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A B S T R A C T   

The eigenvalue method, suggested by the developer of the extensively used Analytic Hierarchy Process meth-
odology, exhibits right-left asymmetry: the priorities derived from the right eigenvector do not necessarily 
coincide with the priorities derived from the reciprocal left eigenvector. This paper offers a comprehensive 
numerical experiment to compare the two eigenvector-based weighting procedures and their reasonable alter-
native of the row geometric mean with respect to four measures. The underlying pairwise comparison matrices 
are constructed randomly with different dimensions and levels of inconsistency. The disagreement between the 
two eigenvectors turns out to be not always a monotonic function of these important characteristics of the matrix. 
The ranking contradictions can affect alternatives with relatively distant priorities. The row geometric mean is 
found to be almost at the midpoint between the right and inverse left eigenvectors, making it a straightforward 
compromise between them.   

1. Introduction 

“A suggestion for the prioritization of alternatives using the Perron- 
Frobenius right eigenvector of a pairwise comparison matrix has 
recently been made by T. Saaty. We note that use of the left eigenvectors is 
equally justified (as long as order is reversed).”1 

The Analytic Hierarchy Process (AHP) is one of the most popular 
decision-making techniques since it has been introduced by Saaty (1977, 
1980). It has a number of successful applications (Bhushan & Rai, 2007; 
Forman & Gass, 2001; Vaidya & Kumar, 2006; Vargas, 1990) and, 
simultaneously, several flaws identified in the literature (Csató, 2017; 
Csató & Petróczy, 2021; Genest, Lapointe, & Drury, 1993; Munier & 
Hontoria, 2021; Petróczy & Csató, 2021). 

The current paper deals with an issue in priority derivation from a 
given pairwise comparison matrix. Saaty has suggested using the right 
eigenvector for this purpose but there are many other methods (Choo & 
Wedley, 2004). In particular, Johnson et al. (1979) argue for the com-
ponentwise reciprocal of the left eigenvector as written in the motto 
above. Another strong competitor is the logarithmic least squares or row 
geometric mean (Crawford & Williams, 1985), mainly due to its strong 
axiomatic foundations (Barzilai, 1997; Barzilai, Cook, & Golany, 1987; 
Bozóki & Tsyganok, 2019; Csató, 2018; 2019; Fichtner, 1984; 1986; 
Lundy, Siraj, & Greco, 2017). 

In the following, these solutions will be compared using a Monte 
Carlo simulation approach, that is, the priority vectors of the three 
weighting procedures are evaluated on the basis of a large set of random 
pairwise comparison matrices. Even though a similar exercise has been 
attempted at least twice in the previous literature (Bozóki & Rapcsák, 
2008; Ishizaka & Lusti, 2006), independently of each other, we make 
important contributions compared to both preliminary studies: 

• Ishizaka & Lusti (2006) limit the investigation to at most seven al-
ternatives and matrices with an acceptable level of inconsistency. 
The simulation has some drawbacks because (1) the number of 
matrices for a given order is 500, which might be insufficient to 
derive robust results; and (2) the matrix entries can only be integers. 
Last but not least, the authors focus exclusively on the number of 
ranking contradictions and do not consider the differences in the 
priorities derived from the three methods.  

• Bozóki & Rapcsák (2008) examine the case of five alternatives. All 
matrix entries are chosen randomly, hence, the number of matrices 
with an acceptable level of inconsistency remains rather low. The 
authors only consider the frequency of rank reversals. 

Here, 3 million pairwise comparison matrices are generated for any 
given number of alternatives between four and nine such that each 
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interval of Saaty’s inconsistency ratio (Saaty, 1977) with a length of 
0.005 contains at least one thousand instances. The right and inverse left 
eigenvectors, as well as the row geometric mean, are evaluated ac-
cording to four measures: the Euclidean and Chebyshev distances, as 
well as the Kendall rank correlation coefficients of the normalised 
weight vectors, and the maximal ratios of the priorities corresponding to 
one alternative. Among them, only Kendall rank correlation depends on 
the ranking of the alternatives. 

