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In this paper, we develop the so-called variable projection support vector machine (VP-SVM) algorithm that
is a generalization of the classical SVM. In fact, the VP block serves as an automatic feature extractor to the
SVM, which are trained simultaneously. We consider the primal form of the arising optimization task and
investigate the use of nonlinear kernels. We show that by choosing the so-called adaptive Hermite function
system as the basis of the orthogonal projections in our classi¯cation scheme, several real-world signal pro-
cessing problems can be successfully solved. In particular, we test the e®ectiveness of our method in two case
studies corresponding to anomaly detection. First, we consider the detection of abnormal peaks in acceler-
ometer data caused by sensor malfunction. Then, we show that the proposed classi¯cation algorithm can be
used to detect abnormalities in ECG data. Our experiments show that the proposed method produces com-
parable results to the state-of-the-art while retaining desired properties of SVM classi¯cation such as light
weight architecture and interpretability. We implement the proposed method on a microcontroller and
demonstrate its ability to be used for real-time applications. To further minimize computational cost, discrete
orthogonal adaptive Hermite functions are introduced for the ¯rst time.
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detection.
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1. Introduction

Machine Learning (ML) algorithms are often used to

solve regression or classi¯cation problems. They

usually take a large amount of input data and

\learn" a mapping through an optimization process

known as training, which pairs the input data sam-

ples to prede¯ned targets. Finding an appropriate

representation of the input data is an important part

of solving any problem in ML and can greatly in-

°uence the generalization potential of the optimized

ML model.1,2 The data samples acting as the input to

the ML algorithm are obtained by applying a series

of transformations known as feature extraction steps

to the original data.

Traditionally, these transformations were chosen

in an intuitive manner based on a priori knowledge

about the problem. Popular examples of feature ex-

traction done in this way include principal compo-

nent analysis (PCA),3 the discrete Fourier

Transform (DFT)4 and various time frequency

representations of the data obtained for example

through wavelet or Gabor transformations.4 More

recently, semiadaptive transformations, where the

parameters of the feature extraction scheme were

chosen to ensure a good approximation of the origi-

nal data were investigated in Refs. 5–7. Despite their

advantages, the performance of these approaches is

still suboptimal, since the optimization of the feature

extraction pipeline and the training of the underlying

ML model are separated.

The introduction of convolutional neural net-

works (CNNs) led to the rise of ML algorithms,

where appropriate input representation was learned

alongside the weights of the classi¯cation or regres-

sion model.1,2,8 CNNs implement discrete convolu-

tions as layers of a neural network, where the values

(weights) of the convolution kernel are treated as

free parameters. This idea led to the development of

many new applications especially in image proces-

sing.2,8 One of the most well-known limitations of

convolution layers is the fact that the optimized

parameters are di±cult to interpret by humans.9

This can be problematic for some applications (for

example, in medical signal processing or autonomous

driving), where an explanation is required for the

output of the ML model.

Recently, in addition to CNNs, mathematically

justi¯ed ML methods have been introduced capable

of automatic feature extraction. For example, Neural

Dynamic Classi¯cation10 (NDC) proposes a trans-

formation of the input vectors that guarantees an

increase in the probability of correct classi¯cation.

In order to understand black-box ML models and

to explain how variables are being combined to make

predictions, many analysis tools were proposed.9

Besides that, ML approaches consisting of inter-

pretable parameters were intensively researched in

pursuit of fully explainable arti¯cial intelligence

(XAI) systems.11 Recent advances in this area in-

clude the introduction of deep unfolding networks12

as well as techniques like local interpretable model

agnostic explanations13 which can be used to provide

explanations for ML model predictions.

Recently, physics informed machine learning

methods have also enjoyed growing popularity.

These methods aim to incorporate traditional phys-

ical models into ML algorithms to achieve a degree of

explainability. Methods range from domain-speci¯c

models14 to approaches that are designed for general

classi¯cation and regression tasks. These include ML

approaches building on mathematical knowledge

about di®erential equations such as ODENet15 and

FEMa.16 FEMa, for example, proposes an interesting

classi¯cation algorithm rooted in the ¯nite element

method.

Another recently developed approach introduced

variable projection networks (VP-NET),17 where the

¯rst few layers of a fully connected neural network

implemented adaptive orthogonal transformations

with free parameters to learn appropriate data re-

presentation. If the transformations implemented in

these so-called VP-layers are chosen carefully, then

the learned parameters will be interpretable to

humans.17

Recently, classi¯cation problems in medical signal

processing and autonomous vehicle control were

successfully addressed using approaches based on

VP-NET.18,19 These problems often require real-time

evaluation of the trained model on hardware with

limited resources such as microcontrollers or ¯eld

programmable gate arrays (FPGAs). Optimal data

representations provided by variable projection

transformations allow for ML solutions that do not

involve deep neural networks. In this work, we pro-

pose an extension of the classical Support Vector

Machine (SVM) called variable projection support
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vector machine (VP-SVM) in Ref. 20. In particular,

we extended the primal form of the objective func-

tions of SVMs with adaptive orthogonal projections

and showed how stochastic subgradient descent

(SSGD) can be used to train the proposed classi¯er.

In this paper, we further extend our results in

Ref. 20. We provide deeper explanations for the

properties of the proposed VP-SVM classi¯cation

scheme and supplement it with new theoretical and

experimental results. In our current investigation, we

focus on solving classi¯cation tasks, where the input

samples are considered to be 1D signals and the data

transformation part of VP-SVM is realized by the

orthogonal expansion of the input data using adap-

tive Hermite functions.21 Since their introduction in

Ref. 21, adaptive Hermite functions have played a

crucial role in many signal processing applica-

tions.6,18,19,21 In this work, we show how the adaptive

Hermite function-based VP-SVM classi¯er can be

used to e®ectively solve two di®erent, real-world

classi¯cation tasks.

In our ¯rst application, we use VP-SVM to detect

peaks from accelerometer data which were caused by

sensor malfunction. We show that VP-SVM can be

used to detect such peaks, furthermore showcase how

the output and learned parameters of the underlying

VP transformations can be interpreted.

Finally, we investigate the e®ectiveness of the

proposed VP-SVM classi¯er through a biomedical

signal processing task. Namely, we solve the problem

of recognizing ventricular ectopic beats (VEBs) in

electrocardiogram (ECG) signals. VEBs are one of

the abnormal heartbeat classes recommended in the

ANSI/AAMI EC57:1998 standard and can be found

in the MIT-BiH publicly available database abun-

dantly.22 This allows for the partial comparison of

the proposed method to the state-of-the-art.23

In addition to the investigated applications, we

propose to use an orthogonal VP transformation

based on the discrete orthogonal variation of the

adaptive Hermite function system. We point out,

how the use of discrete orthogonal bases with VP-

SVM can greatly reduce the number of computations

needed for data transformation, further decreasing

the reliance of VP-SVM on computational resources.

The rest of this paper is structured as follows. In

Sec. 2, we review adaptive orthogonal transforma-

tions, as well as classical support vector machines.

We also provide an overview of the proposed

VP-SVM classi¯er. In Sec. 3, we discuss adaptive

orthogonal Hermite expansions and propose discrete

orthogonal adaptive Hermite functions. In Sec. 4, we

introduce the above-mentioned real-world applica-

tions, discuss experimental setups and comparisons

with the state of the art. Finally, Sec. 5 contains our

conclusions and future plans.

2. Variable Projection Support Vector
Machines

2.1. Variable projection operators

Let f 2 RNðN 2 NÞ be an N point sampling of an

f 2 L2ðRÞ signal (a single data example). In the

proposed method, we are going to extract n 2 N

number of features from f by

f � ~f ¼ P�ð´Þf :¼ �ð´Þð�ð´ÞþfÞ; ð1Þ
where �ð´Þ 2 RN�nðN >> nÞ. In (1), �ð´Þþ refers

to the Moore–Penrose pseudo inverse of �ð´Þ and

´ 2 RM ðM 2 NÞ is a parameter vector that speci¯es

�ð´Þ. Thus, the approximation ~f is a projection onto

the column space of �ð´Þ. This space is usually

spanned by the discrete sampling of an L2ðRÞ basis.
The functions ’´

0 ; . . . ; ’
´
n�1 2 L2ðRÞ, whose sam-

plings make up the columns of �ð´Þ, depend on

the parameters in ´ in a nonlinear fashion. Fur-

thermore, we will assume that the partial derivatives

of ’´
k ðk ¼ 0; . . . ;n� 1Þ exist with respect to ´. As

discussed in Sec. 3, the actual choice of these functions

in this paper satis¯es the above conditions. None-

theless, it is important to note that other function

systems can also be used to de¯ne the matrix �ð´Þ.
The projection operator P�ð´Þ in (1) is referred to

as a variable projection operator.7,24 Once the pa-

rametrized family of functions ’´
k ðk ¼ 0; . . . ;n� 1Þ

has been chosen for a given signal f, we can deter-

mine the best parameters ´ by solving

min
´2RM

r2ð´;fÞ ¼ min
´2RM

jjf � P�ð´Þfjj22: ð2Þ

Golub and Pereyra were the ¯rst to show in

Ref. 24 that the gradient of the functional r2 can be

analytically calculated provided that the partial

derivatives of �ð´Þ are known. This allows us to

determine the optimal parameters ´ using gradient

descent-based algorithms.

