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Abstract
Wepropose amethod for solving the hidden subgroup problem in nilpotent groups. The
main idea is iteratively transforming the hidden subgroup to its images in the quotient
groups by the members of a central series, eventually to its image in the commutative
quotient of the original group, and then using an abelian hidden subgroup algorithm to
determine this image. Knowing this image allows one to descend to a proper subgroup
unless the hidden subgroup is the full group. The transformation relies on finding zero
sum subsequences of sufficiently large sequences of vectors over finite prime fields.
We present a new deterministic polynomial time algorithm for the latter problem in
the case when the size of the field is constant. The consequence is a polynomial time
exact quantum algorithm for the hidden subgroup problem in nilpotent groups having
constant nilpotency class and whose order only have prime factors also bounded by a
constant.

Keywords Hidden subgroup problem · Nilpotent group · Zero sum subsequence ·
Exact quantum algorithm

1 Introduction

The standard version of the hidden subgroup problem (HSP for short) is the following.
Given a function f on the groupG → {0, 1}r with the property that there is a subgroup
H such that f (x) = f (y) if and only if x and y are in the same left coset of H , find
the subgroup H . Perhaps Kitaev was the first who observed that Shor’s factoring and
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discrete logarithm algorithms can be generalized to solve the HSP in finite abelian
groups (and also in certain infinite commutative groups) in polynomial time. Much
less is known about the complexity of the problem in non-commutative groups. The
most general result is due to Ettinger, Hoyer and Knill. They showed in [1] that the
query complexity of the problem in finite not necessarily abelian groups is polynomial.
Regarding the time complexity, Kuperberg’s subexponential time quantum algorithm
[2] for the HSP in dihedral and very similar groups is perhaps the best known result.
It has a remarkable extension by Alagic et al. [3] to a special HSP in a class including
non-solvable groups. There are some classes of groups in which the HSP can be solved
in polynomial time. See the survey papers by Lomont [4] and by Wang [5] for early
results of this kind. The paper [6] by Lomonaco and Kauffman proposes interesting
derivatives and generalizations of the Shor-Kitaev algorithm. The paper [7] by Horan
and Kahrobaei discusses cryptographic aspects of the HSP and reports also on more
recent results. The hidden shift problem in abelian groups (and hence the HSP in
the related semidirect product groups) appears to be quite popular in post-quantum
cryptography, see, e.g., [8] by Castryck and Vander Meeren and [9] by Alagic and
Russell. In [10], Bae and Lee propose a polynomial time solution to a continuous
version of the hidden shift problem.

Aquantumprocedure is exact if it returns a correct output (after afinalmeasurement)
with probability one. Besides that exact quantum algorithms can be considered as
counterparts of deterministic classical methods, their measurement-free versions can
serve as ingredients of larger unitary procedures.A further possible practical advantage
is that, as they do not introduce further errors, using them can help control the error
of a procedure working an input with errors and also containing other, non-exact
ingredients.

The method of [1] has an exact version, so it is natural to ask that in which classes
of groups can the HSP be solved by an exact quantum algorithm in polynomial time.
Brassard and Hoyer [11] presented a polynomial time exact method that works in Zn

2.
In [12], Cai and Qiu proposed a simpler efficient exact method for Simon’s problem
(a special, though arguably the hardest instance of the HSP in Z

n
2). Efficient exact

algorithms with optimal query complexity for the HSP in Zn
2 appeared independently

in [13] by Bonnetain and in [14] by Wu et al. Mosca and Zalka in [15] proposed an
efficient exact solution of the discrete logarithm problem in cyclic groups of known
order. An exact quantum algorithm for the HSP in Z

n
mk for general m was presented

recently in [16], settling the case of abelian groups under the assumption that amultiple
of the prime factors of the order of the group is known.

In this paper we present an approach to solving the hidden subgroup problem in
nilpotent groups that have nilpotency class O(1). Our main result is a polynomial time
exact quantum algorithm for the HSP in such groups only having prime factors also
of size O(1) in their order. An example for such groups is the group of the 4n by 4n
block unitriangular matrices over the integers modulo 10d with block size n. These are
the 4n by 4n matrices divided into 16 rectangular blocks of size n with integer entries,
considered modulo 10d , whose 4 diagonal blocks are equal to the n by n identity
matrix, whereas the 6 blocks below the diagonal have zero entries. These matrices can
be represented by 6dn2 decimal digits describing the entries of the blocks above the
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diagonal. The order of the group is 106dn
2
, and it is nilpotent of class 3. To obtain

sufficiently general results, we assume that the group G is given as a black-box group
with unique encoding. The main strategy of our algorithm is essentially a reduction to
instances of the hidden subgroup problem in quotient groups of subgroups of G. We
choose an input model suitable for such a reduction.

In the standard version, the input is given by an oracle which is a unitary map
computing |x〉| f (x)〉 from |x〉|0〉. Many important applications belong to the case
when the group G acts as a permutation group on a (large) set�, and we are interested
in computing the stabilizer of an element ω ∈ �. In that case, the stabilizer is the
subgroup hidden by the function f : G → �, where x �→ xω the action of x on ω.
In fact, Kitaev used this framework to generalize Shor’s algorithms.

The usual hidden subgroup algorithms start with computing the superposition
1√|G|

∑
x∈G |x〉| f (x)〉 using the oracle, andmost of them ignore the second register that

holds the value of f and work with the coset superpositions |xH〉 = 1√|H |
∑

y∈H |xy〉
in the sequel, see e.g., [6]. These methods, as noted in [2], remain applicable in the
context where the oracle is assumed to generate copies of a mixture of the coset super-
positions. This holds in particular in the case of the exact abelian hidden subgroup
algorithm of [16].

Specifically, we consider the state 1√|G|
∑

x∈G |x〉| f (x)〉 as a purification of the

mixed state �G,H = 1
|G:H |

∑
x∈X |xH〉〈xH |, where X is any left transversal of H

in G, in order to have a unitary oracle. The state �G,H is referred to as a (hidden)
subgroup state. We assume that our hidden subgroup H is given by a unitary map
(referred as oracle) that, on zero input, returns a copy of an arbitrary (though fixed)
purification of the subgroup state �G,H .

It will be convenient to introduce a subtask of the HSP, namely computing the
hidden subgroup modulo the commutator subgroup of G, that is, the subgroup HG ′
where H is the hidden subgroup. We use the shorthand HSMC for this problem. To
illustrate the power of HSMC in nilpotent groups note that it naturally includes the
commutative case of the HSP and that having computed the subgroup HG ′ and it is a
proper subgroup of G; then, we can descend to it to compute H , while if HG ′ = G
then H = G because in a nilpotent group every maximal subgroup contains the
commutator.

We give a high-level description of a strategy for solving the problem HSMC in a
class of nilpotent groups. We call a group G semi-elementary if G is a p-group for
some prime p such that G/G ′ is elementary abelian. The Heisenberg group modulo
p, that is, the group of 3× 3 upper triangular matrices having entries integers modulo
p and 1s in the diagonal, is a semi-elementary p-group, as well as the groups of the
unitriangular matrices of higher dimension groups modulo p, while the Heisenberg
group modulo p2 is a p-group which is not semi-elementary. In a semi-elementary
group G, our strategy for computing the hidden subgroup modulo the commutator is
based on iterating the following procedure. Assume that L is an elementary abelian
subgroup contained in the center of G. Then we create a copy of the subgroup state
corresponding to HL/L in the quotient group G/L from sufficiently many copies of
the subgroup state for H in G. We refer to this procedure (as well as some simpler
ones) as subgroup state conversion. This conversion is based on finding zero sum
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subsequences of sufficiently long sequences of elements of L . Eventually, in c − 1
rounds of iteration, where c is the nilpotency class of G, we compute a copy of
the subgroup state corresponding to HG ′/G ′ in G. (The semi-elementary property
ensures the existence of a standard central series of length c with elementary abelian
factors.) Finally, from sufficiently many copies of such subgroup states we compute
HG ′/G ′ using the exact abelian hidden subgroup algorithm of [16]. Fortunately, semi-
elementary groups occur as factor groups of subgroups of nilpotent groups frequently
enough to make a reduction from the HSP to the special case of HSMC possible, see
Proposition 1 for details. The main result we obtain is the following.

