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Nonautonomous linear ordinary differential equations with Kirchhoff coefficients are considered. Under
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1. Introduction

In this brief paper, we study the nonautonomous linear ordi-
ary differential equation
′
= A(t)x, (1)

where A : [t0, ∞) → Rn×n is a continuous matrix function such
that A(t) is a Kirchhoff matrix for t ≥ t0. By a Kirchhoff ma-
trix (Magyar, Szederkényi, & Hangos, 2018) or W-matrix (van
Kampen, 2007), we mean a Metzler matrix with zero column
sums. As usual, M ∈ Rn×n is a Metzler matrix if the off-diagonal
elements of M are nonnegative.

Eq. (1) arises as a model of first-order chemical reactions
with time-dependent coefficients (Glasser, Horn, & Meidan, 1980;
Summers & Scott, 1988), a prototype of the average-consensus
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protocol (Olfati-Saber, Fax, & Murray, 2007; Ren & Beard, 2008), a
master equation for non-stationary Markovian jump processes (va
Kampen, 2007, Chap. V) and compartmental systems (Haddad,
Chellaboina, & Hui, 2010; Jacquez & Simon, 1993).

The recent paper (Garab & Pituk, 2021) features a conver-
gence theorem for Eq. (1) which can be described as follows.
Suppose that A is a bounded and uniformly continuous matrix
function on [t0, ∞). Assume also that the directed graphs of the
coefficient matrices have a common directed spanning tree and
the off-diagonal elements of A(t), t ≥ t0, are bounded away
from zero along this common directed spanning tree. Then the
convergence of the Perron vectors of the coefficient matrices to
a positive vector at infinity implies that every solution of (1) is
convergent as t → ∞ and its limit can be expressed explicitly
in terms of the initial data. By a Perron vector of a Metzler
matrix, we mean any nonnegative normalized eigenvector which
corresponds to the spectral abscissa. Our aim in this note is to
complement and generalize the convergence theorem (Garab &
Pituk, 2021, Theorem 3.1) to the case when the Perron vectors of
the coefficient matrices are not necessarily convergent. Moreover,
we will impose substantially weaker conditions on the Kirchhoff
coefficients which allow time-dependent lower bounds. Under
appropriate assumptions, we will show that if the unique Perron
vector p(t) of A(t) is slowly varying as t → ∞ (for the definition,
ee Section 2), then every solution x(t) of Eq. (1) is asymptotically
quivalent to a constant multiple of p(t) as t → ∞.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
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. Preliminaries

Before we formulate our main result, we introduce the nota-
ions and summarize some auxiliary results which will be needed
n the proof.

Let R = (−∞, ∞) and N = {0, 1, 2, . . . }. Given a positive
nteger n, Rn and Rn×n denote the n-dimensional space of real
olumn vectors and the space of n× n matrices with real entries,
espectively. The symbol ∥ · ∥ denotes the l1-norm on Rn and the
orresponding induced matrix norm on Rn×n, i.e. ∥x∥ =

∑n
j=1 |xj|

for x = (x1, . . . , xn)T ∈ Rn and ∥M∥ = max1≤j≤n
∑n

i=1 |mij| for
M = (mij) ∈ Rn×n. As usual, the superscript T indicates the
transpose. A vector x ∈ Rn is called normalized if ∥x∥ = 1. The all-
one vector in Rn is denoted by e := (1, . . . , 1)T ∈ Rn. Inequalities
between vectors and matrices are to be understood elementwise.
Thus, for x = (x1, . . . , xn)T and y = (y1, . . . , yn)T ∈ Rn, we have
x ≤ y if and only if xi ≤ yi for all i = 1, . . . , n. A vector x ∈ Rn

is called nonnegative if x ≥ 0. The set of nonnegative vectors in
Rn is denoted by Rn