Variable Projection SVMs and Some Applications Using Adaptive Hermite Expansions

2450004-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

24
.3

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
N

G
A

R
IA

N
 A

C
A

D
E

M
Y

 O
F 

SC
IE

N
C

E
S 

on
 0

2/
22

/2
4.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Solving (2) will be an important part of specifying

the data transformation (feature extraction) step

implemented in our variation of the SVM classi¯er.

Once the optimal ´ parameters have been deter-

mined, (depending on the task at hand) we can

represent the input signal f with one of the following

transformations:

. The transformation

T ´
0 ðfÞ :¼ �ð´Þþf ¼: c 2 R

n ð3Þ
can be interpreted as a feature extraction and

dimension reduction step.

. In the presented applications (see Sec. 4), the

columns of �ð´Þ consist of discrete samplings of

smooth functions ’´
0 ; . . . ; ’

´
n�1 2 L2ðRÞ. Further-

more, as k increases ’�
k will display rapidly oscil-

latory behavior. Hence, the smooth approximation

T ´
1 ðfÞ :¼ P�ð´Þ ¼ �ð´Þ�ð´Þþf ð4Þ

can be interpreted as the result of low pass ¯ltering

using the basis functions ’�
k.

. Taking the orthogonal complement

T ´
2 ðfÞ :¼ P ?

�ð´Þf ¼ f � P�ð´Þf ð5Þ
of the variable projection operator (and consider-

ing again the properties of the basis functions used

in our work) removes low frequency components of

f and thus can be interpreted as a high pass ¯lter.

The choice of the appropriate transformation given

the matrix �ð�Þ depends on the task to be solved.

Extending our previous work,20 we propose real-

world applications in Sec. 4 that depend on variable

projection support vector machines using transfor-

mation (5).

2.2. VP-SVM objectives

In this section, we give a brief review of SVM and

VP-SVM classi¯cation methods. More precisely, we

are going to examine the classical support vector

machine classi¯er and extend it with variable

projections.

Let S :¼ fðfi; yiÞg � X � f�1; 1g ði ¼ 1; . . . ; qÞ
be a labeled set of data with a number of q 2 N

examples. For this work, we assume that X � RN

ðN 2 NÞ. The support vector machine (SVM)

method aims to identify a mapping F : X ! f�1; 1g,
for which Fðf iÞ ¼ yi; ðf i; yiÞ 2 S. SVM does this,

by ¯nding an optimal hyperplane in X , which sepa-

rates the data examples fi by class labels yi.

We note that SVM can be extended for multiclass

classi¯cation problems. This is usually done by

training several binary SVM classi¯ers, then com-

bining their outputs to solve the multiclass problem.

Common strategies include the one-versus-all ap-

proach with winner-takes-all output combination,25

one-versus-one methods using a voting scheme25 and

a technique known as pairwise coupling.25 We note

that even though in theory any of the above-men-

tioned techniques would work with the proposed

VP-SVM classi¯ers, ¯nding the best technique for

VP-SVM multiclass problems is outside the scope of

this work and will only be considered in our future

research. The codebase of this research is also pub-

lished as an opensource gitLab repository,26 which

can be utilized for such future research tasks.

Usually, ¯nding the optimal hyperplane is posed

as the linear programming problem

min
w2RN ; b2R;»2R q

1

2
jjwjj2 þ C

Xq
k¼1

�k

subject to ykðwTfk þ bÞ � 1� �k; ðk ¼ 1; . . . ; qÞ:
ð6Þ

Equation (6) is referred to as the primal form of

the soft margin support vector classi¯cation problem

and solved using convex optimization tools (see e.g.

Refs. 27–29). In practice, the dual formulation of (6)

is often used instead, as it provides a convenient way

to deal with the above constraints and allows for the

expression of the problem in terms of the inner pro-

ducts of the data examples fk.

Despite the advantages of the dual formulation,

in this work we opted to use the unconstrained,

equivalent formulation of the primal SVM prob-

lem (6). Solving this problem is equivalent to

minimizing

C �
Xq
i¼1

maxð0; 1� yi � ðwTf i þ bÞÞ þ jjwjj22

ðw 2 R
N ;C; b 2 RÞ ð7Þ

with respect to the variables w and b. Our reason for

choosing the above formulation is the fact that it can

be solved using gradient-based methods.27,30,31 This

is preferable, as we already stated in Sec. 2.1 that the

gradient of the orthogonal projection operators can

also be calculated analytically.

T. D�ozsa et al.
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We can easily extend (7) with an adaptive feature

extraction step by

C
Xq
k¼1

maxð0; 1� ykðwTT ´
i ðfkÞ þ bÞ

þ jjwjj22 þ Rð´Þ ði 2 f0; 1; 2gÞ: ð8Þ
We will refer to (8) as the objective function of the

linear variable projection support vector machine

(VP-SVM). In (8), T ´
i is one of the transformations

de¯ned in (3)–(5). Furthermore, in (8) we extended

the original SVM objective (7) by the regulatory

term Rð´Þ de¯ned as

Rð´Þ :¼ �

q

Xq
k¼1

jjfk � T ´
1 ðfkÞjj22

jjfk jj22
ð� 2 RÞ: ð9Þ

This regulatory term is important to ensure that the

adaptive orthogonal projections approximate the

data examples well. In addition, when the objective

function (8) is minimized with respect to the free

parameters w, ´ and b using gradient-based meth-

ods, the term (9) helps us to mitigate the problem of

vanishing gradients.

The popularity of SVM classi¯ers is in large part

due to their ability to be used with so-called Mercer

kernels.30 The application of these kernels is equiv-

alent to the transformation of the data examples to a

high dimensional reproducing kernel Hilbert space

(RKHS) H and looking for a separating hyperplane

in H. The main advantage of this approach is that

the transformed data examples in H often become

more easily separable, thus allowing SVM to classify

nonlinearly separable data. When posing the SVM

optimization problem using Mercer kernels, usually

the Wolfe-dual of (8) is considered

max
a2R q

Xq
k¼1

ak �
1

2

Xq
k¼1

Xq
j¼1

akajykyjhfk;fji

subject to
Xq
k¼1

akyk ¼ 0; L � ak � 0

ðL 2 R; k ¼ 1; . . . ; qÞ;

ð10Þ

where the inner products hfk;fji may be replaced

with an appropriate kernel function.30 Thus, the

kernel function can be interpreted as the inner

product of the space H. As further discussed in

Sec. 4, in our experiments we used the so-called

radial basis function (RBF) kernel kðf; gÞ :¼
e�jjf�gjj 22=� 2 ðf; g 2 RN ; � > 0Þ, however the proposed

nonlinear VP-SVM objectives may be used with any

applicable Mercer kernel.

Despite the clear bene¯ts of the dual formulation,

the primal form of nonlinear SVM objective func-

tions has been a well researched area27,30,31 with

several important results. In Ref. 30 for example, the

author argues that primal optimization is preferable

for large-scale training data, because as q increases

one is forced to use approximations of the objective

by disregarding some examples when calculating the

inner products in (10). There is no guarantee, how-

ever, that an approximate dual solution produces an

acceptable approximate solution in the primal.

Furthermore, in the case of kernelized VP-SVM,

the orthogonal transformations (3)–(5) are always

applied directly to the data examples f. This means

that the kernel-de¯ned inner products will take the

form

kðT ´
i ðfkÞ;T ´

i ðfjÞÞ ðj; k ¼ 1; . . . ; q; i 2 f0; 1; 2gÞ;
thus any parameter update of ´ would require the re-

evaluation of every inner product. In order to make

the proposed method computationally feasible, in-

stead of (10), we considered the primal form of the

nonlinear SVM objective as proposed in Ref. 30

min
f2H

�jjhjj 2H þ
Xq
k¼1

maxð0; 1� ykhðfkÞÞ; ð11Þ

where � ¼ 1=C and h denotes a mapping from RN

to H.

Even though h is not known explicitly, the rep-

resenter theorem (see e.g. Ref. 30) states that it can

be expressed using the data examples fj and the

kernel function kð�; �Þ:

hðfÞ ¼
Xq
j¼1

�jkðf;fjÞ ð¯ 2 R
qÞ: ð12Þ

By (12), it is possible to formulate the primal non-

linear SVM objective (11) via the kernel functions:

�
Xq
k;j¼1

�k�jkðfk;fjÞ

þ
Xq
k¼1

max 0; 1� yk
Xq
j¼1

kðfk;fjÞ�j
 ! !