Theorem 1 Suppose that G is a nilpotent group of class bounded by a constant and
that the prime factors of |G| are also bounded by a constant. We assume that G is a
black-box group with unique encoding of elements by �-bit strings. Then there is an
exact quantum algorithm that solves the hidden subgroup problem in G using poly(�)
operations and poly(log|G|) calls to the subgroup state creating oracle and its inverse.
Related results In the exact setting, [16] efficiently solves the abelian case without
the restriction on the prime factors of |G|. There are quite a few related non-exact
polynomial-time algorithms. Among them, the result of [17], which solves the HSP
in solvable groups that have derived series and exponent bounded by constants, is
perhaps the closest to Theorem 1. This class of groups covers the groups for which our
result is applicable, except those that have exponent divisible by large powers of small
primes. Note however, that the case of these groups could be efficiently treated by a
combination of the reduction of Proposition 1 with the algorithm of [17]. We remark
that the semidirect product group in which the HSP is equivalent to the hidden shift
problem over Zn

2k
is a nilpotent group of class k. Bonnetain and Naya-Plasencia [18]

propose a non-exactmethodwhosemain ingredient can be considered as a combination
of Kuperberg’s sieve with finding zero sum subsequences in Zn

2 using linear algebra.
The case of nilpotency class at most two is efficiently treated by the non-exact

method of [19], without any restriction on the size of the prime factors of |G|. It
is worth mentioning that by technical content, [19] can be considered as the closest
relative of the present paper. The idea of reducing the HSP to HSMC stems from there,
and many ingredients of the reduction appeared in that paper. Also, the key tool of
[19], using several coset superpositions and the quantum Fourier transform of a central
subgroup can be considered as some (though less transparent) form of subgroup state
conversion. In the class two case, however, there is a more powerful tool to cancel out
characters of the subgroup: One can also apply twists with certain nice automorphisms
of the group that do not change the hidden subgroup too much. Unfortunately, such
automorphisms do not exist in general nilpotent groups of class greater than two.

The methods of [20, 21] offer efficient solution to the HSP in certain nilpotent
groups of higher class, again with potentially large prime factors in their orders. These
groups have a normal subgroup with an abelian factor group of restricted kind (e.g.,
cyclic). These methods as well as that of [17] are of highly non-exact nature. Probably,
the technique of [20] can be made exact with some efforts.

The Davenport constant S(A) of a finite abelian group A is the smallest number s
such that any sequence of s elements of A contains a non-empty subsequence adding
up to the zero element of A. The name comes from that H. Davenport proposed
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determining S(A) in the case when A is the ideal class group of a number field
as a measure for non-uniqueness of factorization of the integers of the field. The
general problem has become a famous question of additive combinatorics. Olson
[22] determined the exact value of the Davenport constant of p-groups; in particular
for Zn

p it is 1 + n(p − 1). What we are looking for is an “effective” Davenport

constant: What is the smallest number S′ = SB(A) such that from any sequence
of S′ elements of A, algorithm B finds a non-empty zero sum subsequence in time
polynomial in S′ log|A| (roughly this is the bit size of the input sequence). In this
paper we give a deterministic algorithm B running in time poly(n), that, for p =
O(1), given a sequence of SB(Zn

p) = poly(n) vectors from Z
n
p, returns a zero sum

subsequence. Note that when we consider Zp as a field and Z
n
p as an n-dimensional

vector space then finding a zero sum subsequence is equivalent to represent zero
as a non-trivial linear combination of the given vectors with coefficients 0 and 1
only. Alternatively, it is equivalent to finding a non-trivial solution of a system of
n homogeneous linear congruences modulo p in SB(Zn

p) variables. Actually, our
algorithm is based on elementary linear algebra: We find many linear dependencies
in subsets of the given vectors and combine these relations in an iteration so that the
large coefficients eventually cancel out.

The structure of the rest of the paper is the following. In Sect. 2, we give some
background material on exact quantum procedures, on nilpotent black-box groups and
on computations with them, on (hidden) subgroups states and their purifications and
present methods to convert subgroup states in the entire group to those in subgroups
and—in certain very easy cases—in factor groups. In Proposition 1, the existence of
an exact polynomial time reduction from the HSP in general nilpotent groups to the
problem HSMC in semi-elementary groups is proved in Sect. 3. Section4 is devoted
to converting several copies of a subgroup state in a semi-elementary group to a
copy of a subgroup state in the abelian factor of the group. As an application of the
technique, we prove Proposition 2 which tells us that we can solve by a polynomial
time exact quantum algorithm the problem HSMC in a semi-elementary p-group
of constant nilpotency class provided that we can find zero sum subsequences of
sequences consisting of poly(n log p) vectors fromZ

n
p in time poly(n log p). In Sect. 5,

we prove Theorem 2 on efficiently solvability the latter task in the case when p is
bounded by a constant. Propositions 1 and 2, together with Theorem 2, immediately
imply Theorem 1. Section6 is devoted to concluding remarks.

2 Preliminaries

2.1 On exact quantum computations

To obtain sufficiently general intermediate results, we use the model of uniform circuit
families described by Nishimura and Ozawa [23]. This is because some of the exact
methods of [16] as well as our main conversion technique work under the assump-
tion that the quantum Fourier transforms and their inverses modulo the prime factors
of |G| can be exactly implemented. As it is pointed out in [24], this task cannot be
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accomplished using a fixed finite gate set. For the sake of transparency, we state our
intermediate result using assumptions on availability of the quantum Fourier trans-
forms rather than on gates required by the exact implementations of them. (See the
implementation of the Fourier transformmodulo general numbers proposed byMosca
and Zalka [15].) Note however that for the case of our Theorem 1, where these primes
are assumed to be bounded by a constant, a constant number of gates are sufficient
and hence, by [25], the theorem remains valid in the quantum Turing machine model
of Bernstein and Vazirani [26].

2.2 Groups

For standard notations and concepts from group theory such as subgroups, normal
subgroups, cosets, conjugates, commutators, commutator subgroup, center, etc., we
refer the reader to the textbooks, e.g., to [27]. For subsets U and V of G we denote
by UV the set {uv : u ∈ U , v ∈ V }. If both U and V are subgroups and either U or
V is normal in G then UV is a subgroup. For subgroups U , V , by [U , V ] we denote
the subgroup generated by the commutators [u, v] (u ∈ U , v ∈ V ). Recall that the
lower central series of a finite group G is the sequence G = G0 > G1 > . . . > Gc of
normal subgroups Gi � G recursively defined as Gi = [G,Gi−1]. Here we assume
that c is the smallest index i such that Gi = [G,Gi ]. The group G is nilpotent if
Gc = {1} and then c is called the (nilpotency) class of G. A finite group is nilpotent
if and only if it is the direct product of its Sylow subgroups.