+
. We use the similar notation Rn×n

+ for the
set of nonnegative matrices in Rn×n. Thus, M = (mij) ∈ Rn×n

+ if
and only if mij ≥ 0 for all i, j. If M = (mij) ∈ Rn×n, then the
directed graph of M , denoted by Γ (M), is the pair (V, E), where V
is the set of nodes (vertices) and E is the set of edges defined by
V = {1, 2, . . . , n} and E = {(i, j) ∈ V × V | i ̸= j, mji ̸= 0},
respectively. We say that Γ (M) has a (rooted) directed spanning
tree if there exists a node i ∈ V , called the root, such that for
every other node j ∈ V , j ̸= i, there exists a directed path from i
to j. By a directed path from node i to node j, we mean a sequence
of directed edges (i1, i2), (i2, i3), . . . , (ik−1, ik) ∈ E with distinct
nodes i1, . . . , ik ∈ V such that i1 = i and ik = j. For M ∈ Rn×n,
the symbol diagM will denote the n × n diagonal matrix having
the same diagonal as M . The spectrum of M ∈ Rn×n, denoted by
σ (M), is the set of all eigenvalues of M and the spectral abscissa
s(M) is defined by s(M) := max{Re λ | λ ∈ σ (M)}.

It follows from the Perron–Frobenius theory (see, e.g., Kato
(1982, Chap. I, Theorem 7.5)) that if M ∈ Rn×n is a Metzler
matrix, then its spectral abscissa s(M) is an eigenvalue of M
with a nonnegative eigenvector. Every nonnegative normalized
eigenvector of a Metzler matrix M corresponding to its spectral
abscissa s(M) will be called a Perron vector of M . Thus, every
Metzler matrix has at least one Perron vector. The Perron vectors
are not necessarily unique. Indeed, the identity matrix I ∈ Rn×n

is a Metzler matrix which has n linearly independent Perron
vectors, the canonical basis vectors in Rn. The following result
from Pituk (2023) gives a sufficient condition for the uniqueness
of the Perron vectors of Kirchhoff matrices.

Proposition 1 (Pituk (2023, Theorem 1.1)). Let K ∈ Rn×n be a
Kirchhoff matrix. If Γ (K T ) has a directed spanning tree, then s(K ) =

0 is an algebraically simple eigenvalue of K so that K has a unique
Perron vector.

Recall that a nonnegative matrix M ∈ Rn×n
+ is row-allowable

if each row of M contains at least one positive entry. A row-
allowable matrix M = (mij) ∈ Rn×n

+ is called scrambling (Hajnal,
1958) if for any two indices 1 ≤ i1 < i2 ≤ n, there exists an
index j ∈ {1, . . . , n} such that mi1j > 0 and mi2j > 0. For every
M = (mij) ∈ Rn×n

+ , the quantity

γ (M) := min
1≤i1,i2≤n

n∑
j=1

min{mi1j,mi2j}

is called the scrambling power of M (Hajnal, 1958). Evidently,
M ∈ Rn×n

+ is scrambling if and only if γ (M) > 0. The function
γ :Rn×n

+ → [0, ∞) is monotone and positively homogeneous, i.e.
n×n
γ (M1) ≤ γ (M2) for M1,M2 ∈ R
+

,M1 ≤ M2, (2)

2

γ (λM) = λγ (M) for λ > 0, M ∈ Rn×n
+

. (3)

We shall need the following result from Wu (2006) which
provides a sufficient condition for the product of nonnegative
matrices to be scrambling.

Proposition 2 (Wu (2006, Theorem 5.1)). If P1, P2, . . . , Pn−1 ∈

Rn×n
+ are nonnegative matrices with positive diagonal elements such

that the directed graph Γ (PT
j ) has a directed spanning tree for each

j ∈ {1, . . . , n − 1}, then the product P1P2 . . . Pn−1 is scrambling.

A nonnegative matrix S ∈ Rn×n
+ is called row-stochastic

(column-stochastic) if the row sums (column sums) of S are equal
to one. Note that if S ∈ Rn×n

+ is a column-stochastic matrix, then
∥S∥ = 1. The following known result from Ipsen and Selee (2011)
and Seneta (2006, Sec. 3.1 and 4.3) will be fundamental for the
proof of our main theorem.

Proposition 3 (Ipsen and Selee (2011, Corollary 3.9)). Suppose that
S ∈ Rn×n

+ is a row-stochastic matrix so that its transpose ST is
column-stochastic. Let V denote the hyperplane in Rn defined by
V := { v ∈ Rn

| eTv = 0 }. Then

∥STv∥ ≤ τ (S)∥v∥ whenever v ∈ V , (4)

where

τ (S) := 1 − γ (S). (5)

The quantity τ (S) given by (5) is called the (one-norm) coef-
ficient of ergodicity of the row-stochastic matrix S (Ipsen & Selee,
2011). For every row-stochastic matrix S ∈ Rn×n

+ , we have that
0 ≤ τ (S) ≤ 1, and τ (S) < 1 if and only if γ (S) > 0. Thus,
τ (S) serves as contraction coefficient in (4) if and only if the
row-stochastic matrix S is scrambling.