:

ð13Þ
This objective function can be easily extended with

the variable projection transformations discussed in

Variable Projection SVMs and Some Applications Using Adaptive Hermite Expansions
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Sec. 2.1:

Rð´Þþ�
Xq
k;j¼1

�k�jkðT ´
i ðfkÞ;T ´

i ðfjÞÞ

þ
Xq
k¼1

max 0;1�yk
Xq
j¼1

kðT ´
i ðfkÞ;T ´

i ðfjÞÞ�jþb

 ! !
;

ð14Þ
where Rð´Þ is the regulatory term de¯ned in (9). It is

also important to note that the parameters ¯ 2 Rq

in (14) are di®erent from the dual parameters a 2 Rq

in (10).30 At ¯rst glance, it may not seem obvious

from (14) why the primal formulation is more e±-

cient from a computational point of view. If however,

we consider Chapelle's observation30 that approxi-

mate dual solutions are not guaranteed to yield a

good primal approximate solution together with our

stated desire to use stochastic gradient descent-based

optimization to minimize the SVM objective, we can

derive approximate objective functions from (14)

with much reduced computational costs as detailed

in the following section.

2.3. Minimizing the VP-SVM objectives

In this section, we discuss how to minimize the

VP-SVM objectives (8) and (14) using stochastic

gradient descent (SGD) and provide the gradients

with respect to the trainable parameters. The ¯rst

obstacle when applying SGD to minimize the above-

mentioned objectives is that neither (8) nor (14) is

di®erentiable everywhere, as clearly the gradients

with respect to the primal weight and bias para-

meters do not exist at 0.

This problem can be overcome by replacing the

gradients with their subgradients in the points, where

the gradient does not exist. For example, if

1� ykðwTT ´
i ðfkÞ þ bÞ ¼ 0, then (8) is not di®eren-

tiable. The subgradient of a function h : RN ! R

given at a point f 2 RN is de¯ned as the set

@hðfÞ ¼ fu : hðzÞ � hðfÞ þ uT ðz� fÞg ðu; z 2 R
NÞ:

For convex and di®erentiable functions h, the

subgradient coincides with the gradient. Further-

more, the subdi®erentiable convex function h has a

minimum at a given point f if and only if 0 2 @hðfÞ.
This latter property allows for the construction of

stochastic gradient methods which make use of

subgradients at points, where the objective function

is not di®erentiable. This approach is not without

precedent in machine learning. In fact, most modern

backpropagation (and hence gradient-based) train-

ing methods are frequently used by models contain-

ing not everywhere di®erentiable layers (for example,

ReLu activation functions in Ref. 32).

We now present the simpli¯ed objectives and

gradients needed to train a VP-SVM classi¯er using

stochastic gradient descent.20,27 In each step of the

SGD algorithm, we randomly select a training ex-

ample fk ðk ¼ 1; . . . ; qÞ, calculate the gradient of the
objective with respect to the trainable parameters

and update them. This requires the simpli¯cation of

the VP-SVM objectives proposed in Sec. 2.2. When

used with SGD, objective (8) becomes

Jðw;´Þk :¼ q � C �maxð0; 1� ykðwTT ´
i ðfkÞÞÞ

þ jjwjj22 þRð´;fkÞ ð15Þ
where T ´

i ði 2 f0; 1; 2gÞ denotes the variable

projection transformations introduced in Sec. 2.1

and Rð´;fkÞ is a simpli¯ed regulatory term:

Rð´;fkÞ :¼ � � jjfk � T ´
1 ðfkÞjj22

jjfk jj22
ð� 2 RÞ: ð16Þ

Now, we can formulate the (sub) gradients of (15)

with respect to w and ´. Note that we omitted the

bias parameter b from (15) for simplicity, but it can

be easily re-introduced. The subgradients of (15)

exist with respect tow and ´ and can be expressed as

@Jðw;´Þk
@w

¼ w� C � q � yk � T ´
i ðfkÞ sk > 0

w sk � 0;

(

ð17Þ

where sk :¼ 1� ykðwTT ´
i ðfkÞÞ ði 2 f0; 1; 2gÞ and

@Jðw;´Þk
@´

¼

�C � q � yk �
@T ´

i ðfkÞ
@´

þ @Rð´;fkÞ
@´

sk > 0

@Rð´;fkÞ
@´

sk � 0:

8>>>>>>>>><
>>>>>>>>>:

ð18Þ

The partial derivatives of the transformation T ´
i ðfkÞ

ði 2 f0; 1; 2gÞ depend on the choice of the index i

T. D�ozsa et al.
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(see also Ref. 17). Suppose ¯rst ði ¼ 0Þ, i.e. the

orthogonal transformation is being used as a feature

extraction and dimension reduction step according

to (3). Then, the partial derivative with respect to ´

can be given as

@T ´
0 ðfkÞ
@´

¼ @�ð´Þþfk

@´
¼ @�ð´Þþ

@´
fk; ð19Þ

where

@�ð´Þþ
@´

¼ ��ð´Þþ @�ð´Þ
@´

�ð´Þþ

þ �ð´Þþ½�ð´Þþ	T @�ð´Þ
@´

� ðI � �ð´Þ�ð´ÞþÞ þ ðI � �ð´Þþ�ð´ÞÞ

� @�ð´Þ
@´

� �
T

½�ð´Þþ	T�ð´Þþ:

Now let us consider the case when ði ¼ 1Þ and

T ´
1 ðfkÞ ¼ �ð´Þ�ð´Þþfk as given in (4). In this case,

@T ´
1 ðfkÞ
@´

¼ @½�ð´Þ�ð´Þþ	
@´

fk; ð20Þ

where

@½�ð´Þ�ð´Þþ	
@´

¼ ðI � �ð´Þ�ð´ÞþÞ @�ð´Þ
@´

�ð´Þþ

þ ðI � �ð´Þ�ð´ÞþÞ @�ð´Þ
@´

�ð´Þþ
� �

T

:

It is easy to see that if ði ¼ 2Þ, or in other words, if we

choose the transformation T ´
2 ðfkÞ ¼ fk � �ð´Þ

�ð´Þþfk, then

@T ´
2 ðfkÞ
@´

¼ � @T ´
1 ðfkÞ
@´

; ð21Þ

where
@T ´

1
ðfkÞ
@´ is given in (20). The gradient of

Rð´;fkÞ with respect to ´ is given as

@Rð´;fkÞ
@´

¼ � 2�

jjfk jj22
f T

k ðI � �ð´Þ�ð´ÞþÞ

� @�ð´Þ
@´

�ð´Þþfk: ð22Þ

Once the partial derivatives of (15) have been

calculated with respect to w and ´, we can update

the parameters by

´ ! ´� �k �
@Jðw;´Þ

@´
and

w ! w� �k �
@Jðw;´Þ
@w

:

ð23Þ

The SGD algorithm guarantees convergence to a

local minimum, provided that the learning rate �k
in (23) is small enough. We note that, instead of

SGD, any other gradient-based optimization

method may be used for training. Such methods in-

clude popular momentum-based approaches such as

the Adam33 algorithm. Note that our pytorch-34

based example implementation26 allows the use of

algorithms other than SGD, however investigating

the e®ect of the use of di®erent optimization

methods for training was outside the scope of this

work.

Similar to (15), a simpli¯ed form of the nonlinear

VP-SVM objective (14) can be obtained for use with

the SGD algorithm:

Jð¯;´Þk :¼ Rð´;fkÞ þ q � C �maxð0; 1� yk

�
Xq
j¼1

�j � kðT ´
i ðfkÞ;T ´

i ðfjÞÞÞ; ð24Þ

where Rð´;fkÞ is de¯ned by (16) and kð�; �Þ denotes
an appropriate kernel function. Similar to the linear

case, the (sub) gradient of (24) exists everywhere and

is given by

@Jð¯;´Þk
@�j

¼ �C � q � kðT ´
i ðfkÞ;T ´

i ðfjÞÞ sk > 0

0 sk � 0;

(

ð25Þ

and

@Jð¯;´Þk
@´

¼

@Rð´;fkÞ
´

� Cqyk
Xq
j¼1

�j

� @kðT ´
i ðfkÞ;T ´

i ðfjÞÞ
´

sk > 0

@Rð´;fkÞ
´

sk � 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð26Þ

where sk :¼ 1�P q
j¼1 �jkðT ´

i ðfkÞ;T ´
i ðfjÞÞ. Clearly,

the term
@kðT ´

i ðfkÞ;T ´
i ðfjÞÞ

´ depends on the transforma-

tion T ´
i ði 2 f0; 1; 2gÞ and the chosen kernel function

kð�; �Þ. In our experiments detailed in Sec. 4, we used

VP-SVM setups with RBF kernel functions:

kðf; gÞ :¼ e
�jjf�gjj 2

2

�
2 ðf; g 2 R

N ; � 2 RÞ: ð27Þ

Variable Projection SVMs and Some Applications Using Adaptive Hermite Expansions
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Speci¯cally, for this kernel function, we can write the

partial derivative with respect to ´ as

@kðT ´
i ðfkÞ;T ´

i ðfjÞÞ
@´

¼ � 2

�2
� e

�jjT ´
i
ðfkÞ�T

´
i
ðfjÞjj 22

�
2

� ðT ´
i ðfkÞ � T ´

i ðfjÞÞ �
@T ´

i ðfkÞ
@´

� @T ´
i ðfjÞ
@´

� �
:

Note that in the simpli¯ed nonlinear VP-SVM

objective (24), we disregarded the regularization

term
P q

k;j¼1 �k�jkðT ´
i ðfkÞ;T ´

i ðfjÞÞ of the full ob-

jective (14). This omission was done to minimize the

computational cost of a single evaluation. Re-adding

this term would require an Oðq2Þ expensive calcula-

tion after each update of the parameter vector ´,

which would signi¯cantly slow down the training

process. Fortunately, as con¯rmed by our experi-

ments in Sec. 4, the regulatory term (16) addresses

the problem of vanishing gradients adequately and

seems su±cient to produce well performing VP-SVM

models for real-world classi¯cation problems. We

note that even though in this work we focus on bi-

nary classi¯cation tasks, we see no theoretical barrier

for the application of multiclass25 SVM strategies for

the proposed VP-SVM classi¯er.