To obtain sufficiently general results, we work over black-box groups with unique
encoding of elements. The concept captures various “real” groups such as permu-
tation groups and matrix groups over finite fields. Elements of a black-box group
are represented by binary strings of a certain length � and the group operations are
given by oracles and as input, a generating set for the group is given. Subgroups will
also be given by sets of generators. One can use the exact polynomial time quantum
membership test of [16] to reduce the size of generating sets to at most log|G|.

During the rest of this part, we assume that G is a nilpotent black-box group of
class c and the prime factors of |G| are known.

For a normal subgroup N of G, the subgroup [G, N ] is a normal subgroup of G
contained in N . If� and� are sets of generators forG and N , respectively, a generating
set for [G, N ] can be obtained by taking the commutators [x, y] for x ∈ �, y ∈ � and
then adding iterated commutators with elements of � until the subgroup generated
by the elements stabilizes. For testing stabilization, one can use the exact quantum
subgroup membership algorithm of [16]. This gives a polynomial time exact method
in particular to compute the lower central series.

Below we describe efficient solutions to some further group theoretic tasks that we
use in our hidden subgroup algorithm. The p-Sylow subgroup of G can be computed
as follows. Let � be a generating set for G. Then for each g ∈ � we compute the order
og of g and decompose og as the product pαog ′ where og ′ is coprime with p. Then
the gog

′
(g ∈ �) generate the (unique) p-Sylow subgroup of G. We shall compute

hidden subgroups in G by computing the intersections with the Sylow subgroups.
As an example, let us consider the Heisenberg group modulo 12. It consists of the
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matrices of the form

⎛

⎝
1 a b
1 c
1

⎞

⎠, where a, b, c are integers taken modulo 12. (Here and

throughout the paper entries of a matrix left empty stand for entries having value zero.)
The 2-Sylow subgroup consists of thematriceswhose off-diagonal entries are divisible
by 3, while the matrices having off-diagonal entries divisible by 4 form the 3-Sylow

subgroup. If the hidden subgroup H consists of matrices of the form

⎛

⎝
1 d 3e
1

1

⎞

⎠, then

its 2-Sylow subgroup is the set ofmatrices of the form

⎛

⎝
1 3 g 3 h

1
1

⎞

⎠, while the 3-Sylow

consists of matrices of the form

⎛

⎝
1 4k

1
1

⎞

⎠.

The normalizer of a subgroup of G can be computed using the deterministic poly-
nomial method of Kantor and Luks [28]. It was originally described for nilpotent
permutation groups, but it also finds normalizers in any nilpotent black-box group of
order having small prime factors only.

Assume that L is a subgroup of G. It will be useful to decompose elements x of
G as products of the form αL(x)βL(x) where βL(x) ∈ L and αL(x) depend only
on the coset xL . (Thus the range of αL is a transversal of L in G.) To this end,
compute a chief series (a series of normal subgroups with cyclic factors of prime
order) G = K0 > K1 > . . . > Kr = 1. Perhaps the easiest way to obtain such series
is taking a refinement of the lower central series. By taking the subgroups Ki L , and
removing repeated elements, we obtain a subnormal series G = M0 > M1 > . . . >

Ms = L with cyclic factors of prime order. Also take elements ai ∈ Mi−1\Mi and
denote by pi the order of Mi−1/Mi (i = 1, . . . , s). This generalizes the frequently
used technique of linear algebra when, given a subspace U of a vector space V ,
we choose a basis of V consisting of a basis of U and further vectors. Then the
elements aγ1

1 aγ2
2 . . . aγs

s ((γ1, . . . γs) ∈ ∏s
i=1 Zpi ) are a left transversal of L in G. For

an element x ∈ G, the representative of the coset in this transversal can be computed
as follows. First we find the smallest non-negative integer γ1 such that xa−γ1

1 ∈ M1
by computing the base a1 discrete logarithm of x modulo M1. This can be done by
solving an instance of the hidden subgroup problem in Z

2
p1 . Specifically, we define

the function (β, γ ) �→ |xγ 〉|a−β
1 M1〉. The function can be evaluated with the aid of

computing the uniform superposition |M1〉 using the exact version [16] of Watrous’s
method [29]. The values are p pairwise orthogonal states, and the hidden subgroup
is {(δ, γ ) : xδa−γ

1 ∈ M1}. We use the exact hidden subgroup algorithm of [16] to
find a generator of this group. From this, γ1 can be obtained in an obvious way. Now
we proceed with xa−γ1

1 to compute γ2, and so on. We set αL(x) = aγ1
1 . . . aγr

r and
βL(x) = αL(x)−1x .

If L is a normal subgroupofG, we can encode the coset xL byαL (x). Thismakes the
factor groupG/L a black-box group: The elements are encoded by the elements of the
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transversal {α(x); x ∈ G}, and the multiplication oracle is obtained as a composition
of the multiplication oracle for G with the computation of the function αL .

2.3 Subgroup states and purifications

Let G be a finite group and let H be a subgroup of G. We consider elements
of the group algebra CG as pure quantum states. (The “natural” scalar product
(
∑

x αx |x〉,∑y αy |y〉) = ∑
αβxy−1 makes CG a Hilbert space where the group

elements form an orthonormal basis.)
A (left) coset superposition of H in G is the uniform superposition |aH〉 =
1√|H |

∑
h∈H |ah〉 where a ∈ G. The (left) subgroup state of H in G is the mixed

state with the density matrix

�G,H = 1

|G|
∑

a∈G
|aH〉〈aH | = 1

|G : H |
∑

a∈X
|aH〉〈aH |,

where X is any left transversal (a set of representatives of the left cosets) of H in G.
A purification of �G,H is any pure state |ψ〉 ∈ CG ⊗ V for some Hilbert space V

such that �G,H is the relative trace of |ψ〉〈ψ | with respect to the second subsystem.
For general facts about purification of mixed states, in particular for the connection
with Schmidt decompositions, we refer the reader to Section 2.5 of [30]. The following
lemma gives a characterization of purifications of subgroup states.

Lemma 1 The pure state |ψ〉 ∈ CG ⊗ V is a purification of the subgroup state �G,H

if and only if it can be written as

|ψ〉 = 1√|G|
∑

x∈G
|x〉|v(x)〉,

where the states |v(x)〉 and |v(y)〉 are equal if x and y are in the same left coset of H
and orthogonal otherwise.

Proof The “if” part follows easily from that the conditions on |v()〉 imply |ψ〉 =
1√
k

∑
a∈X |aH〉|v(a)〉.

To see the “only if” part, recall that a Schmidt decomposition of a state |ψ〉 ∈
CG ⊗ V is of the form |ψ〉 = ∑m

i=1 λi |ui 〉|vi 〉 where m = |G|, |u1〉, . . . , |um〉 is an
arbitrary orthonormal basis of CG in which the relative trace of |ψ〉〈ψ | w.r.t. to the
second subsystem is diagonal (with entriesλ1, . . . , λm) and the systemof the vectors vi
corresponding to nonzero eigenvalues λi is an orthonormal system of vectors in V . The
vectors vi depend on the choice of the basis |ui 〉 (i = 1, . . . ,m). Notice that the only
nonzero eigenvalue of �G,H is 1

k with multiplicity k, where k = |G : H |. The coset
superpositions give an orthonormal basis of the corresponding eigenspace. Thus, if |ψ〉
is a purification of �G,H then a Schmidt decomposition of |ψ〉 which is a purification
of �G,H is of the form |ψ〉 = 1√

k

∑k
i=1|ui 〉|vi 〉 where |u1〉, . . . , |uk〉 is an arbitrary

orthonormal basis of the 1
k -eigenspace of �G,H and |v1〉, . . . , |vk〉 is an orthonormal
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system of V . In particular, if X = {a1, . . . , ak} then by taking |ui 〉 = |ai H〉 and
by defining |v(x)〉 = |vi 〉 for x ∈ ai H , we obtain |ψ〉 = 1√

k

∑
a∈X |aH〉|v(a)〉 =

1√|G|
∑

x∈G |x〉|v(x)〉. 
�

2.4 Basic subgroup state conversions

Given a subgroup L of G, a copy of (a purification of) the subgroup state �G,H

can be “converted” to a copy of (a purification of) �L,H∩L by replacing |x〉 with the
decomposition |βL(x)〉|αL(x)〉 obtained by the method outlined in Sect. 2.2 for x ∈ G
and “ignoring” |αL(x)〉 (passing this part to the purifying subsystem). To see this, let