Our comprehensive analysis yields several interesting results, some 
of them at least partially contradicting previous findings:  

• The row geometric mean is revealed to be an excellent compromise 
between the right and inverse left eigenvectors as it is almost at the 
midpoint between them, especially at a low level of inconsistency;  

• The differences between the three priority deriving methods do not 
always increase with the level of inconsistency if the latter is rela-
tively high (we refine the conclusion of Ishizaka & Lusti (2006, p. 
398));  

• The differences between the three priority deriving methods do not 
always increase with the number of alternatives (we refine the 
conclusion of Ishizaka & Lusti (2006, p. 398));  

• Three examples illustrate that (1) rank reversal between the right 
and inverse left eigenvectors may emerge for a slightly perturbed 
consistent matrix; (2) the right and inverse left eigenvectors can lead 
to a fully reversed order of the alternatives; (3) rank reversal between 
the right and inverse left eigenvectors might occur even if the pri-
orities of two alternatives are distant (this denies the conclusion of 
Ishizaka & Lusti (2006, p. 398)). 

The main reason for the different conclusions compared to Ishizaka 
& Lusti (2006) resides in the extension of our analysis to (a) a wider 
interval of inconsistency (inconsistency ratio CR < 0.5 rather than CR 
< 0.1); (b) a higher number of alternatives (up to nine instead of seven); 
(c) a broader set of comparison metrics. The expansion of the range of 
inconsistency can be justified since CR < 0.1 is an inflexible criterion 
and is too restrictive when the size of the matrix increases (Alonso & 
Lamata, 2006). Furthermore, the results are based on a much higher 
number of random matrices. 

The remainder of the study is organised as follows. The mathematical 
background is presented in Section 2. Section 3 reviews the related 
literature, and Section 4 outlines the simulation experiment. Section 5 
contains the main results. The paper is finished with a concise discussion 
in Section 6. 

2. Theoretical background 

An n × n matrix A = [aij] is called a pairwise comparison matrix if it is 
positive (aij > 0 for all i, j) and reciprocal (aji = 1/aij for all i, j). Its entry 
aij quantifies how many times alternative i is better/more important 
compared to alternative j. An important property of a pairwise com-
parison matrix is consistency: it is called consistent if aik = aijajk for all i,j,
k; otherwise, it is called inconsistent. 

Pairwise comparison matrices are mainly used to derive priorities for 
the alternatives. In the case of a consistent matrix, this is almost trivial 
since the matrix is generated by an appropriate weight vector, that is, 
there exists a vector w = [wi] such that aij = wi/wj for all i, j. For incon-
sistent matrices, several weighting techniques have been proposed in the 
literature (Choo & Wedley, 2004). Probably the two most popular pro-
cedures are the logarithmic least squares (LLSM) or row geometric mean 
(Crawford & Williams, 1985; De Graan, 1980; de Jong, 1984; Rabino-
witz, 1976; Williams & Crawford, 1980) and the eigenvector (Saaty, 
1977) methods. 

The logarithmic least squares method minimises the aggregated 
distances of the approximations in a logarithmic sense: 

∑n

i=1

∑n

j=1

[

log
(
aij
)
− log

(
wi

wj

)]2

→min.

The solution is provided by the geometric means of row elements, 
namely: 

wi

wj
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∏n

k=1
aik

n
√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∏n

k=1
ajk

n
√ .

The corresponding weight vector is denoted by wRGM. 
The eigenvector method is based on the right eigenvector associated 

with the dominant eigenvalue λmax of the pairwise comparison matrix: 

AwR = λmaxwR.

However, the matrix has also a left eigenvector associated with the 
same dominant eigenvalue λmax: 

wLA = λmaxwL.