Let I ⊂ R be an interval. Consider the linear differential
equation

x′
= C(t)x, (6)

where C : I → Rn×n is a continuous matrix function. If Φ : I →

Rn×n is any fundamental matrix solution of (6), then the transition
matrix of Eq. (6), denoted by TC (t, s), is defined by TC (t, s) =

Φ(t)Φ−1(s) for t, s ∈ I. Evidently, every solution x of (6) can be
written in the form x(t) = TC (t, s)x(s) for t, s ∈ I.

We will need the following comparison result for differential
equations with Metzler coefficients. In the special case I =

[t0, ∞), the result was proved in Garab and Pituk (2021, Proposi-
tion 2.3). If I ⊂ R is an arbitrary interval, then we can use literally
the same arguments, therefore the proof is omitted.

Proposition 4. Consider the linear differential equations

x′
= M(t)x

and

x′
= N(t)x,

where M, N : I → Rn×n are continuous matrix functions such
that M(t) is a Metzler matrix for t ∈ I. If

M(t) ≤ N(t) for t ∈ I,

then

0 ≤ TM (t, s) ≤ TN (t, s) whenever t, s ∈ I and t ≥ s.

A function f : [t0, ∞) → Rn is called slowly varying at infinity
(in additive form) (Seneta, 1976) if for every s ∈ R,
f (t + s) − f (t) → 0 as t → ∞.
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s shown in Pituk (2017, p. 30), a continuous function f : [t0, ∞)
Rn is slowly varying at infinity if and only if there exists t1 ≥ t0

uch that f can be written in the form

(t) = g(t) + h(t), t ≥ t1,

here g : [t1, ∞) → Rn is a continuous function which tends to a
inite limit in Rn as t → ∞ and h : [t1, ∞) → Rn is a continuously
ifferentiable function such that h′(t) → 0 as t → ∞. An

example of a scalar function which is slowly varying and has no
limit at infinity is f (t) = sin

√
t for t ≥ 0.

Finally, we remark that every solution x of the Kirchhoff sys-
tem (1) has the mass conservation property

n∑
i=1

xi(t) = eT x(t) = m for t ≥ t0, (7)

where m is a constant given by m = m(x) = eT x(t0) (see,
e.g., Garab and Pituk (2021, Lemma 3.9) with v = e).

3. Main result

Now we can formulate our main theorem which states that,
under appropriate assumptions, every solution x(t) of Eq. (1) is
asymptotic to a constant multiple of the unique Perron vector p(t)
of the coefficient matrix A(t) as t → ∞. The assumptions include
the slowly varying property of the Perron vectors p(t) of A(t)
as t → ∞ and the uniform continuity of A on [t0, ∞). Recall
that A : [t0, ∞) → Rn×n is uniformly continuous on [t0, ∞) if for
every ϵ > 0 there exists δ > 0 such that ∥A(t1) − A(t2)∥ < ϵ

whenever t1, t2 ≥ t0 and |t1 − t2| < δ. It follows from the mean
value theorem that a sufficient condition for A to be uniformly
continuous on [t0, ∞) is that its derivative is bounded on [t0, ∞).

Theorem 5. Let A : [t0, ∞) → Rn×n be a uniformly continuous and
bounded matrix function such that A(t) is a Kirchhoff matrix for all
t ≥ t0. Suppose that

A(t) − diag A(t) ≥ c(t)P (8)

for t ≥ t0, where c : [t0, ∞) → [0, ∞) is a nonnegative, uniformly
continuous function and P ∈ Rn×n

+ is a nonnegative matrix such
that Γ (PT ) has a directed spanning tree. Assume also that A(t) has
a unique Perron vector p(t) for t ≥ t0 and p(t) is slowly varying as
t → ∞, i.e. for every s ∈ R,

p(t + s) − p(t) → 0 as t → ∞. (9)

If

lim inf
t→∞

∫ t+h

t
c(u) du > 0 (10)

for some h > 0, then for every solution x of Eq. (1),

x(t) − mp(t) → 0 as t → ∞, (11)

where m = eT x(t0).