1√|G|
∑

x∈G |x〉|ψ(x)〉 be a purification of �G,H , with |ψ(x)〉 and |ψ(y)〉 are equal

if and only if y−1x ∈ H , and orthogonal otherwise. Then, the substitution gives the
state 1√|L|

∑
x∈L |x〉 1√|G:L|

∑
y∈Y |y〉|ψ(yx)〉 where Y = {αL(z) : z ∈ G}. Now if

x1, x2 ∈ L are from the same left coset of H ∩ L then |ψ(yx1)〉 = |ψ(yx2)〉 for
every y ∈ Y and hence the states 1√|G:L|

∑
y∈Y |y〉|ψ(yxi )〉 are equal (i = 1, 2), while

otherwise they do not overlap as for y1, y2 ∈ Y either |y1〉 and |y2〉 are orthogonal or
(for y1 = y2) |ψ(y1x1)〉 and |ψ(y1x2)〉 are orthogonal.We shall refer to this procedure
as restriction. The term is justified by that in the standard version of the HSP, one could
obtain an instance of the HSP in the subgroup L by restricting the “hiding function”
to L .

Similarly, assume that L is a normal subgroup of G contained in H . Then a copy of
(a purification of) the subgroup sate�G,H can be converted to a copy of (a purification
of)�G/L,H/L by replacing x with |αL(x)〉|βL(x)〉 and passing |βL(x)〉 to the purifying
subsystem. This corresponds to the technique called “pushing” in [6, 31].

3 A group-theoretic reduction

In this section we prove the following.

Proposition 1 Let G be a nilpotent black-box group of class at most c and assume
that the prime factors of |G| are given as part of the input and that for each such
prime p the quantum Fourier transform modulo a multiple of p and its inverse can
be implemented by an efficient exact quantum procedure. Then, the HSP in G can be
reduced by an exact procedure in time poly(log �) to poly(log|G|) instances of the
problem HSMC in semi-elementary quotient groups of subgroups of G. (The elements
of G are assumed to be uniquely encoded by strings of length �.)

Proof Afinite nilpotent groupG is the direct product of its Sylow subgroups. Therefore
any subgroup H is the product of its Sylow subgroups. The p-Sylow subgroup of H
is P ∩ H where P is the p-Sylow subgroup of G. The Sylow subgroups of G can be
computed using the method outlined in Sect. 2.2. One can convert subgroup states in
G to subgroup states in P using restriction, see Sect. 2.4.

In the rest of the description of the reduction we assume that G is a p-group.
We maintain a subgroup H0 of H . Initially H0 = {1G}. In each round of an outer
loop of the algorithm H0 will be increased if H0 < H . If H0 is already G then we
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can obviously stop. We will also maintain a subgroup K of G such that if H0 < H
then even H0 < K ∩ H . Initially K = NG(H0). This is a good choice because in a
nilpotent group every proper subgroup has a strictly larger normalizer; therefore, if
H0 < H , then H0 < NH (H0) = H ∩ NG(H0). In an inner loop K will be decreased
until either H0 is increased or K becomes identical with H0. In the latter case we can
conclude that H = H0 and stop the whole procedure. If the abelian factor K/(K ′H0)

is not elementary, then we can replace K with a proper subgroup as follows. Let
L > K ′H0 be the subgroup of K such that L/(K ′H0) contains all the elements of
order p of K/(K ′H0). To compute L , first compute K ′ and K ′H0. Then take the set of
generators � for K and for each element g ∈ �, compute the smallest positive integer
αg such that gpαg ∈ K ′H0. The elements gpαg−1

(g ∈ �) generate L . If L is a proper
subgroup of K , then we replace K with L and repeat the step above. (Correctness
of this is justified by observing that L/H0 contains all the elements of order p of
K/H0, whence if H ∩ K > H0 then also H ∩ L > H0.) Otherwise we have achieved
that K/(K ′H0) is elementary abelian. Then using the HSMC in the quotient group
S = K/H0 with the hidden subgroup (H ∩ K )/H0, we compute

((H ∩ K )/H0)/S
′ = ((H ∩ K )/H0)/((K

′H0)/H0) = ((H ∩ K )(K ′H0))/H0

= ((H ∩ K )K ′)/H0,

where the last equality follows from H0 < H∩K . If (H∩K )K ′ = K then H∩K = K
because K ′ is contained in every maximal subgroup of K . Then we can increase H0 by
replacing H0 with K and continue the outer loop. If (H ∩ K )K ′ < K we can replace
K with (H ∩ K )K ′ and continue the inner loop.

Based on the descriptions above, we summarize the exact algorithm in the pseu-
docode below.

Algorithm 1 Reduction to HSMC
1: Initialize: H0 ← 1G ;
2: while H0 < G do
3: K ← NG (H0);
4: Found ← False;
5: while Found = False do
6: if K/(K ′H0) is elementary then
7: Use HSMC to compute (H ∩ K )K ′/H0;
8: if (H ∩ K )K ′ = K then
9: H0 ← K ;
10: Found ← True;
11: else
12: K ← (H ∩ K )K ′;
13: if K = H0 then
14: return H = K .
15: end if
16: end if
17: else
18: For each g ∈ �K compute the smallest positive integer αg with gp

αg ∈ K ′H0;

19: Compute L = 〈gpαg−1 | g ∈ �K 〉;
20: K ← L;
21: end if
22: end while
23: end while
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If |G| = pn then the outer loop is executed at most n times, while within each round
of the outer loop the inner loop has at most n rounds. Thus we need at most n2 calls to
the HSMC procedure for factors of subgroups of G and further n2poly(�) group and
other operations. Note that all the groups we need to apply the HSMC procedure are
of class at most c because the family of nilpotent groups of class at most c is closed
under taking subgroups and factor groups. 
�

We illustrate the algorithm by the following example. Assume that G is the Heisen-
berg groupmodulo 9 and that the hidden subgroup H is the group of thematrices of the

form

⎛

⎝
1 x
1
1

⎞

⎠. Initially H0 = {I } and K = G. The commutator subgroup K ′ = G ′

consists of the matrices of the form

⎛

⎝
1 a13
1

1

⎞

⎠ and K/K ′ ∼= Z
2
9, not elementary. Then

K is replaced by the group of matrices

⎛

⎝
1 3a12 a13

1 3a23
1

⎞

⎠. (Here and in each step below,

the notation ai j should be considered as independent of those used in the previous
step(s).) It turns out that this K is abelian (K ′ = {I }), but not elementary. It gets

replaced by the group of matrices of the form

⎛

⎝
1 3a12 3a13

1 3a23
1

⎞

⎠, which is isomorphic

to Z
3
3 and H ∩ K consists of the matrices of the form

⎛

⎝
1 3a12

1
1

⎞

⎠ and H0 becomes

this subgroup. The next K will be the normalizer of this H0, which is the group of

matrices

⎛

⎝
1 a12 a13

1 3a23
1

⎞

⎠, whose commutator subgroup K ′ consists of the matrices of

the form

⎛

⎝
1 a13
1

1

⎞

⎠ and K/K ′ is isomorphic to Z
3
3, so K , and hence also K/H0,

is semi-elementary. Therefore HSMC will find H/H0 in K/H0 and the procedure
terminates.