If the pairwise comparison matrix is consistent, the componentwise 
inverse of the left eigenvector is the right eigenvector: wL

i = 1/wR
i . 

Therefore, it is reasonable to use the componentwise inverse of the left 
eigenvector, denoted by w− L in the following, to derive the priorities 
(Johnson et al., 1979). 

Finally, the (geometric) mean of the right and inverse left eigen-
vectors wRL = [wRL

i ] can be defined as 

wRL
i = wR

i w− L
i  

for all 1 ≤ i ≤ n. 
Several inconsistency measures have been suggested in the literature 

(Brunelli, 2018). In this paper, we use the first index proposed by Saaty 
(1977): 

CI =
λmax − n

n − 1
.

The value of CI is compared to the average CI of a high number of 
randomly generated pairwise comparison matrices, which is denoted by 
RI, in order to get the inconsistency ratio CR = CI/RI. According to 
Saaty, a pairwise comparison matrix can be accepted if CR does not 
exceed 0.1. A statistical interpretation of the 10% rule is provided by 
Vargas (1982). 

3. The significance of the problem 

A conceptual weakness of the eigenvector method is the issue of 
asymmetry (Bozóki & Rapcsák, 2008). The entry aij of a pairwise com-
parison matrix A gives the numerical answer to the question “How much 
does alternative i dominate alternative j?”. However, one can equiva-
lently ask the reciprocal question of “How much does alternative j 
dominate alternative i?” to arrive at matrix A⊤. The latter approach 
produces the right eigenvector of A⊤, which is the elementwise recip-
rocal of the right eigenvector of A. 

A crucial motivation behind the eigenvector method comes from the 
property of consistent pairwise comparison matrices that aij = wi/wj and 
wi = aijwj for all i,j. This system of linear equations leads almost directly 
to the matrix equation λw = Aw. However, aij = wi/wj can be equiva-
lently written as wj = ajiwi for all i, j, which implies the matrix equation 
A⊤w = λw. Obviously, the right eigenvector of A⊤ is the left eigenvector 
of A. However, the meaning of the entries in A⊤ is the opposite 
compared to the entries of A. Consequently, “we might just as well use a 
left eigenvector to prioritize in the general case as long as order reversal is 
allowed for” (Johnson et al., 1979, p. 62). 

It might also happen that the decision-maker misinterprets the task, 
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and provides all pairwise comparisons in a reversed order (Dodd, 
Donegan, & McMaster, 1995). This reversal results in the emergence of 
the left rather than the right eigenvector. Hence, “if these two vectors are 
not componentwise mutual inversions, it is impossible to say which is ‘correct’ 
(Dodd et al., 1995, p. 88).” 

In order to highlight further why the right-left asymmetry can be 
important, a simple group decision-making problem with two sets of 
preferences is considered. 

Example 1. Fig. 1 presents the numerical preferences of two decision- 
makers (DMs) for four alternatives. For instance, alternative S is judged 
to be twice more important as alternative T by DM1, but S is only half 
more important compared to T according to DM2. Indeed, the prefer-
ences of DM1 and DM2 are exactly the opposite. Therefore, it is natural 
to assign the same priorities to all alternatives S, T, U, V on the basis of 
the aggregated preferences of the two DMs. 

Take the associated pairwise comparison matrices A and B of DM1 
and DM2, respectively: 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 9

1 1 2 5

1 1/2 1 9

1/9 1/5 1/9 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1/9

1 1 1/2 1/5

1 2 1 1/9

9 5 9 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

The corresponding right eigenvectors are as follows (the sum of prior-
ities are normalised to 100): 

wR(A) = [ 32.42 35.02 28.21 4.35 ];

wR(B) = [ 8.86 9.05 11.04 71.05 ].