Remark 6. Suppose that the hypotheses of Theorem 5 hold
and c(t) > 0 for some t ≥ t0. In view of (8), we have that
Γ (AT (t)) = Γ (PT ). Thus, A(t) is a Kirchhoff matrix and its directed
graph has a directed spanning tree. Proposition 1 implies that A(t)
has a unique Perron vector p(t). Thus, if c in (8) is positive, then
the uniqueness of the Perron vector is automatically satisfied.
However, if c(t) = 0 for some t ≥ t0, then (8) merely says that the
off-diagonal elements of A(t) are nonnegative and the uniqueness
of the Perron vector of A(t) in general does not hold.
3

Proof of Theorem 5. Let x be an arbitrary solution of Eq. (1).
Define

y(t) := x(t) − mp(t) for t ≥ t0. (12)

By Garab and Pituk (2021, Lemma 3.9) (v = e), the solution x
and hence the function y is bounded on [t0, ∞). Let w ∈ Rn be
an arbitrary accumulation point of y at infinity, i.e. there exists a
sequence {tk}∞k=1 in [t0, ∞) with tk → ∞ and such that

w = lim
k→∞

y(tk). (13)

Since both functions x and p are bounded on [t0, ∞), without loss
of generality, we may (and do) assume that the limits

ξ := lim
k→∞

x(tk) and η := lim
k→∞

p(tk) (14)

exist, and hence (cf. (12) and (13))

w = ξ − mη. (15)

Otherwise, we pass to an appropriate subsequence of {tk}∞k=1.
Define

zk(t) := x(tk + t), Bk(t) = A(tk + t), dk(t) := c(tk + t)

for each k and t such that tk + t ≥ t0. From Eq. (1), we find that

z ′

k(t) = Bk(t)zk(t) (16)

for each k and t satisfying tk + t ≥ t0. The functions zk, Bk
and dk are defined on the interval [t0 − tk, ∞) for k ∈ N. If
I = [a1, a2] ⊂ R is an arbitrary compact interval, then, taking
into account that tk → ∞, the above functions are defined on I
for all k ≥ k0 whenever k0 is sufficiently large. The boundedness
of A and (8) imply that c is bounded on [t0, ∞). From Eq. (1)
and the boundedness of A and x, we obtain that x′ is bounded
on [t0, ∞). Hence, x is uniformly continuous on [t0, ∞). Finally,
from the boundedness and the uniform continuity of A, x and c on
[t0, ∞), we conclude that, on the interval I , the functions {zk}∞k=k0

,
{Bk}

∞

k=k0
and {dk}∞k=k0

are uniformly bounded and equicontinuous,
respectively. From this, by the application of a variant of the
Arzelà–Ascoli theorem (Garab & Pituk, 2021, Proposition 2.10),
we conclude that there exist subsequences {zkj}

∞

j=1, {Bkj}
∞

j=1 and
{dkj}

∞

j=1 of {zk}∞k=1, {Bk}
∞

k=1 and {dk}∞k=1, respectively, such that, for
every t ∈ R, the limits z(t) = limj→∞ zkj (t), B(t) = limj→∞ Bkj
and d(t) = limj→∞ dkj (t) exist and the convergence is uniform on
every compact subinterval of R. Since {tkj}

∞

j=1 is a subsequence
of {tk}∞k=1, we have (cf. (14))

z(0) = lim
j→∞

zkj (0) = lim
j→∞

x(tkj ) = ξ . (17)

By passing to the limit in the integrated form of (16),

zkj (t) = zkj (0) +

∫ t

0
Bkj (u)zkj (u) du,

we obtain

z(t) = z(0) +

∫ t

0
B(u)z(u) du

for all t ∈ R. Hence

z ′(t) = B(t)z(t) (18)

for all t ∈ R. The boundedness of x and A imply that the
functions z and B are bounded on R. As a limit of Kirchhoff
matrices, B(t) is a Kirchhoff matrix for all t ∈ R. By Pituk (2023,
Lemma 3.1), this implies that the transition matrix TB(t, s) of (18)
is column-stochastic for all t ≥ s. Moreover, (8) implies that