4 Themain conversion

Let L be a subgroup of the center of G isomorphic to Zn
p where p is a prime. Then L

is a normal subgroup of G. Our aim is to convert a copy of the subgroup state �G,H

to a copy of �G/L,HL/L . In the light of the second conversion (“pushing”) described
in Sect. 2.4, one could do it by converting first to a copy of �G,HL .

To this end, itwould be desirable to have a procedure that converts the coset superpo-
sition |aH〉 to |aHL〉. A possible approach would be computing |L〉 = 1√|L|

∑
z∈L |z〉

in a new register, multiplying |aH〉 with it to obtain 1√|HL|
∑

z∈L
∑

x∈H |azx〉|z〉 and
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then trying to “disentangle” |z〉 from |azx〉. The quantum Fourier transform of L
almost does this job: If we apply it to the second register, we obtain the state

1√|L|
∑

y∈L

ω(y,z)

√|HL|
∑

z∈L

∑

x∈H
|azx〉|y〉,

where ω = e
2π i
p and by (, ) we denote the standard scalar product of L modulo p.

For y ∈ L , let us denote by Py the linear transformation of CG mapping |x〉 to
1√|L|

∑
z∈L ω(y,z)|xz〉. With this notation, the state we have can be rewritten as

1√|L|
∑

y∈L
|Py(aH)〉|y〉.

Using the assumption that L is in the center of G, a direct calculation shows that for
every x1, x2 ∈ G, we have

|Py(x1x2)〉 = |x1Py(x2)〉 = |(Py(x1)x2)〉. (1)

It is also straightforward to see that for every x ∈ G and for every w ∈ L , we have

|wPy(x)〉 = |Py(x)w〉 = ω−(y,w)|Py(x)〉. (2)

We define the support of an element |u〉 of CG as the set of elements appearing
with nonzero coefficient in the decomposition of |u〉 as a linear combination of group
elements. Using equality (1), one can show that if x1 and x2 are not in the same left
coset of LH , then the states |Py(aH)x−1

1 〉 and |Py(aH)x−1
2 〉 are orthogonal. This is

because the support of |Py(aH)x−1
i 〉 is contained in LHx−1

i = (xi LH)−1 (i = 1, 2).
On the other hand, if x1H = x2H , then Hx−1

1 = Hx−1
2 and the two states are equal.

By the characterization given in Lemma 1, it follows that for any left coset aH , the
state 1√|G|

∑
x∈G |x〉|P0(aHx−1)〉 is a purification of �G,LH .

Of course it is hopeless to enforce y = 0 in |Py(aH)x−1
1 〉. However, we can

compute a state with essentially the same effect using several copies of the subgroup
state and by applying an algorithm that finds zero sum subsequences of sufficiently
long sequences of elements of L . Assume that we have a procedure that, for some
S = S(p, n), given an element y = (y1, . . . , yS) ∈ LS computes a non-empty subset
J (y) of {1, . . . , S} such that

∑
j∈J (y) y j = 0.

Then, for a sequence |a1H〉 . . . |aSH〉 we compute first

|L|−S/2
∑

y∈LS

|y〉|Py1(a1H)〉 . . . |PyS (aSH)〉

by applying the Fourier method outlined above component-wise. We next com-
pute 1√|G|

∑
x∈G |x〉 in a fresh register and multiply by x−1 the j th component of
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|Py1a1H〉 . . . |PySaSH〉 if j ∈ J (y). Let χy : {1, . . . , S} → {0, 1} denote the charac-
teristic function of J (y). Then the state we obtained is 1√|G|

∑
x∈G |x〉|ψ(x)〉, where

|ψ(x)〉 = |L|−S/2
∑

y∈LS

|y〉|Py1a1Hx−χy(1)〉 . . . |PySaSHx−χy(S)〉.

Consider the term of |ψ(x)〉 corresponding to any y. As J (y) is non-empty, we
have that for x1, x2 not in the same left coset of LH , the appropriate terms of |ψ(xi )〉
are orthogonal. As |y〉 also appears in the corresponding term, we have that |ψ(xi )〉
are also orthogonal. On the other hand, if x1, x2 are in the same left coset of H , then
these states are equal term by term. Finally, for x ∈ L , by (2), the term for y only gets a

phase change by
∏

j∈J (y)ω
−(y j ,x) = ω

∑
j∈J (y)(y j ,x) = ω0 = 1 by the choice of J (y).

It follows that if x1 and x2 are in the same left coset of LH , |φ(x1)〉 = |φ(x2〉. Thus
our state is a purification of �G,LH . As this holds for any fixed S-tuple of left cosets
of H , by linearity we also obtain a purification of �G,LH if we apply the procedure
to copies of a purification of �G,H . We obtained the following.

Lemma 2 Assume thatwe have an exact quantumprocedure (e.g., a deterministic poly-
nomial time algorithm) that, given any sequence y1, . . . , yS of S = S(p, n) elements
of Zn

p, in time T (p, n) ≥ S(p, n) finds a non-empty subset of {1, . . . , S} such that∑
j∈J y j = 0. Then we have an exact quantum procedure using n quantum Fourier

transformsmodulo p that converts S(p, n) copies of (a purification) of�G,H to a copy
of (a purification of) �G/L,HL/L where L is subgroup of the center of G isomorphic
to Zn

p in time T (p, n)poly(log |G|).
In words, provided that we can efficiently solve the zero sum subsequence problem

in the subgroup L ∼= Z
n
p contained in the center of G, we can convert copies of the

subgroup state for H in G to a subgroup state for the subgroup HL/L (that is, “H
modulo L”) in the factor group G/L .

Using the lemma in iteration and applying the exact abelian hidden subgroup algo-
rithm of [16], we can derive the following.

Proposition 2 Let G be a semi-elementary black-box group with unique encoding of
order pn. Assume that the quantum Fourier transform modulo p and its inverse can be
implemented by an efficient exact algorithmand that, like in Lemma 2, we have an exact
method to find zero sum subsequences of sequences of S(p, n) elements of Zn

p in time
T (p, n) ≥ S(p, n). Then the problemHSMC can be solved by an exact quantum algo-
rithm that uses poly(T (p, n)O(c)�) elementary operations, poly(T (p, n)O(c) log |G|)
applications of the group oracle, calls to the oracle computing the purification of
the subgroup state; and the inverses of these. (The elements of G are assumed to be
uniquely encoded by strings of length �.)

Proof We compute the lower central series G = G0 > G1 > . . . > Gc = {1}
using the method presented in Subsection 2.2. As G/G ′ is elementary abelian, so are
the factors Gi−1/Gi (i = 1, . . . , c). This is because the factor groups Gi−1/Gi are
homomorphic images of tensor powers (asZ-modules) of theG/G ′, see Theorem5.2.5
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of [27].Also, isomorphisms ofGi−1/Gi withZ
ni
p can be efficiently computed using the

method of [16]. Iteration of Lemma 2 gives a procedure to convert
∏c

i=2 S(ni ) copies
of a purification of�G,H to a copy of a purification of�G/G ′,HG ′/G ′ . The composition
of instances of the original subgroup state creating procedure (the calls to the oracle)
with the conversion gives a procedure for creating a purification of �G/G ′,HG ′/G ′ . We
can use this as the oracle input for the exact hidden subgroup algorithm of [16] in Zn1

p .
For i = 1, . . . , c, we have S(p, ni ) ≤ S(p, n) and T (p, ni ) ≤ T (p, n) because Zni

p
can be embedded in Zn

p as a subgroup. 
�
As an example, consider the group G of unitriangular 4 by 4 matrices modulo 3.