In group decision-making, there are essentially two ways to derive 
aggregated priorities for the alternatives: (1) aggregating the individual 
pairwise comparison matrices, and using a weighting method for the 
aggregated matrix (Aczél & Saaty, 1983); or (2) using a weighting 
method for the individual pairwise comparison matrices, and aggre-
gating these priorities (Basak & Saaty, 1993). Aczél & Saaty (1983) 
provide an axiomatic approach to show that individual matrices should 
be aggregated by the geometric mean when the aggregation of A and B 
= A⊤ results in a consistent matrix in which all entries are one. Then 
each alternative should have the same priority. 

On the other hand, any reasonable aggregation procedure of wR(A)

and wR(B) results in a higher weight for alternative T than for alternative 
S since the second entry of both individual weight vectors is higher than 
the first entry. 

Note that in this case, the disturbingly different implications of 
techniques (1) and (2) are caused exclusively by the difference between 
the right and inverse left eigenvectors. 

According to Example 1, a potential cause of the well-known dif-
ference between aggregation procedures (1) and (2) for the eigenvector 
method can be the right-left asymmetry. Thus, using the right 

eigenvector can be strongly debated in group decision-making if the 
right and inverse left eigenvectors differ. Based on these arguments, we 
agree with Johnson et al. (1979, p. 62) that “there is no reason to believe 
that utilization of a right eigenvector yields a ‘better’ scheme than the left.” 

4. Literature review 

While the components in the normalised left eigenvector of a pair-
wise comparison matrix with three alternatives are the reciprocals of the 
components of the normalised right eigenvector, this is not necessarily 
the case when the number of alternatives is at least four. This problem 
has been identified first by Johnson et al. (1979), who presented the 
following example: 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 3 1/3 1/2

1/3 1 1/6 2

3 6 1 1

2 1/2 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

Here, the right eigenvector—if the sum of priorities equals 100—is: 

wR(A) = [ 18.44 15.19 43.64 22.73 ].

Consequently, the fourth alternative is ranked above the first. 
The left eigenvector is 

wL(A) = [ 24.82 38.78 10.49 25.91 ],

hence, the elementwise reciprocal left eigenvector is 

w− L(A) = [ 20.14 12.89 47.67 19.29 ],

implying that the first alternative is preferred to the fourth. 
The consistency ratio of matrix A is CR(A) ≈ 0.331, which cannot be 

accepted according to Saaty’s 10% rule. 
Johnson et al. (1979) have also generated 364 random matrices of 

order six with CI < 1 and found 164 ranking interchanges between the 
right and the componentwise reciprocal left eigenvectors. In addition, 
the authors note that the disagreement can occur for arbitrarily small 
positive values of CR due to continuity. 

For n ≥ 4, the reciprocal property between the left and right eigen-
vector components holds not only if the matrix is consistent (DeTurck, 
1987). In the case of the pairwise comparison matrix 

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 8/5 1/4 4

5/8 1 5/8 10

4 8/5 1 4

1/4 1/10 1/4 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

the right eigenvector is 

Fig. 1. The preferences of two decision-makers in Example 1.  
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wR(B) = [ 2/9 5/18 4/9 1/18 ],

and the left eigenvector is 

wL(B) = [ 1/4 1/5 1/8 1 ],

thus, w− L(A) = wR(A). However, CR(B) is higher than 0.1. 
An acceptable inconsistency ratio does not guarantee that the right 

and inverse left eigenvectors imply the same ranking of the alternatives 
(Dodd et al., 1995). Let 

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 3 9 9

1 1 5 8 5

1/3 1/5 1 9 5

1/9 1/8 1/9 1 1

1/9 1/5 1/5 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where CR(C) ≈ 0.082. The priorities from the right eigenvector are 

wR(C) = [ 36.5652 38.9564 16.7155 3.4693 4.2936 ],

and the priorities from the componentwise reciprocal of the left eigen-
vector are 

w− L(C) = [ 40.6431 36.4208 15.0669 3.4391 4.4302 ].