B(t) − diag B(t) ≥ d(t)P for all t ∈ R. (19)
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ince Γ (PT ) = Γ (PT
+ I) has a directed spanning tree, apply-

ng Proposition 2, we conclude that (PT
+ I)n−1 is scrambling,

.e. γ ((PT
+ I)n−1) > 0. The boundedness of B implies that

iag B(t) ≥ bI for all t ∈ R, where b = min1≤i≤n inft≥t0 bii(t). Then
cf. (19)) B(t) ≥ d(t)P + bI for all t ∈ R. Hence, by Proposition 4,
e have for s ∈ R,

B(s + h, s) ≥ ebheα(s)P ,

here α(s) :=
∫ s+h
s d(u) du. From this, taking into account that

Mt
= e(M+I)te−It

= e−te(M+I)t
≥ e−t [ (M + I)t ]

k

k!
or all M ∈ Rn×n

+ and t ≥ 0, we have (M = P , t = α(s))

B(s + h, s) ≥ ebh−α(s) αn−1(s)
(n − 1)!

(P + I)n−1

for all s ∈ R. From this, taking into account that

α(s) =

∫ s+h

s
d(u) du = lim

j→∞

∫ s+h

s
c(tkj + u) du

= lim
j→∞

∫ tkj+s+h

tkj+s
c(v) dv ≥ ρ

for all s ∈ R, where ρ := lim inft→∞

∫ t+h
t c(u) du > 0 (cf. (10)),

we obtain

TB(s + h, s) ≥ µ(P + I)n−1

for all s ∈ R, where µ := ((n − 1)!)−1ebh−δρn−1 with δ :=

sups∈R α(s) < ∞. (Note that, in view of the boundedness of B
and (19), the function d and hence α is bounded on R.) This,
together with (2) and (3), implies that

γ
((
TB(s + h, s)

)T )
≥ µγ ((PT

+ I)n−1) =: θ > 0 (20)

for all s ∈ R. By the definition of the Perron vector, we have

Bk(t)p(tk + t) = A(tk + t)p(tk + t) = 0 (21)

for all k and t such that tk + t ≥ t0. From the second limit
relation in (14) and the slowly varying condition (9), we have
that p(tk + t) → η as k → ∞ for all t ∈ R. Therefore, letting
k = kj → ∞ in (21), we obtain that B(t)η = 0 for all t ∈ R. Thus,
η is an equilibrium of Eq. (18), i.e. η = TB(t, s)η for all t, s ∈ R.
Hence

z(s + h) − mη = TB(s + h, s)(z(s) − mη) (22)

for all s ∈ R. As a limit of Perron vectors, η is nonnegative
and normalized so that eTη = 1, while the mass conservation
property (7) and the definition of z imply that eT z(t) = m for all
t ∈ R. Therefore, z(t) − mη ∈ V for all t ∈ R. From this and (22),
by the application of Proposition 3, we conclude that

∥z(s + h) − mη∥ ≤ τ
((
TB(s + h, s)

)T )
∥z(s) − mη∥

for all s ∈ R. This, together with (5) and (20), implies that

∥z(s + h) − mη∥ ≤ (1 − θ )∥z(s) − mη∥ (23)

for all s ∈ R. As noted before, z is a bounded on R, and hence ∆ :=

sups∈R ∥z(s) − mη∥ < ∞. From (23), we find that ∆ ≤ (1 − θ )∆.
Since θ > 0, this implies that ∆ = 0. In particular, z(0) = mη,
and hence (cf. (15) and (17))

w = ξ − mη = z(0) − mη = 0.

Thus, the function y defined by (12) is bounded and the only
accumulation point of y at infinity is w = 0. Therefore, x(t) −
mp(t) = y(t) → 0 as t → ∞. □

4

The following example shows the importance of assump-
tion (10) in Theorem 5.