We can visualize G as

⎛

⎜
⎜
⎝

1 ∗ ∗ ∗
1 ∗ ∗
1 ∗
1

⎞

⎟
⎟
⎠ Here and below in the example, a matrix with

asterisks denotes the set of matrices obtained by substituting the asterisks by integers

modulo 3, independently at each place. Assume that H is the subgroup

⎛

⎜
⎜
⎝

1 ∗
1
1
1

⎞

⎟
⎟
⎠.

G is a semi-elementary matrix group. The lower central series of G is G0 = G,

G1 =

⎛

⎜
⎜
⎝

1 ∗ ∗
1 ∗
1
1

⎞

⎟
⎟
⎠, G2 =

⎛

⎜
⎜
⎝

1 ∗
1
1
1

⎞

⎟
⎟
⎠, and G3 = {I }, thus the nilpotency class is 3.

In the first round, we convert copies subgroup states for H to those for HG2/G2 =⎛

⎜
⎜
⎝

1 ∗ ∗
1
1
1

⎞

⎟
⎟
⎠

/

⎛

⎜
⎜
⎝

1 ∗
1
1
1

⎞

⎟
⎟
⎠ and next to HG1/G1 =

⎛

⎜
⎜
⎝

1 ∗ ∗ ∗
1 ∗
1
1

⎞

⎟
⎟
⎠

/

⎛

⎜
⎜
⎝

1 ∗ ∗
1 ∗
1
1

⎞

⎟
⎟
⎠ in the

elementary abelian group G/G1. There we can solve the HSMC for G by using the
exact abelian hidden subgroup algorithm from [16] in G/G1.

In the non-exact setting, essentially the same proof gives the following.

Proposition 3 Let G be a semi-elementary black-box group with unique encod-
ing of order pn. Assume that there exists a quantum (or a randomized) algorithm
that finds zero sum subsequences of sequences of S(p, n) elements of Zpn in
time T (p, n) ≥ S(p, n) with high probability. Then the problem HSMC can be
solved by a quantum algorithm that uses poly(T (p, n)O(c)�) elementary operations,
poly(T (p, n)O(c) log |G|) applications of the group oracle and calls to the oracle
computing the purification of the subgroup state.

5 Zero sum subsequences in Z
n
p

In this section, we assume that our input is a sequence of vectors from Z
n
p. We also

assume that p is an odd prime as for p = 2 a zero sum subsequence can be obtained
from n + 1 vectors in the form of a zero linear combination. As subsequences can be
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represented as subsets of the index set, it will not be too misleading to use the term
(sub)set for a (sub)sequence. Our strategy will be finding p pairwise disjoint subsets of
input vectors having equal sums. We will achieve this goal by designing a method for
finding a non-trivial pair of subsets having equal sum and then, like in [21], applying
the algorithm recursively to obtain 4, 8, 16, etc. disjoint subsets with equal sum.

Note that a pair of disjoint subsets with equal sum can be interpreted as a repre-
sentation of the zero vector by a linear combination of the input vectors with nonzero
coefficients 1 or −1 only. Based on this, it will be convenient to use the term signed
subsets and signed subset sums. A signed subset of a set S of vectors is formally a
function from S to the set {0, 1,−1}. The support of such a signed subset is the set of
elements on which the function takes nonzero values. With some sloppiness, we use
the term signed subset sum to refer both to the signed subset and to the value of the
signed sum. (Technically, a signed subset sum could be a data structure consisting of
the description of the signed subset and the value.) We call two or more subset sums
disjoint if their supports are pairwise disjoint. Based on the observation that a signed
subset sum of vectors that are results of pairwise disjoint subset sums is again a signed
subset sum of the original vectors, one can build signed subset sums hierarchically
from smaller disjoint signed subset sums. The trivial subset sum corresponds to the
empty set with the zero vector as value.

A linear relation (or just relation for short) among a collection of vectors is for-
mally an array of coefficients such that the corresponding linear combination is the
zero vector. However, we continue to denote relations by equalities between linear
combinations with the zero vector. It is often useful to omit the vectors to which
coefficient zero is assigned. By taking the signed subsets of the vectors having the
same or the opposite coefficient in a linear relation, we obtain a linear relation among
pairwise disjoint signed subset sums in which the coefficients are form {1, . . . , p−1

2 }
and each coefficient appears at most once. We call such a relation of signed subset
sums standard. As an example, let {v1, v2, . . . , v10} be a fixed set of vectors satisfying
the relation a1v1 + a2v2 + · · · + a10v10 = 0 for some constants ai ∈ Zp. Moreover,
suppose that the coefficients satisfy the following

a1 = a2, a3 = −a1, and a1 ≤ p − 1

2
,

a4 = a6, a5 = a7 = −a4 and a4 ≤ p − 1

2
,

a8 = a9 = a10 and a8 >
p − 1

2
.

Then we have the standard relation

a1(v1 + v2 − v3) + a4(v4 + v6 − v5 − v7) + (p − a8)(−v8 − v9 − v10) = 0

among the signed subset sums v1 +v2 −v3, v4 +v6 −v5 −v7 and−v8 −v9 −v10. We
shall build standard linear relations among signed subset sumswith smaller and smaller
coefficients (among increasingly larger subset sums). The key idea is constructing

first (p−1)2

4 pairwise signed subset sums arranged in a square matrix having a relation
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in each row as well as in each column and subtracting the sum of higher half of
“horizontal” relations from the sum of the higher half of the “vertical” relations to
obtain a relation with coefficients between 1 and p−1

4 and iterating the construction.
As an example, let V = {v1, v2, . . . , v40} ⊂ Z

3
7. As the dimension is 3, any four

vectors are linearly dependent. We form 10 disjoint groups consisting of 4 consecutive
vectors and compute linear relations accordingly. Suppose that we find the following
10 relations, each having standard form uk1 + 2uk2 + 3uk3 = 0 among the signed
subset sums uk1, uk2 and uk3 (k = 1, . . . , 10):

1. v1 + 5v2 + 3v3 + 6v4 = 0, which gives the above standard form relation for the
signed subset sums u11 = v1 − v4, u12 = −v2 and u13 = v3;

2. 2v5 + 6v6 + 5v7 + 3v8 = 0, thus the signed subset sums are u21 = −v6, u22 =
v5 − v7 and u23 = v8;

3. v9+3v10+4v11+2v12 = 0, accordingly u31 = v9, u32 = v12 and u33 = v10−v11;
4. 5v13 + 6v14 + 2v15 + 5v16 = 0, accordingly u41 = −v14, u42 = v15 − v13 − v16

and u43 = 0;
5. v17 + 4v18 + 4v19 + 5v20 = 0, accordingly u51 = v17, u52 = −v20 and u53 =

−v18 − v19;
6. 5v21 + 6v22 + 5v23 + 2v24 = 0, accordingly u61 = −v22, u62 = v24 − v21 − v23

and u63 = 0;
7. 6v25 + 4v26 + 3v27 + 3v28 = 0, accordingly u71 = −v25, u72 = 0 and u73 =

v27 + v28 − v26;
8. 3v29 + 2v30 + v31 + 2v32 = 0, accordingly u81 = v31, u82 = v30 + v31 and

u83 = v29;
9. 2v33 + 5v34 + v35 + 3v36 = 0, accordingly u91 = v35, u92 = v33 − v34 and

u93 = v36;
10. 4v37 + 6v38 + 2v39 + v40 = 0, accordingly u101 = v40 − v38, u102 = v39 and

u103 = −v37.

