competence: a master

equation approach. PLoS Comput Biol 6:e1000985

123

https://github.com/mihalyvaghy/PIDE.git
http://creativecommons.org/licenses/by/4.0/


A Kinetic Finite Volume Discretization of the… Page 25 of 26 22

Dar RD et al (2012) Transcriptional burst frequency and burst size are equally modulated across the human
genome. Proc Natl Acad Sci 109:17454–17459

Dar RD, RazookyBS,Weinberger LS, CoxCD, SimpsonML (2015) The low noise limit in gene expression.
PLoS ONE 10:e0140969

De Jong H (2002) Modeling and simulation of genetic regulatory systems: a literature review. J Comput
Biol 9:67–103

Elgart V, Jia T, Fenley AT, Kulkarni R (2011) Connecting protein and mRNA Burst distributions for
stochastic models of gene expression. Phys Biol 8:046001

Érdi P, Tóth J (1989) Mathematical models of chemical reactions: theory and applications of deterministic
and stochastic models. Manchester University Press, Manchester

Eymard R, Gallouët T, Herbin R (2000) Finite methods. Elsevier
Feinberg M (2019) Foundations of Chemical Reaction Network Theory. Springer, Cham
Fernández C, Faquir H, PájaroM, Otero-Muras I (2022) Feedback control of stochastic gene switches using

PIDE models. IFAC-PapersOnLine 55:62–67
Foster DM, Jacquez JA (1975) Multiple zeros for eigenvalues and the multiplicity of traps of a linear

compartmental system. Math Biosci 26:89–97
Friedman N, Cai L, Xie XS (2006) Linking stochastic dynamics to population distribution: an analytical

framework of gene expression. Phys Rev Lett 97:168302
Godfrey K (1983) Compartmental models and their application. Academic Press, London
Haddad WM, Chellaboina V, Hui Q (2010) Nonnegative and compartmental dynamical systems. Princeton

University Press, Princeton
Jacquez JA, Simon CP (1993) Qualitative theory of compartmental systems. SIAM Rev 35:43–79
Kaern M, Elston TC, Blake WJ, Collins JJ (2005) Stochasticity in gene expression: from theories to phe-

notypes. Nat Rev Genet 6:451–464
Karlebach G, Shamir R (2008) Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol

9:770–780
LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cam-

bridge
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