Therefore, the first alternative is the best by the left eigenvector but the 
second should be chosen by the right eigenvector. 

Ishizaka & Lusti (2006) compare all the three weighting techni-
ques—logarithmic least squares method, right, and inverse left eigen-
vectors—defined in Section 2 for five intervals of the inconsistency ratio 
(0–0.02, 0.02–0.04, 0.04–0.06, 0.06–0.08, 0.08–0.1) and three to seven 
alternatives. The underlying matrices are generated randomly. Ranking 
contradictions are found to increase linearly with the level of inconsis-
tency and the dimension of the matrix. However, the number of matrices 
in each case (100) is rather low, the matrix entries are integers, and the 
authors focus only on the ranking of the alternatives. 

Bozóki & Rapcsák (2008, Section 6) examine 100 million randomly 
generated pairwise comparison matrices of order five to estimate the 
frequency of rank reversal between the weights computed from the right 
and inverse left eigenvectors. This measure is found to increase along 
with the inconsistency ratio CR. However, the entries of the pairwise 
comparison matrix are chosen independently of each other, thus, the 
number of matrices for small values of CR is relatively small. Further-
more, it remains to be seen whether the same result holds if the number 
of alternatives varies. 

Tomashevskii (2015) argues that the derived weights cannot be used 
to rank the alternatives without taking their errors into account, and the 
rank reversal between the right and the inverse left eigenvectors occurs 
only because the errors are high. Consequently, the means do not 
contain any information on the ranking of the corresponding 
alternatives. 

5. The design of numerical experiments 

Our matrix generation algorithm is based on constructing a consis-
tent pairwise comparison matrix and perturbing its elements. The 
technique of Szádoczki, Bozóki, Juhász, Kadenko, & Tsyganok (2023) is 
followed as it improves the method of Szádoczki, Bozóki, & Tekile 
(2022). This consists of the following steps: 

1. Choosing n uniformly distributed random number wi from the in-
terval [1; 9]. Computing a consistent pairwise comparison matrix A =
[aij], where aij = wi/wj for all i, j.  

2. For all i ∕= j, either aij or aji is perturbed depending on which entry is 
higher. 

If aij ≥ 1, then the perturbed entry âij is 

âij =

⎧
⎪⎪⎨

⎪⎪⎩

aij + εij if aij + εij ≥ 1

1
/[

1 − εij −
(
aij − 1

)]
otherwise,

(1)  

where εij is a uniformly distributed random number from the interval 
[ − Δ;Δ]. 

If aij < 1, then aji > 1, and âji is computed analogously to (1).  
3. The reciprocity of the matrix is kept by adjusting the pair of the 

perturbed entry. 

This process ensures that the perturbed elements are uniformly 
distributed around the original aij on the scale where the distance be-
tween 1/b and 1/c equals the distance between b and c, see Szádoczki 
et al. (2023, Fig. 1). 

We consider three different values of parameter Δ (1, 2, 3) and six 
dimensions (4 ≤ n ≤ 9) for which 1 million matrices are generated, 
respectively (altogether 18 million). For any matrix, the inconsistency 
ratio and the weight vectors according to the three techniques presented 
in Section 2 are calculated. 

The distribution of the pairwise comparison matrices with respect to 
the level of inconsistency is shown in Fig. 2. If Δ = 1, almost all matrices 
have an inconsistency ratio below 0.1, except for n = 4. As the dimen-
sion of the matrix increases, the curves for a given Δ are more peaked 
and less asymmetric, meaning that inconsistency is more strongly 
determined by the maximal perturbation. This crucial observation is not 
reported in Szádoczki et al. (2023) since the authors provide only the 
average value of CR. The reader is directed to Szádoczki et al. (2023) for 
other characteristics of the simulated matrices. 