2.4. Remarks on the implementation

We note that several e®ective training approaches

exist for SVM objectives27 that di®er from the clas-

sical SGD approach. These include fast, packing-

based algorithms for the primal objectives.35 Inves-

tigating the possibility of adapting these algorithms

to be used with VP-SVM is part of our future plans.

However, the SGD approach does have important

advantages from an implementation point of view.

Namely, minimizing the simpli¯ed VP-SVM objec-

tive (24) using SGD allows us to \split" the proposed

classi¯er into a variable projection \layer" and an

SVM \layer". This representation allows for the use

of backpropagation techniques,36 which further

speed up the calculation of the gradients discussed in

the previous section. Figure 1 demonstrates an in-

ference step of the proposed VP-SVM classi¯er.

In order to demonstrate the results in this paper

and support reproducible research, we created an

example implementation of the proposed methods.26

Our implementation uses the pytorch34 library,

which allows for °exible parametrization and sup-

ports future investigations of the method. All of the

VP-SVM related results discussed in Sec. 4 were

acquired using this implementation.

3. Hermite Expansions

In this section, we discuss adaptive Hermite func-

tions, which we used throughout our applications

which we used in all of our VP-SVM-based applica-

tions (see Sec. 4). Hermite functions, which are

closely related to the classical orthogonal Hermite

polynomials have long been used to model 1D signals

in a variety of ¯elds. For example, their favorable

morphology (see Fig. 2) and quickly decreasing

modulus makes them appropriate to approximate

ECG, EEG and other types of biomedical sig-

nals.6,19,21,37 In addition, Hermite expansions and

Fig. 1. (Color online) The progression of the data during
a single inference step of VP-SVM. The input signals are
represented by one of the T ´

i transformations. In this ex-
ample, so-called adaptive Hermite functions were used (see
Sec. 3.1), therefore ´ ¼ ð	; 
Þ correspond to a dilation and
translation parameter. The transformed signals are then
passed to the underlying SVM classi¯er. Parameters of the
VP-transformation and the weights of the classi¯er are
optimized together during training.

T. D�ozsa et al.
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their generalizations have been successfully used to

solve problems in engineering.18

We begin by discussing a generalization of Hermite

functions known as adaptive Hermite functions,21

then we consider the discrete orthogonal variants of

these functions which can produce more precise

approximations of expansion coe±cients while re-

ducing computational costs when used with VP-SVM.

3.1. Adaptive Hermite functions

Consider the classical Hermite polynomials denoted

henceforth by hk, where k 2 N is the order of the

polynomial. These form a complete system in the

weighted Lebesgue space L2;wðRÞ and are orthogonal

with respect to the inner product

hhk;hji ¼
Z 1

�1
hkðxÞhjðxÞwðxÞdx ¼ �k;j2

kk!
ffiffiffi
�

p
;

where ðk; j 2 NÞ. The positive measure wðxÞ ¼ e�x
2

is also referred to as the weight function corre-

sponding to the orthogonal Hermite poly-

nomials.38,39 Hermite polynomials inherit a number

of properties usual for orthogonal polynomials, such

as adhering to the recurrence formulas:

hkðxÞ ¼ 2x � 2hk�1ðxÞ � 2ðk� 1Þ � hk�2ðxÞ
h0ðxÞ ¼ 1; h1ðxÞ ¼ 2x ðk ¼ 2; 3; 4; . . .Þ; ð28Þ

and

h 0
kðxÞ ¼ 2k � hk�1ðxÞ: ð29Þ

These polynomials have exactly k real roots, which

are symmetric to zero and satisfy the interlacing

property.38 Using Hermite polynomials, the complete

and orthonormal system in L2ðRÞ known as Hermite

functions can be de¯ned:

’kðxÞ :¼ hkðxÞ � e�x
2
=2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kk!�1=2

p
ðk 2 NÞ: ð30Þ

In (30), hk denotes the kth Hermite polynomial.

Hermite functions display a number of interesting

and useful properties that make them important for

applications and theory alike. For example, from a

theoretical point of view one of the most well-known

properties of Hermite functions is that they can be

interpreted as eigenfunctions of the Fourier trans-

form.40 In case of applications, Hermite functions are

often used because the ¯rst few functions display

similar waveforms to many naturally appearing

biomedical signals (such as ECG or EEG)19,21,41,37

and j’kðxÞj tends to zero quickly as jxj increases for
all k 2 N. These properties allow for the high quality

approximation of \quasi" compactly supported sig-

nals f 2 L2ðRÞ with Hermite–Fourier partial sums

using only the ¯rst few Hermite functions:

f �
Xn�1

k¼0

hf; ’ki’k ðn 2 NÞ:

The quantities hf; ’ki are known as Hermite–Fourier
coe±cients and can be calculated using the usual

inner product de¯ned in L2ðRÞ:

hf; gi ¼
Z 1

1
fðxÞgðxÞdx: ð31Þ

The ¯rst three Hermite functions are illustrated

in Fig. 2.

In Ref. 21, the a±ne argument transforms of (30)

were considered to model ECG signals:

’	;

k ðxÞ :¼

ffiffiffi
	

p
’kð	ðx� 
ÞÞ

ð
;x 2 R; 	 > 0Þ:
ð32Þ

These so-called adaptive Hermite functions also form

a complete and orthonormal basis in L2ðRÞ and re-

tain the above-mentioned useful properties of Her-

mite functions. Furthermore, adaptive Hermite

functions and their derivatives can also be easily

calculated with the help of (28) and (29). For this

reason, we can de¯ne adaptive orthogonal projection

operators discussed in Sec. 2.1 using adaptive Her-

mite functions. In this case, the free parameters of

the transformation are the dilation 	, which repre-

sents the magnitude of the unit step and the trans-

lation 
 which represents a shift in time. More

precisely, when using adaptive Hermite functions to

de¯ne a variable projection operator, the parameter

vector ´ used in the preceding sections can be given

as ´ :¼ ½	; 
 	T � R2.

Fig. 2. (Color online) The ¯rst three Hermite functions.
They can be used to e±ciently approximate quasi-com-
pactly supported signals from L2ðRÞ.

Variable Projection SVMs and Some Applications Using Adaptive Hermite Expansions
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These parameters (if applied to a suitable prob-

lem) often have physical interpretations. For exam-

ple, in Ref. 18 we used adaptive Hermite functions

to represent signals produced by a force sensor

implanted into the tyre of a vehicle. In Ref. 18, it was

shown for example that the optimal dilation pa-

rameter 	 represents the speed of the vehicle. We use

adaptive Hermite function-based VP-SVM classi¯ers

to solve two real-world problems in Sec. 4.

In each of these applications, we will assume that

the input examples are \quasi-periods" of an un-

derlying 1D time series, and are \quasi-compactly"

supported. Denote the e®ective support of the signal

f : R ! R by esupp :¼ fx : jfðxÞj > " � 0g. To pro-

vide a more precise de¯nition for the above terms,

assume that the input examples are signals,

whose e®ective support can be divided into L 2 N

intervals:

esuppðfÞ ¼ [L
k¼1Ik; \L

k¼1Ik ¼ ;:
We refer to the function values over these Ik inter-

vals as \quasi-periods" of the signal and assume that

there exists Ck � 0 such that

jfðxÞj < Ck � e�ðx�tkÞ2 ðx 2 Ik; k ¼ 1; . . . ;LÞ
holds, where tk denotes the midpoint of the interval

Ik. Thus, the terms \quasi-periodic" and \quasi-

compactly supported" mean that the e®ective sup-

port of the signal can be divided into distinct inter-

vals on which signal values tend to zero quickly in

either direction.

In this work, we assume that the time series f has

already been segmented into these \quasi-periods"

before being modeled by the adaptive Hermite

system. In many applications (such as the ones dis-

cussed in Sec. 4) these are not very strict assump-

tions, because the quasi-compact support is usually

guaranteed by the measurements' natural morphol-

ogy and often the segmentation is made easier by the

underlying physical processes that generate the sig-

nals. Finally, we note that further generalizations of

Hermite functions6 have also been introduced and

used to successfully solve several signal processing

problems.