(Here, u43 = 0, u63 = 0 and u72 = 0 mean that these signed subset sums are
empty.) Note that for each k = 1, . . . , 10, uk1 + 2uk2 + 3uk3 = 0. Let uk ∈ Z

9
7 be the

concatenation of uk1, uk2 and uk3 (considered now as vectors) for each k = 1, . . . , 10.
Then one can obtain a linear relation for the vectors u1, . . . , u10. Suppose that we find
2u1 + 3u2 + 6u3 + 6u4 + u5 + 5u6 + 5u7 + 3u8 + u9 + 4u10 = 0. It has the
standard relation u′

1 + 2u′
2 + 3u′

3 = 0 again, this time among the signed subset sums
u′
1 = u5 + u9 − u3, u′

2 = u1 − u6 − u7 and u′
3 = u2 + u8 − u4 − u10. In terms of the

vectors ukj , 1 ≤ k ≤ 10, 1 ≤ j ≤ 3, we can represent each u′
i as the concatenation of

wi1, wi2 and wi3, where

w11 = u51 + u91 − u31, w12 = u52 + u92 − u32, w13 = u53 + u93 − u33,

w21 = u11 − u61 − u71, w22 = u12 − u62 − u72, w23 = u13 − u63 − u73,

w31 = u21 + u81 − u41 − u101, w32 = u22 + u82 − u42 − u102, and

w33 = u23 + u83 − u43 − u103.
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It follows that

1w11 + 2w12 + 3w13 = 0

1w21 + 2w22 + 3w23 = 0

1w31 + 2w32 + 3w33 = 0
and also

1w11 1w12 1w13
+ + +

2w21 2w22 2w23
+ + +

3w31 3w32 3w33
|| || ||
0 0 0

Therefore, by subtracting the sum of the last two horizontal relations from the sum of
the last two vertical relations, we obtain w12 + w13 + w32 − w21 − w23 − w31 = 0.
Moreover, expanding each wi j as signed subset sums of the original vectors from V ,
then obtain a representation of the zero vector as a signed sum of elements of V , or,
equivalently, two subsets of V with equal sums (“colliding unsigned subset sums”).

We give the details in the following lemma and its proof. (We present a version that
even saves up maintaining the first half of vertical relations.)

Lemma 3 Let d be a positive integer. Assume that there is a deterministic proce-
dure A that, given h(d, n) vectors from Z

n
p, in time poly(h(d, n) log p) finds d

pairwise disjoint signed subset sums v1, . . . , vd of the input vectors, not all empty,
such that

∑d
i=1 ivi = 0. Then there also exists a deterministic procedure that, given

h(d, n)h(d, �d/2�n) vectors, in time poly(h(d, n)h(d, �d/2�n) log p) finds pairwise
disjoint signed subset sums w′

1, . . . , w
′�d/2�, not all empty, such that

∑�d/2�
i=1 iw′

i = 0.

Proof We divide the input set into h(d, �d/2�n) pairwise disjoint parts of size h(d, n).
We apply procedure A within each part. This way for each k = 1, . . . , h(d, �d/2�n),
we get d pairwise disjoint subset sums uk1, . . . , ukd , not all empty, such that∑d

j=1 juk j = 0. For each k we consider the concatenation uk of the vectors ukj
( j = �d/2�+1, . . . , d). These are vectors of dimension �d/2�n. We apply procedure
A to find pairwise disjoint signed subsets M1, . . . , Md such that

∑d
i=1 iu

′
i = 0, where

u′
i is the signed sum of the uks corresponding to the signed subset Mi . Now for each

1 ≤ i ≤ d, u′
i is the concatenation of vectors wi j ( j = �d/2� + 1, . . . , d). Here, for

1 ≤ i, j ≤ d, wi j stands for the signed subset sum obtained by joining the signed
subset sums ukj according to the signed subset Mi . The signed subset sums wi j are
pairwise disjoint, not all of them are empty and they satisfy the relations

d∑

i=1

iwi j = 0 ( j = �d/2� + 1, . . . , d)

and

d∑

j=1

jwi j = 0 (i = 1, . . . , d).
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We subtract the sum of the last �d/2� (“horizontal”) relations of the second kind from
the sum the �d/2� (“vertical”) relations of the first kind and obtain the relation

�d/2�∑

i=1

d∑

j=�d/2�+1

iwi j −
d∑

i=�d/2�+1

�d/2�∑

j=1

jwi j +
d∑

i, j=�d/2�+1

(i − j)wi j = 0.

Notice that for �d/2� + 1 ≤ i, j ≤ d, we have |i − j | ≤ �d/2�. Therefore, by
flipping signs where appropriate and then joining the signed subsets with equal coeffi-
cients, we obtain pairwise disjoint subset sums w′

1, . . . , w
′�d/2� with

∑�d/2�
i=1 iw′

i = 0.
The subset sums w′

i can all be empty only if each wi j is empty when i �= j and at
least one of i and j is greater than �d/2�. Assume that this is the case. Then, if there
is an index i > �d/2� such that wi i is non-empty then wi i must be itself a non-trivial
zero subset sum and gives a one-term solution. Otherwise not all wi j are empty for

i, j ≤ �d/2� and ∑�d/2�
i, j=1 iwi j = 0. 
�

Iterated application of the method of Lemma 3 gives the following result.

Proposition 4 Given S±(p, n) = pO(p log p)nO(p) vectors from Z
n
p, a non-trivial

signed subset sum representing the zero vector can be found in deterministic time
poly(S±(p, n)).

Proof Put d0 = p−1
2 , h0(n) = n + 1 and define di = �di−1/2� and hi (n) =

hi−1(n)hi−1(�di−1/2�n) recursively for i = 1, . . . , �log d0�. As among any h0(n) =
n + 1 vectors from Z

n
p a non-trivial linear relation can be found in time poly(n log p),

recursive applications of Lemma 3 give that among h�log d0�(n) vectors a single non-
trivial signed subset sum (that is, a linear relation with nonzero coefficients ±1 only)
can be found in time poly(h�log d0�(n) log p). We show by induction that

hi (n) ≤
⎛

⎝
i−1∏

j=0

�d j/2�
⎞

⎠

2i−1

(n + 1)2
i
. (3)

For i = 0, both sides are equal to n + 1. Assume that the inequality holds for 0 ≤ i <

�log d0�. Then we also have

hi (�di/2�n) ≤
⎛

⎝
i−1∏

j=0

�d j/2�
⎞

⎠

2i−1

(�di/2�n + 1)2
i
.

Using �di/2�n + 1 ≤ �di/2�(n + 1), we obtain

hi (�di/2�n) ≤ �di/2�2i−1

⎛

⎝
i∏

j=0

�d j/2�
⎞

⎠

2i−1

(n + 1)2
i
. (4)
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Multiplying inequalities (3) and (4) and using hi+1(n) = hi (n)hi (�di/2�n), we obtain

hi+1(n) ≤
⎛

⎝
i∏

j=0

�d j/2�
⎞

⎠

2i

(n + 1)2
i+1

,

which is inequality (3) for i + 1 in place of i . Using d j ≤ d0/2 j ≤ d0 = p−1
2 ,

inequalities (3) for i = �log d0� give

h�log d0� ≤

⎛

⎜
⎜
⎝

⌈
log p−1

2

⌉
−1

∏

j=0

⌈
p − 1

4

⌉
⎞

⎟
⎟
⎠

2

⌈
log p−1

2

⌉
−1

(n + 1)2
⌈
log p−1

2

⌉

=
⌈
p − 1

4

⌉
⌈

p−1
4

⌉⌈
log p−1

2

⌉

(n + 1)

⌈
p−1
2

⌉

.