In order to compare two priority vectors u and v normalised by 
∑n

i=1ui = 1 and 
∑n

i=1vi = 1, respectively, four metrics are considered:  

• Euclidean distance: 

deuc(u, v) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1
(ui − vi)

2
√

; (2)    

• Chebyshev distance: 

dcheb(u, v) = max{|ui − vi| : 1 ≤ i ≤ n}; (3)    

• Maximal ratio: 

ω(u, v) = max
{

max
{

ui

vi
;
vi

ui

}

: 1 ≤ i ≤ n
}

; (4)    

• Kendall tau: 

τ(u, v) =
#c(u, v) − #d(u, v)

n(n − 1)/2
; (5)   

where #c (#d) denotes the number of (dis)concordant pairs 1 ≤ i, j ≤ n 
when ui > uj and vi > vj (vi < vj). 

The Euclidean distance (2) is the length of a line segment between 
the two vectors. The Chebyshev distance (3) depends only on the 
greatest difference along any coordinate. 

The maximal ratio (4) is inspired by the Chebyshev distance but 
focuses on ratios instead of differences since the Chebyshev distance 
does not reflect high relative deviations in the weights of lower-ranked 
alternatives. For instance, let u = [0.5; 0.4; 0.1], v = [0.5; 0.3; 0.2], and 
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w = [0.6; 0.3; 0.1]. Then dcheb(u, v) = dcheb(u,w) = 0.1 but ω(u,v) = 2 >
4/3 = ω(u,w). Clearly, the Chebyshev distance does not take into ac-
count whether the switching in priorities happens between the top two 
(u and w) or the bottom two (u and v) alternatives. However, the latter is 
more serious in terms of relative changes, which might be important if 
the priorities are used, for example, to allocate some resources 
proportionally. 

Finally, Kendall tau (5) is a standard rank correlation coefficient 
(Kendall, 1938). Its range is [− 1; 1] with − 1 showing two opposite 
rankings and +1 indicating two identical rankings. In contrast to the 
other three measures, here a higher value is associated with a stronger 
agreement between the two weight vectors. 

6. Results 

For each of the four metrics (2)–(5) and each interval of the incon-
sistency ratio CR (resolution: 0.005), we compute  

• the average value of the metric between the right eigenvector wR and 
the inverse left eigenvector w− L for all pairwise comparison matrices 
at the given level of inconsistency;  

• the average value of the metric between the right eigenvector wR and 
the (geometric) mean of the right and inverse left eigenvectors wRL 

for all pairwise comparison matrices at the given level of 
inconsistency;  

• the average value of the metric between the right eigenvector wR and 
the row geometric mean weight vector wRGM for all pairwise com-
parison matrices at the given level of inconsistency;  

• the probability that the row geometric mean weight vector wRGM is 
not farther from the right eigenvector wR than the inverse left 
eigenvector w− L, based on all pairwise comparison matrices at the 
given level of inconsistency. 

In order to ensure the robustness of the results, only the inconsis-
tency intervals with at least one thousand matrices are shown; this ac-
counts for the smaller range in the case of higher dimensions (cf. Fig. 2). 

Fig. 3 uses the Euclidean, while Fig. 4 follows the Chebyshev 
approach to quantify the distances of the weights. In the case of average 

Fig. 2. The distribution of randomly generated matrices according to their inconsistency ratio CR (sample size: 106 in each case; resolution of the intervals: 0.005).  
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distances, the shapes of the lines are almost indistinguishable for a given 
n. For small levels of inconsistency, the distances between the right and 
inverse left eigenvectors increase almost linearly as a function of 
inconsistency, which coincides with the finding of Ishizaka & Lusti 
(2006). However, the growth slackens and the maximum distance is 
reached for a given value of CR somewhere between 0.22 (if n = 9) and 
0.4 (if n = 5). The only exception is n = 4, when a higher inconsistency 
is associated with a higher distance between the two eigenvectors. 