3.2. Discrete adaptive Hermite functions

According to Sec. 2.1, we can de¯ne the adaptive

Hermite function-based orthogonal projection used

by VP-SVM as

T 	;

0 ðfÞ :¼ �ð	; 
Þþf ¼ c 2 R

n; ð33Þ

where f 2 RN is an input data example, �ð	; 
Þ 2
RN�n is a matrix, whose columns are made up of

discrete samplings of adaptive Hermite functions and

	 > 0; 
 2 R are the free dilation and translation

parameters given in (32). In this section, we consider

type (3) transformations only, but the calculations

are analogous to the other two types of transforma-

tions in (4) and (5). Suppose that the jth component

of the kth column of �ð	; 
Þ can be written as

�ð	; 
Þjk ¼ ’	;

k ðxjÞ

ðk ¼ 0; . . . ;n� 1; j ¼ 1; . . . ;NÞ;

where the nodes xj denote an equidistant sampling of

the interval I :¼ ½a; b	; ða; b 2 RÞ and I contains the

e®ective support of ’	;

k ðk ¼ 0; . . . ;n� 1Þ. Then,

the components of the coe±cient vector c from (33)

can be interpreted as a numerical approximation of

the integral given in (31) using Riemann sums.

We will now propose the use of discrete orthogo-

nal Hermite functions instead of the above con-

struction when evaluating the transformation (33).

The use of discrete orthogonal function systems is

bene¯cial for the following reasons:

. For the discrete orthogonal adaptive Hermite

system, in (33), �ð	; 
Þþ ¼ �ð	; 
ÞT holds, which

signi¯cantly speeds up the calculation of the

pseudo inverse. The latter usually involves ¯nding

the singular value decomposition of the matrix

�ð	; 
Þ, which is the most computationally ex-

pensive step in the evaluation of (33).

. The numerical quadrature used to evaluate the

coe±cients c becomes a Gaussian quadrature.39

Namely,

ck ¼
Z 1

�1
fðxÞ’	;


k ðxÞdx ðk ¼ 0; . . . ;n� 1Þ

will hold for any signal fðxÞ ¼ P ðxÞ � e�x
2
=2, where

P can be an arbitrary polynomial of atmost 2N � 1

degree.

Suppose that N � 1 is an arbitrary integer. It is well

known that42,43

XNþ1

j¼1

wjhiðxjÞhsðxjÞ ¼ �is � 2 ii!
ffiffiffi
�

p
; ð34Þ

T. D�ozsa et al.
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where hi and hs ði; s ¼ 0; . . . ;N � 1Þ denote the

classical Hermite polynomials and the jth discrete

positive weight value is given by

wj ¼
2NN! � ffiffiffi

�
p

ðN þ 1Þ � h 2
NðxjÞ

: ð35Þ

Furthermore, the nodes satisfy hNþ1ðxjÞ ¼ 0

ðj ¼ 1; . . . ;N þ 1Þ.39,42 From Eqs. (34) and (35), we

can construct the discrete orthonormal Hermite

functions

'k;j :¼ hkðxjÞ � ffiffiffiffiffiffi
wj

p
=Ck ðj ¼ 1; . . . ;NÞ; ð36Þ

where Ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kk!�1=2

p
, and so

jj'k jj 22 ¼
XN
j¼1

'2
k;j ¼ 1 ðk ¼ 0; . . . ;N � 1Þ

is satis¯ed. By (34), the vectors 'k clearly also sat-

isfy the discrete orthogonal property

h'k;'si ¼ �ks:

Consider now some ¯xed 	 > 0 and 
 2 R para-

meters. Then, zeros of the ðN þ 1Þst degree adaptive
Hermite function can be expressed as

~xj ¼ xj=	þ 
 ðj ¼ 1; . . . ;N þ 1Þ; ð37Þ
where xj denote the zeros of the ðN þ 1Þst Hermite

function. Consider the modi¯ed discrete weights

~wj ¼
1

ðN þ 1Þ � h	;
N ð~xjÞ
;

where h	;
N ðxÞ ¼ hNð	ðx� 
ÞÞ. Constructing the

vectors

~'k;j :¼ h	;
k ð~xjÞ �
ffiffiffiffiffiffi
~wj

q
ðk ¼ 0; . . . ;N � 1Þ; ð38Þ

we get an orthogonal system:

h~'k; ~'si ¼ �ks � Ck:

The constants Ck may easily be determined by tak-

ing the values of the diagonal matrix ð~� 	;
 ÞT ~� 	;

,

where the kth column of the matrix ~�
	;


consists of

the vector ~'k. Then, we can express the kth discrete

orthonormal adaptive Hermite function by

'	;

k :¼ h	;
k ð~xjÞ �

ffiffiffiffiffiffi
~wj

p
=
ffiffiffiffiffiffi
Ck

p

ðk ¼ 0; . . . ;N � 1; j ¼ 1; . . . ;NÞ: ð39Þ

Note that several fast algorithms exist to calcu-

late the nodes xj (and ~xj due to (37)).39 In practice,

the above described discrete orthogonal functions

would be most bene¯cial (see the points at the

beginning of this section) when they are used to

implement the transformation step of an already

trained VP-SVM classi¯er. We note that the discrete

orthogonal adaptive Hermite functions (39) evalu-

ated over the nodes ~xj are equal to the discrete or-

thogonal Hermite functions (36) evaluated over xj.

For this reason, it su±ces to calculate the discrete

orthogonal Hermite functions a single time. To in-

clude the e®ect of dilation and translation into the

transformation (33), consider the de¯nition of the

Hermite–Fourier coe±cients for the continuous case:

ck ¼
Z 1

1
fðxÞ

ffiffiffi
	

p
� ’kð	ðx� tÞÞdx

¼
Z 1

�1
fðx=	þ 
Þ=

ffiffiffi
	

p
� ’kðuÞdu:

Using the above change of variable, we propose the

following quick algorithm for evaluating a VP-SVM

with discrete orthogonal Hermite basis functions:

. Suppose a VP-SVM classi¯er has already been

trained and optimal 	 and 
 parameters have been

identi¯ed for transformation (33).

. Calculate the nodes xj, the weights wj from (35)

and the corresponding discrete orthogonal Her-

mite functions.

. Resample the data examples fk ðk ¼ 1; . . . ; qÞ at

the discrete adaptive Hermite nodes (37) and

multiply them by 1=
ffiffiffi
	

p
.

In transformation (33), the pseudo inverse �þ can

now be replaced by �T and the resulting numerical

quadrature is of Gaussian type. We highlight that

step (2) needs to be done only once, after the training

phase of the classi¯er is ¯nished. Since the data

examples fk are assumed to have quasi-compact sup-

ports, the resampling step in (3) can in many cases be

done relatively safely using interpolation techniques.

4. Applications and Experiments

In this section, we detail two real-world applications

of VP-SVM, which highlight the bene¯ts of the

proposed classi¯cation scheme. In our ¯rst example,

we use VP-SVM to classify abnormal peaks in an

accelerometer measurement. This example will be

used to highlight how the parameters of the proposed

Hermite function-based variable projection trans-

formations can be used to explain classi¯cation

results.

Variable Projection SVMs and Some Applications Using Adaptive Hermite Expansions
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Then, we test the e®ectiveness of the proposed

VP-SVM models on a biomedical signal processing

problem. We use the benchmark MIT-BIH arrhyth-

mia database22 to recognize so-called ventricular

ectopic beats (VEBs) in real ECG data. We compare

the proposed model to the state of the art.23 In ad-

dition, we show that the proposed model outper-

forms similar, neural network-based methods17 while

still providing the bene¯ts usually associated with

SVM classi¯ers.

4.1. Sensor fault detection

Detecting the abnormal behavior of sensors is an

important engineering problem. This is especially

true in the automotive industry, where new vehicle

designs have to pass an extensive testing phase to

validate their dynamic behavior. These tests are

usually performed by equipping the vehicle with

di®erent types of sensors and performing prede¯ned

maneuvers in a controlled environment. Unfortu-

nately, due to hardware failure, arti¯cial peaks can

appear in the measurements. Because such abnormal

peaks can in°uence the outcome of the vehicle test-

ing process, it is important to recognize and elimi-

nate them. This can however be a di±cult signal

processing problem. In the case of accelerometers, for

example large amplitude, seemingly out-of-context

peaks (a usual characteristic of the waveforms

caused by faulty hardware) can naturally appear in

the measured vibration signals as a result of so-called

shock events.

In a previous work,44 Deuschle et al. proposed a

method based on the Dynamic Time Warping

(DTW) algorithm, which is able to recognize peaks

in accelerometer data that appeared as a result of

hardware malfunction. We used this method to label

the peaks of a real-world accelerometer measurement

taken from a vehicle which we used as our ground

truth data.