Therefore, we have

h�log d0�(n) = pO(p log p)nO(p).


�
We interpret a non-empty zero sum signed subset as a non-trivial collision between

two disjoint subset sums. (Non-trivial means that at most one of the subsets can be
empty.) We use the short-term collision for such a pair. We have the following.

Proposition 5 Suppose that there is an algorithmB that given a set of vectors fromZ
n
p

of size S±(p, n) finds a collision. Then there is a deterministic procedure that, given
S±(p, n)�log p� vectors, finds a non-trivial zero sum subset using less than S�log p�

±
applications of algorithm B and poly((S±(p, n))�log p�) other operations.

Proof Put S = S±(p, n) and � = �log p�. We start with finding a collision (H+
1 , H−

1 )

among the first S vectors with common sum w1 using algorithm B. We continue with
the next S input vectors and find a collision (H+

2 , H−
2 ) with sum w2, and so on.

We then take the first S subset sums w1, . . . , wS and find a pair of disjoint subsets
(K+, K−) of {1, . . . , S}, not both empty, such that

∑
i∈K+ wi = ∑

i∈K− wi = w.
The four subsets L++ = ⋃

i∈K+ H+
i , L+− = ⋃

i∈K+ H−
i , L−+ = ⋃

i∈K− H+
i and

L−− = ⋃
i∈K− H−

i of input vectors are pairwise disjoint, not all empty and have
common sum w. Iterating this we end up with at least p pairwise disjoint subsets (not
all empty) with equal sum. If one of these sets is empty, then the common sum is zero,
and we can take any of the non-empty subsets. Otherwise the union of the first p of
the subsets has zero sum. The total number of applications of the collision finding
algorithm B is S�−1 + . . . + S + 1 < S�. 
�
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As an example, let us consider the following sequence of 3-dimensional vectors
over Z3,

v1 =
⎡

⎣
1
2
2

⎤

⎦ , v2 =
⎡

⎣
0
1
0

⎤

⎦ , v3 =
⎡

⎣
2
2
1

⎤

⎦ , v4 =
⎡

⎣
2
2
0

⎤

⎦ , v5 =
⎡

⎣
1
2
1

⎤

⎦ , v6 =
⎡

⎣
1
2
0

⎤

⎦ , v7 =
⎡

⎣
2
1
1

⎤

⎦ ,

v8 =
⎡

⎣
0
0
1

⎤

⎦ , v9 =
⎡

⎣
2
1
2

⎤

⎦ , v10 =
⎡

⎣
1
1
2

⎤

⎦ , v11 =
⎡

⎣
2
0
2

⎤

⎦ , v12 =
⎡

⎣
1
0
2

⎤

⎦ , v13 =
⎡

⎣
0
1
1

⎤

⎦ ,

v14 =
⎡

⎣
2
0
0

⎤

⎦ , v15 =
⎡

⎣
2
0
1

⎤

⎦ , v16 =
⎡

⎣
0
2
1

⎤

⎦ .

Then for each {v1, v2, v3, v4}, {v5, v6, v7, v8}, {v9, v10, v11, v12}, {v13, v14, v15, v16}
we compute its linear relations and hence find the following collisions:

w1 = v2 = v1 + v3 = [0, 1, 0]T
w2 = v8 = v6 + v7 = [0, 0, 1]T
w3 = v9 + v12 = v10 + v11 = [0, 1, 1]T
w4 = v13 + v15 + v16 = v14 = [2, 0, 0]T .

Next, we compute a linear relation for w1, w2, w3, w4 and find a collision w = w1 +
w2 = w3. Therefore, we have 4 subsequences with equal sum w: The first two are
V1 = {v2, v8} and V2 = {v1, v3, v6, v7}, and the last two are V3 = {v9, v12} and V4 =
{v10, v11}. Hence, we obtain a zero sum subsequence by taking any three subsequences
from V1, V2, V3, V4.

Propositions 4 and 5, together with the remark on the case p = 2 immediately give
the following.

Theorem 2 There is a deterministic algorithm that, given a sequence of S(p, n) =
pO(p log2 p)nO(p log p) vectors from Z

n
p, finds a non-trivial zero sum subsequence in

time poly(S(p, n)).

We remark that in [21], an algorithm for a more general task is given. This
task is finding a non-trivial representation of the zero vector as a linear combina-
tion of the input vectors with dth power coefficients. This includes our problem as
the special case d = p − 1. The algorithm of [21] for d = p − 1 would give
S(p, n) = pO(p2 log p)nO(p log p), a parameter somewhat worse than that we have in
Theorem 2, though would be still polynomial in n for p = O(1). The method of [21]
for finding a collision ismore complicated than the present one: It is based on collecting
relations organized in a d-dimensional hypercube rather than a square. (The method of
doubling collisions is essentially identical with that described here in Proposition 5.)
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6 Concluding remarks

We have shown that the hidden subgroup problem in a nilpotent group G of class
bounded by a constant can be solved in polynomial time by an exact quantumalgorithm
provided that there is a polynomial time (that is, time poly(n log p)) exact method that
finds zero sum subsequences in sequences consisting of polynomially many elements
of Zn

p for prime divisors p of |G|. We have such a method for p = O(1). By Olson’s
theorem [22], the shortest length for which a not necessarily polynomial time zero
sum subsequence finding algorithm exists is around np.

We propose the question of existence of a poly(np)-time algorithm for finding zero
sum subsequences from sequences of length (np)d for a sufficiently large constant
d as a problem for further research. A positive answer would imply existence of
an exact polynomial time quantum algorithm for the case when |G| is smooth, that
is, the prime factors of |G| are of size bounded by a polynomial in log|G|. Even a
non-exact method (e.g., a randomized algorithm) would be of great interest as, by
Proposition 3, it would give a new result in the non-exact setting: existence of an
efficient “probabilistic” quantum hidden subgroup algorithm for nilpotent groups of
smooth order having O(1)-bounded nilpotency class. Even somewhat worse results
would potentially lead to quantum hidden subgroup algorithms faster than the known
ones.

For the purposes of “probabilistic” quantum hidden subgroup algorithms even a
method that finds a zero sum subsequence “on average,” that is for at least a 1/poly(np)
proportion of the possible sequences would be sufficient. However, as the following
simple worst-case to average-case reduction shows, at least in the randomized setting,
the gain cannot be better than polynomial. Assume that the classical randomized
algorithm A finds in time T = T (p, n) with probability at least δ a subsequence of a
random sequence of length S = S(p, n) of vectors fromZ

n
p. Here, probability is taken

for the uniform distribution of the array of the vectors together with the random bits of
A. Then we can do the following. We start with an arbitrary sequence of 1

δ
· S2 input

vectors; we draw 1
δ
· S2 uniformly random vectors, one for each input vector. Then we

divide the input sequence into groups of length S, and to each input vector we add the
corresponding random vector. Within each group, we apply procedureA. As the sums
are random vectors, in each group, procedure A succeeds with probability at least δ

and, with probability at least 1
2 , A will succeed in at least S groups. If this is the case

then we choose S “lucky” groups, in each group take the sum of the random vectors
corresponding to the members of the zero sum subsequences. We apply algorithm A
for these S sums. It finds a non-trivial zero sum subsequence with probability at least
δ. Finally, we take the union of the corresponding subsequences. This way we obtain
a procedure that finds a non-trivial zero sum subsequence of every sequence of length
1
δ

· S2 in time poly(T + 1
δ

· ST ) with probability at least δ/2.
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