Example 7. Consider Eq. (1) with the Kirchhoff matrix-valued
coefficient A : [1, ∞) → R2×2 given by

A(t) =

⎛⎜⎝−
1 − cos

√
t

t
1 + cos

√
t

t
1 − cos

√
t

t
−

1 + cos
√
t

t

⎞⎟⎠
for t ≥ 1. Assumption (8) is fulfilled with

c(t) =
1 − cos

√
t

t
and P =

(
0 0
1 0

)
.

learly, c is bounded on [1, ∞). Since c ′ is bounded and c ′(t) → 0
s t → ∞, it follows that c is uniformly continuous and slowly
arying at infinity. Evidently, Γ (PT ) has a directed spanning tree.
or every t ≥ 1, the unique Perron vector p(t) = (p1(t), p2(t))T of
(t) is given by

(t) =
1
2

(
1 + cos

√
t, 1 − cos

√
t
)T

.

Since p′(t) → 0 as t → ∞, it follows that p : [1, ∞] → R2

is slowly varying at infinity. Let x = (x1, x2)T be an arbitrary
solution Eq. (1) with x1(1) + x2(1) = 1 so that m = m(x) = 1 and
x1(t) + x2(t) = 1 for all t ≥ 1. From Eq. (1), taking into account
that x2(t) = 1 − x1(t) for all t ≥ 1, we obtain

x′

1(t) = −
2
t
x1(t) +

1 + cos
√
t

t
for all t ≥ 1. It follows by elementary calculations that the general
solution of the latter linear differential equation has the form

x1(t) =
1
2

+

(
6
t

−
12
t2

)
cos

√
t +

(
2

√
t

−
12
t
√
t

)
sin

√
t +

C
t2

,

here C is a constant. Hence limt→∞ x1(t) = 1/2 and

1(4k2π2) − mp1(4k2π2) = x1(4k2π2) − 1 −→ −
1
2

̸= 0

as k → ∞. Therefore, the asymptotic relation (11) does not
hold. Clearly, all assumptions of Theorem 5 are satisfied with the
exception of (10).

Now we present an example which shows that the slowly
varying property of the Perron vectors in Theorem 5 cannot be
omitted.

Example 8. Consider Eq. (1) with a uniformly continuous and
bounded Kirchhoff matrix function

A(t) =

(
−(1 + sin2 t) 1 + cos2 t

1 + sin2 t −(1 + cos2 t)

)
for t ≥ 0. Assumption (8) is fulfilled with

c(t) ≡ 1 and P =

(
0 1
1 0

)
.

Clearly, Γ (PT ) has a directed spanning tree with root i = 1. The
nique Perron vector of A(t) is given by

(t) =
1
3
(1 + cos2 t, 1 + sin2 t)T for t ≥ 0.

For the solution x(t) = (x1(t), x2(t)T ) given by

x1(t) = 13 + 2 sin(2t) + 3 cos(2t),
x2(t) = 13 − 2 sin(2t) − 3 cos(2t),
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w
t

x

T
e
T

p

e have that m = m(x) = x1(0) + x2(0) = 26. It is easily verified
hat

(kπ ) − mp(kπ ) →
4
3
(−1, 1)T ̸= (0, 0)T as k → ∞.

herefore, conclusion (11) of Theorem 5 does not hold. Note that
xcept for the slowly varying condition (9) all assumptions of
heorem 5 are satisfied. Since(
t +

π

2

)
− p(t) =

cos(2t)
3

(−1, 1)T

has no limit as t → ∞, the slowly varying condition (9) is
violated for s = π/2.

Remark 9. The slowly varying condition (9) is automatically
satisfied if p(t) tends to a finite limit v ∈ Rn

+
as t → ∞. It

is easily seen that in this case the asymptotic relation (11) can
be written equivalently as limt→∞ x(t) = mv. This convergence
criterion may be viewed as an improvement of Garab and Pituk
(2021, Theorem 3.1) since it does not require that all components
of the limiting vector v ∈ Rn

+
are positive. Moreover, in contrast

to Garab and Pituk (2021), the lower bounds for the coefficients
of Eq. (1) are allowed to be time-dependent.

4. Conclusion

We studied a class of nonautonomous linear ordinary dif-
ferential equations with Kirchhoff coefficients which arises in
numerous applications. Under appropriate assumptions, it was
shown that every solution is asymptotic to a constant multiple
of the time-dependent Perron vector of the coefficient matrix as
t → ∞. A key assumption is the slowly varying property of the
Perron vectors at infinity. The main result is an improvement of
a recent convergence theorem.
5
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