We will now proceed to show that using this

ground truth data we can train a VP-SVM classi¯er

which can also identify abnormal peaks with perfect

accuracy and discuss how the output of the variable

projection transformation can be interpreted. Even

though on the data available to us, both the DTW-

based method and VP-SVM can completely solve

this anomaly recognition problem, in practice the

two methods can complement each other. While the

DTW-based algorithm44 is not a supervised learning

method and therefore does not require training data,

it may have a higher computational cost than VP-

SVM. For this reason, using a pre-trained VP-SVM

approach for real-time applications can be bene¯cial.

The training set was created from the acceler-

ometer measurement illustrated in Fig. 3. The signal

was measured by a low-cost accelerometer which was

mounted on the wheel hub of the vehicle.45 Peaks

below a prede¯ned amplitude threshold of 1 g ¼
9:8 m=s2 were disregarded. The peaks, whose

amplitudes were greater than the above-mentioned

threshold were extended to 1D signal segments, by

taking their 62:5 ms neighborhood on either side.

The training set for VP-SVM was then created from

these data segments. Figure 4 illustrates two data

1 2 3 4 5 6 7 8 9 10

104

-3

-2

-1

0

1

2

3

4

Accelerometer measurements
Physical vibrations
Hardware failure

Fig. 3. (Color online) Peaks to be classi¯ed in the raw
acceleration data. The green markings indicate that the
peak was caused by a sudden physical impact, while red
markings indicate peaks which were caused by hardware
malfunction.

20 40 60 80 100 120
-1.5

-1

-0.5

0

0.5

1

1.5

20 40 60 80 100 120

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. (Color online) Data examples to be classi¯ed. Top:
A peak corresponding to an actual physical event. Bottom:
A peak appearing in the measurement due to hardware
malfunction.

T. D�ozsa et al.
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examples extracted from the measurement using the

above steps.

As Fig. 3 shows, the dataset was small and rather

ill-balanced: out of 65 peaks, only 6, (� 9% of the

data) were caused by hardware issues. To overcome

this, 4 abnormal data examples were selected

randomly for the training set along with 4 randomly

chosen normal examples. The rest of the examples

(2 abnormal and 55 normal) peaks were added to the

test set. As explained in detail below, after appro-

priate preprocessing steps, VP-SVM was able to

completely separate the normal and abnormal

examples in the training and test sets achieving 100

% accuracy on both.

A visual examination of the data segments shows

that \abnormal" peaks usually constitute a single

quick elevation with no decaying oscillations follow-

ing it that could indicate the presence of an under-

lying physical process. The problem is made more

di±cult by abnormal examples showcased in Fig. 5,

where abnormal peaks appear very close to, or on top

of naturally occurring peaks. Running the above-

detailed experiment by passing the raw data seg-

ments to an SVM or VP-SVM classi¯er yielded un-

satisfactory results. Even though most of the time

the classi¯ers could separate the examples in the

training sets, abnormal examples in the test set were

frequently mislabeled.

For this reason, a static feature extraction step

was applied to the data examples before further

attempts at classi¯cation. Since abnormal peaks

seemed to appear in the data as single quick changes

in signal value, we decided to take a time-frequency

representation, namely, the continuous wavelet

coe±cients of the data examples. The continuous

wavelet transform4 was chosen for its redundant

(and thus high resolution) representation of the data

along the time axis and its translation invariant

property. The latter property was especially useful,

since the abnormal peaks could appear at di®erent

time instances in the data segments (see Fig. 5).

MatLab's \cwt" method was used to calculate the

wavelet coe±cients using Morse analyzing wavelet.46

The presence of abnormal peaks was indicated by

well localized (in time), high absolute value wavelet

coe±cients corresponding to low scales (high fre-

quencies). For this reason, instead of the complex

wavelet coe±cients, we considered the scalogram

and disregarded coe±cients corresponding to scales

describing high frequencies. More precisely, if we

consider a function f 2 L2ðRÞ, we can formalize the

above-mentioned transformation by

S ðf;R;M ;NÞ :¼ fjCf
 ðai; bjÞj : ai > 0; bj 2 R;

ði ¼ R; . . . ;M ; j ¼ 1; . . . ;L;R;M ;N 2 NÞg;
ð40Þ

where

Cf
 ða; bÞ ¼

Z 1

�1
fðtÞa�1=2 ðaðt� bÞÞdt:

Clearly, the generated truncated scalogram S ðf;R;
M ;NÞ belongs to RM�R�L. Choosing R ¼ 1 in (40)

yields the scalogram in the usual sense with respect

to the wavelet  . Truncating the scalogram by

choosing a large R means that S ðfÞ will contain the

wavelet coe±cients corresponding to scales repre-

senting high frequencies, which describe the quickly

changing parts of the signal f. Thus, by choosing a

large value for R, we performed a high pass ¯ltering

step. In our experiments, the scales ai and the

translations bj were left as the default values from

MatLab's \cwt" routine.

Even though abnormal peaks seemed to separate

well from the normal data examples based on the

above described truncated scalogram representation,

standard SVM classi¯cation still could not achieve

perfect accuracy on the test set. In order to remedy

this, a ¯nal transformation was applied to the trun-

cated scalograms, by summing their values along the

scale axis. Formally, the transformed data examples

20 40 60 80 100 120

-1

-0.5

0

0.5

1

1.5

2

20 40 60 80 100 120

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

Fig. 5. (Color online) Di±cult to identify abnormal data
examples. Top: An abnormal peak appearing on top of a
normal peak. Bottom: An abnormal peak appearing very
close to a larger, normal peak.
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~f k ðk ¼ 1; . . . ; qÞ can be given as

ð ~f kÞj ¼
XM
i¼R

jC fk

 ðai; bjÞj ðj ¼ 1; . . . ;NÞ;

where fk 2 RN denotes the kth data segment

extracted from the accelerometer measurement. The

transformed ~f k 2 RN signals and the corresponding

scalograms are illustrated in Fig. 6.

As can be seen in Fig. 6, the transformed data

examples ~f k appear to be quasi-compact with a

single Gaussian-like waveform, if the original peak

was caused by hardware malfunction. If the original

peak was caused by normal physical phenomena, the

corresponding transformed signal segment usually

displays more oscillations.

Finally, the transformed segments were used to

train a VP-SVM classi¯er equipped with transfor-

mation (3) using the ¯rst 3 adaptive Hermite func-

tions. The output of this transformation (after the

VP-SVM classi¯er has been trained) captures the

above-mentioned behavior of the input signals.

As shown in Fig. 7, the transformed abnormal

acceleration signal segments were very well separat-

ed from the naturally occurring ones. This is to be

expected, because if we analyze the waveforms of the

transformed acceleration data examples (bottom row

of Fig. 6), it is easy to see that signals representing

hardware malfunction usually consisted of a single

dominant peak and displayed a quasi-compact sup-

port. These attributes allowed for the good quality

approximation of the transformed abnormal data

segments by the ¯rst 3 adaptive Hermite functions,

thus the Hermite–Fourier coe±cients (31) di®ered

signi¯cantly from 0. In contrast, the transformed

data examples representing naturally occurring

peaks display quick oscillations and their values do

not remain near zero outside of a compact interval.

As a result, the adaptive Hermite coe±cients corre-

sponding to these data examples will cluster around

the origin indicating a large approximation error.

Furthermore, we highlight that the CWT-based

preprocessing step alone is not enough to achieve a

perfect classi¯cation on the test set. However, the

application of VP-SVM to the signals acquired with

the above process improves the classi¯cation accu-

racy up to 100%.

To demonstrate the e®ectiveness of the proposed

VP-SVM approach in the sensor fault detection

problem, we compared its performance with several

classical machine learning approaches. In an indus-

trial vehicle testing environment, algorithms are

expected to run in near real time and on low cost

hardware. These requirements exclude most hard-

ware capable of supporting deep learning approa-

ches, therefore such methods were not considered in

our experiments. We refer to Sec. 4.2 for comparison

of VP-SVM's performance with state-of-the-art deep

learning methods.

Fig. 6. (Color online) Top row: A normal and an abnor-
mal data segment extracted from the original measure-
ment. Middle row: Truncated Morse wavelet-based
scalograms corresponding to the signals in the top row.
Bottom row: 1D signals created by summing scalogram
values along the time axis.

1

0.5
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1.2 -0.51.4
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Physical vibrations
Hardware fault

Fig. 7. (Color online) The optimal linear coe±cients of
the adaptive Hermite expansion for each data example (the
output of transformation (3)). The parameters 	 and 

were learned together with the weights of the underlying
SVM classi¯er.
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In our current experiment, VP-SVM's ability to

¯nd faulty peaks in the accelerometer measurements

was compared with 5 classical machine learning

classi¯ers. In particular, we considered a classical

SVM with RBF kernel (see e.g. Ref. 47), a random

forest classi¯er,48 a decision tree model,49 a naive

Bayes classi¯er50 and a classi¯cation algorithm based

on the gradient boosting method.51 In each experi-

ment, identical training and test sets were consid-

ered. The training and test sets were chosen

according to the beginning of this section. Data

examples consisted of the transformed accelerometer

measurements (see bottom row of Fig. 6).

The results of our experiment are given in

Table 1. In addition to the accuracy score (Acc)

achieved on the test set, we also provide the sensi-

tivity/precision (Se) and predictivity/recall (+P)

scores for each classi¯er. These statistics can be given

by

Acc ¼ TPþ TN

Pþ N
� 100;

Se ¼ TP

TPþ FN
� 100;

þP ¼ TP

TPþ FP
� 100:

ð41Þ

In Eq. (41), the terms TP, FP, TN, FN, P and N

denote the number of true and false positive, true

and false negative and total positive and negative

model predictions.

The large discrepancy between the di®erent sta-

tistics in Table 1 is due to the highly unbalanced

nature of our dataset. In fact, out of the 57 data

samples, only 2 denoted hardware faults in the test

data. Hence, achieving high accuracy scores may

occur at the expense of failing to identify the two

speci¯c input examples of interest. Nevertheless, the

proposed VP-SVM demonstrated the capability to

predict samples representing sensor malfunctions, in

addition to normal cases.

To assess the e®ectiveness of the proposed VP-

transformation, we maintained identical hyperpara-

meters for both the VP-SVM and the classical SVM

classi¯er. In Table 1, it is evident that without the

proposed VP-transformation, the SVM classi¯er

over¯ts the training data and is incapable of recog-

nizing sensor faults in the test set.

Conventional classi¯ers in Table 1 were tested

using their respective implementations from the sci-

kit-learn machine learning library.52 In these cases,

hyperparameter tuning involved a manual grid

search, with subsequent selection of the optimal

values for the ¯nal experiments. The best performing

hyperparameters were kept for our ¯nal experiments.

Simulation results in Table 1 can be reproduced by

using our pytorch implementation that is publicly

available at the gitLab repository26 along with its

documentation. Clearly, none of the examined con-

ventional classi¯cation schemes was able to match

the performance of VP-SVM in this experiment, al-

though some of them (Random Forest and Gradient

Boosting) managed to avoid predicting any false

negatives.

In practice, sensor fault detection should run in

real time using low cost and simple hardware. Both

of these requirements are important from the vehicle

manufacturers' point of view, as they decrease the

cost of vehicle tests. Even though certain hardware

solutions capable of running deep learning models

exist (e.g. the Nvidia Jetson series53), they are usu-

ally signi¯cantly more expensive than low capacity

microcontrollers.

To verify that the proposed method can be used

in this context, we implemented VP-SVM on an

STM32 F401RE microcontroller (see Fig. 8). This is

a low cost (
13 EUR at the time of writing)

computational unit with signi¯cant limitations.

Indeed, the microcontroller uses an ARM 32-bit

Cortex M4 CPU with a maximum frequency of 84

Hz. Furthermore, the board has only 512 kB °ash

memory. We developed a C/C++ implementation of

the inference steps of the proposed VP-SVM classi-

¯er. Table 2 shows the average, lowest and highest

inference times measured for the processing of the

peaks in our acceleration data.

Table 1. Comparison of VP-SVM and classical ML
methods for sensor fault detection on the test set.

Classi¯er Acc Se +P

VP-SVM (RBF kernel) 100.00 100.00 100.00
SVM (RBF kernel) 96.49 0.00 0.00
Random Forest 98.25 100.00 50.00
Decision Tree 96.49 50.00 50.00
Naive Bayes 96.49 50.00 50.00
Gradient Boost 98.25 100.00 50.00

Variable Projection SVMs and Some Applications Using Adaptive Hermite Expansions
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From Table 2, it is clear that the proposed VP-

SVM classi¯er is suitable for near real-time sensor

fault detection.

4.2. Arrhythmia detection

In this section, we evaluate the performance of the

proposed VP-SVM in a standard classi¯cation

benchmark problem. Such problems have long been

handled by various ML approaches, as the relation-

ship between medical signals and health conditions is

usually highly nonlinear and cannot be modeled

using traditional techniques.

In many applications, such as ECG and electro-

encephalography (EEG) classi¯cation, the presence

of noise, the nonstationary behavior of the signals

and the scarcity of annotated training data make the

introduction of reliable ML models di±cult. Such

problems are mitigated by speci¯c techniques, for

example self-supervised learning schemes.54

In this section, we show how the proposed method

can be used to recognize a common heart irregular-

ity. ECG signals are 1D time series that represent the

electrical activity of the heart. These types of signals

are one of the most important tools for diagnosing

heart disease. A single heartbeat recorded from a

healthy subject is depicted in Fig. 9. An ECG seg-

ment describing a single heartbeat can be divided

into several smaller segments that correspond to

cardiac muscle depolarization and repolarization.

Cardiologists can diagnose a multitude of heart

function irregularities based on the shape, amplitude

and temporal location of these segments.55 In order

to assist cardiologists with the evaluation of (long-

term recordings, see e.g. Holter56) ECG measure-

ments and to develop automatic mobile heart mon-

itoring applications,57 many ECG processing

methods have been proposed.23

The MIT-BIH arrhythmia database22 is a stan-

dard benchmark for testing state-of-the-art methods.

The original dataset provided by PhysioNet,58 con-

tains over 100,000 annotated heartbeats recorded

from real patients. The database is highly unbal-

anced, with normal heartbeats (from healthy

patients) being over represented. The heartbeats can

be divided into several classes. Many works,23 rely on

some variation of the classes speci¯ed in the ANSI/

AAMI EC57:1998 standard to categorize the heart-

beats. Unfortunately, di®erent works modify these

classes slightly (for example grouping classes to-

gether) to counter the problem of the heavy bias

towards normal heartbeats.

In this work, we focus on recognizing an impor-

tant class of heartbeat irregularities known as ven-

tricular ectopic beats (VEBs). There are multiple

bene¯ts to considering this subproblem. First, VEBs

constitute the most common irregular heartbeat type

in the MIT-BiH database, therefore the conducted

experiments can be used to compare our proposed

Fig. 8. (Color online) The STM32 F401RE microcon-
troller used in our experiments.

Table 2. Inference time of VP-SVM for sensor
fault detection including the communication
overhead between the microcontroller and the PC.

Average (s) Highest (s) Lowest (s)

0:3535 0:3523 0:3545

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time (s)

-100

-50

0

50

100

150

V
ol

ta
ge

 (
m

V
)

P segment
QRS complex
T segment

Fig. 9. (Color online) ECG representing a healthy
heartbeat. The P wave, QRS complex and T wave corre-
spond to atrial depolarization, ventricular depolarization
and ventricular repolarization, respectively.
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model's e±ciency to the state of the art. Second, it

is important to mention that in Ref. 17, a VP-

enhanced model-driven neural network known

as VP-NET was considered for the same problem.

Our experiments can be used to fully compare the

two models and draw conclusions about the bene¯ts

of the proposed VP-SVM classi¯er. Lastly, as Fig. 10

illustrates, VEBs often display an irregular QRS

complex within the heartbeat, which are particularly

well suited to be modeled by Hermite functions.6,21,59

Current state-of-the-art approaches for the con-

sidered experiment include convolutional neural

network-based methods60 and traditional meth-

ods.61,62 In traditional approaches, a static feature

extraction step is applied to the ECG signals before

training. Among these methods, Hermite features

proved to be a very e±cient representation of QRS

complexes due to their sparse nature,59 discrimina-

tive power61–63 and interpretability.17,37 These

results endorse our selection of Hermite functions

for the representation and classi¯cation of QRS

complexes.

In our experiments, the original dataset was split

into a training and a test set according to Ref. 62,

such that there is no data leakage, neither at the

patient level nor at the recording level. In fact, QRS

complexes in the training and tests sets come from

di®erent recordings of distinct patients. In our

experiments, we utilized Ref. 64 to extract the QRS

segment from each heartbeat as the input to the

proposed model. We opted to use only the QRS

segments, as these can be modeled with the ¯rst 8

Hermite functions.17,59 Since a number of previous

methods17,64,65 also relied on the same transformation

to extract features, the use of QRS segments makes

our results comparable to the state of the art.

In addition to the unbalanced dataset described

above, we also tested our method on a balanced

subset introduced in Ref. 17. This experiment allows

for further comparison between the proposed VP-

SVM classi¯er and the VP-NET model17 as well as

classical neural network-based models. The balanced

dataset contained every available VEB and the same

amount of normal beats randomly sampled from the

whole data. In total, 4260 normal heartbeats and

4260 VEBs were considered in the training set, while

3220 normal beats and 3220 VEBs were included in

test set.

Tables 3 and 4 summarize the Acc, Se, and +P

scores for the test set, which are usual metrics asso-

ciated with evaluating ECG data.23

Our results clearly demonstrate the e±ciency of

the proposed VP-SVM classi¯cation scheme in VEB

detection. In Table 3, di®erent classi¯cation archi-

tectures were compared using a balanced dataset.

These experiments allowed for a fair comparison of

the di®erent classi¯ers. In addition to our own results

on the dataset using the proposed VP-SVM classi¯-

er, Table 3 also showcases results achieved by com-

peting models, such as a VP-NET, a fully connected

neural network (FCNN) and a convolutional neural

network (CNN). For each classi¯er, more than 3500

hyperparameter con¯gurations were examined using

grid search to achieve the above results. The VP-

SVM and VP-NET classi¯ers were utilized with an

initial VP layer that included the ¯rst n ¼ 8 number

of adaptive Hermite functions. Furthermore, the

proposed VP-SVM classi¯er was equipped with the

RBF kernel. This choice was appropriate not only

because of its ability to deal with highly nonlinear

classi¯cation problems, but also because RBF kernel
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Fig. 10. (Color online) Left: A normal QRS complex.
Right: A typical VEB waveform taken from the MIT-BiH
arrhythmia database.

Table 3. ECG classi¯cation results on the test set. Models
trained on balanced dataset (test set).

Normal VEB

Classi¯er Acc Se +P Se +P

VP-SVM 97.83 98.08 97.60 97.57 98.06
VP-NET 96.65 99.38 93.23 93.91 99.34
CNN 96.34 97.76 95.05 94.91 97.70
FCNN 94.38 93.79 94.91 94.97 93.86
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SVMs have been previously successfully used for

ECG classi¯cation.65,66 The learning rate, the pa-

rameter of the RBF kernel and the parameter � of

the penalty term (9) were set by a grid search. In the

hyperparameter optimization for VP-SVM, we ex-

amined 125 con¯gurations, then the model that

achieved the best accuracy on the validation set was

chosen for the ¯nal evaluation on the test.

Table 3 shows that VP-SVM outperformed the

other classi¯ers in terms of total accuracy on the

test set. If we consider VEBs as \positive" samples,

then VP-SVM achieves an Se score of 97:57%, the

highest of the examined classi¯cation schemes. In

fact, VP-SVM in this case outperforms the second

best fully connected neural network model by 2:6%

and the model-driven VP-NET architecture by 3:6%.

From medical point of view Se is of utmost impor-

tance, since it indicates how well the proposed

method can identify true positives, i.e. the presence

of VEBs. In the balanced case, the proposed classi¯er

is slightly outperformed (by 1:3% and 1:28%, re-

spectively) only by the state-of-the-art VP-NET

model in normal Se and VEB +P scores, however

VP-SVM still achieves the best VEB Se score,

achieving an over 2% increase compared to the next

best classi¯er.

We draw similar conclusions from analyzing the

results in Table 4. As stated above, this table pre-

sents results of a more realistic scenario, as VEBs

were signi¯cantly underrepresented in both the

training and test sets. We highlight that VP-SVM

achieves an 11:24% better VEB Se score than the

next best performing fully connected model, which is

a signi¯cant improvement compared to the other

classi¯ers. In addition to the examined models, we

compared the Se and +P scores of VP-SVM to the

current state of the art. These methods include deep

learning60 and traditional methods (static feature

extraction, then classi¯cation61,66,62). Table 4 shows

that the scores attained by the proposed VP-SVM

approach range among the top-performing state-of-

the-art ECG classi¯ers.

Besides its classi¯cation performance, VP-SVM

o®ers additional advantages over state-of-the-art

learning methods. Namely, the initial layer of the

proposed model implements feature learning by

using adaptive Hermite functions in the framework

of variable projections. As discussed in Sec. 3.1, the

learned parameters of VP transformations can often

be interpreted in a physical sense. Indeed, in the

examined ECG processing application, it can be

shown that the learned dilation parameters corre-

spond to the width of the QRS complexes in time

(heartrate), while the translation parameter can be

used to obtain the average location of the so-called R

peak. These useful properties are shared by the

VP-NET-based VEB detection algorithm introduced

in Ref. 17, as well as traditional approaches

employing VP transformations.65 A key di®erence

between these approaches however, is that the

weights of the fully connected neural network fol-

lowing the VP transformation in VP-NET lack

explainability. In contrast, the weights learned by

VP-SVM can be identi¯ed with a hyper plane

that separates the classes, thus they have a clear

geometric interpretation. Another advantage of

VP-SVM is that it is not as prone to over¯tting as

VP-NET (as explained in Ref. 17) and other, po-

tentially deep neural networks. This is generally due

to SVM-based classi¯ers' resilience to over¯tting,67,68

which is also supported by the results shown in

Tables 3 and 4.

5. Conclusion

In this paper, we further developed our novel

classi¯cation scheme, which extends the classical

SVM algorithm by adaptive orthogonal transfor-

mations. These transformations can be interpreted

as an automatic feature extraction step applied to

the data before we attempt to ¯nd the optimal

hyperplane separating the classes. During training,

the parameters of these feature extraction trans-

formations are optimized alongside the weights

Table 4. ECG classi¯cation results on the test set. Models
trained on the realistic unbalanced dataset (test set).

Normal VEB

Classi¯er Acc Se +P Se +P

VP-SVM 99.00 99.45 99.43 95.31 95.45
VP-NET 98.45 99.57 98.78 83.07 93.37
CNN 98.35 99.39 98.85 84.07 90.93
FCNN 97.49 98.50 98.81 83.70 80.21
state-of-the-art – 80–99 85–99 77-96 63-99
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of the SVM classi¯er resulting in optimal data

representation.

If the transformation is chosen correctly, the re-

sult of the feature extraction step and the classi¯-

cation scheme can be interpreted by humans. We

discussed the objective functions, training methods

and numerical optimization of the proposed classi¯-

er. To this end, we introduced discrete orthogonal

adaptive Hermite functions and discussed how their

use can further reduce the computational complexity

of the proposed methods.

For the ¯rst time, we applied the proposed

VP-SVM classi¯cation scheme to two, real-world

engineering problems as discussed in Sec. 4. First, we

applied the proposed classi¯er to recognize peaks in

acceleration data caused by hardware malfunction.

Then, we detected abnormal heartbeats in ECG data

obtained from the benchmark dataset.22

In the ¯rst application, we applied VP-SVM to

the problem of ¯nding peaks caused by hardware

malfunction in a 1D time series. We showed that

using the adaptive Hermite function-based transfor-

mation VP-SVM is able to distinguish between data

segments containing the above mentioned abnormal

peaks, and segments where the quick oscillation was

caused by normal physical phenomena. To this end,

we applied a prede¯ned continuous wavelet trans-

formation-based feature extraction step to the sig-

nals, then trained the above mentioned VP-SVM

setup on the transformed training set. We discussed

how the output of the trained transformation step of

the VP-SVM can be interpreted by showing that the

output of the learned orthogonal Hermite transfor-

mation con¯rms or disproves the presence of quick

oscillations in the original measurements which are

well localized in time.

We showed that the proposed VP-SVM outper-

forms traditional ML approaches for the sensor fault

detection problem. In addition, we implemented VP-

SVM on a low cost STM32 F401RE microcontroller

and showed that the proposed method can achieve

satisfactory inference times for near real-time use.

In the second application, we showed that the

proposed VP-SVM classi¯er provides robust ability

to recognize VEBs in ECG data. VP-SVM performed

at the level of the best state-of-the-art methods both

in terms of classi¯cation accuracy and other statis-

tics. In fact, using accuracy, Se and +P scores we

showed that VP-SVM signi¯cantly outperforms

similar model-driven neural networks, as well as

other classi¯cation algorithms in the literature that

can be considered state of the art. Importantly, VP-

SVM is able to achieve this result while retaining the

bene¯ts associated with the use of SVM over deep

learning methods. These bene¯ts include better in-

terpretability, being less prone to over¯tting and

simple model architecture.67,68

We plan to continue our research by investigating

the dual form of the VP-SVM objectives and the

possibility of using nongradient-based training

methods. Furthermore, we plan to optimize our low

level implementations and conduct real-time experi-

ments for vehicle testing. In addition, we plan to

investigate and implement extensions of the pro-

posed VP-SVM classi¯er for multiclass problems.

Another interesting future direction will be the

investigation of classi¯cation problems, where inputs

consist of 2D or higher dimensional inputs. Variable

projection-based methods been previously adopted

to 2D image processing problems including B�ezier-

curve ¯tting,69 blind deconvolution,70 and adaptive

2D spectrograms.71 Incorporating these results into a

VP-SVM framework will be an important future

objective of our research. We also plan to investigate

surface-¯tting problems by employing the tensor

product of 1D free-knot splines.72

Finally, we plan to investigate if the idea of in-

troducing adaptive orthogonal representations of

input vectors can be used together with the recently

introduced ML architectures. In particular, we

would like to investigate if dynamic ensemble

methods such as Ref. 73 can be adopted to VP-SVM.

Creating such ensemble models would allow for ex-

plainable ensemble ML models. This is of particular

interest to us, as several ensemble approaches65,61

have been successfully applied for biomedical signal

processing tasks similar to the problem investigated

in Sec. 4.2.
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