On the other hand, the distance between the (right) eigenvector and 
the row geometric mean increases monotonically, albeit the curve is 
almost flat at higher levels of inconsistency. If CR does not exceed 10%, 
that is, inconsistency can be accepted according to the criterion of Saaty, 
then the logarithmic least squares method is essentially at the midpoint 
between the right and inverse left eigenvectors, and is close to the 
geometric mean of the two eigenvectors. This seems to be a quite 
powerful argument for using the row geometric mean method to derive 
the weights. 

Since the higher average distance between the two eigenvectors wR 

and w− L compared to the average distance between wR and the row 

geometric mean wRGM may be misleading, the probability that wR is 
closer to wRGM than to w− L has also been calculated. If CR < 0.1, this is 
almost guaranteed for the Chebyshev distance, while the likelihood is 
still above 98% for the Euclidean distance. The probability exceeds 80% 
even at higher levels of inconsistency, and it is increasing with the 
number of alternatives at a given value of CR, except for 4 ≤ n ≤ 5 and 
the Chebyshev distance. 

Fig. 5, which focuses on the mean maximal ratios of the priorities, 
reinforces the findings from Figs. 3 and 4. Consequently, the cardinal 
difference between the right and inverse left eigenvectors, as well as 
between the (right) eigenvector and the row geometric mean is robust 
and almost independent of the measure chosen. 

In contrast to the previous three metrics, Kendall tau considers only 
the rankings implied by the weights. Since a higher value shows a 
stronger similarity, Fig. 6 plots the difference of the average Kendall tau 
from its theoretical maximum of one. The number of ranking contra-
dictions generally increases along with the level of inconsistency, but 
two breaks appear in the lines, especially for higher n, which are prob-
ably caused by the three different values for parameter Δ. Ishizaka & 

Fig. 3. The Euclidean distances of weight vectors as a function of the inconsistency ratio CR (resolution of the intervals: 0.005).  
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Lusti (2006, Fig. 3) present a similar result based on a much smaller 
number of randomly generated matrices. 

However, according to Ishizaka & Lusti (2006, Fig. 4), the ranking 
contradiction phenomenon increases linearly with the dimension of the 
matrix because the possibility of a reversal rises if there are more al-
ternatives. Fig. 6 does not fully support this conclusion: the value of 
mean Kendall tau is about the same for a given inconsistency interval if 
the number of alternatives is at least seven (e.g. about 0.9 if CR is 
approximately 0.1). Again, the difference between the (right) eigen-
vector and the row geometric mean is only slightly larger than the dif-
ference between the right eigenvector and the (geometric mean) of the 
two eigenvectors. In addition, the ranking implied by the row geometric 
mean is not farther from the ranking implied by the right eigenvector 
than the ranking implied by the left eigenvector with a probability of at 
least 95% (except for n = 4, where this remains true only if CR < 0.2). 
Hence, the row geometric mean seems to be a reasonable compromise 
between the two eigenvectors even from an ordinal point of view. 

Besides the results based on a high number of random pairwise 
comparison matrices, our simulations have provided some interesting 

examples that are worth further consideration. First, according to 
Johnson et al. (1979, p. 63), the disagreement between the right and 
inverse left eigenvectors can occur at arbitrarily small positive values of 
inconsistency. For the pairwise comparison matrix 

M(1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 0.4759 0.9832 0.4025

2.1011 1 1.9975 0.7374

1.0171 0.5006 1 0.3704

2.4842 1.3560 2.6998 1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

the weights from the right eigenvector are 

wR( M(1)) = [ 15.042 30.274 15.037 39.647 ],

and the weights from the componentwise reciprocal of the left eigen-
vector are 

w− L( M(1)) = [ 15.036 30.281 15.049 39.635 ].

Fig. 4. The Chebyshev distances of weight vectors as a function of the inconsistency ratio CR (resolution of the intervals: 0.005).  
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Rank reversal arises between the first and the third alternatives in the 
last two positions, although CR(M(1)) ≈ 0.0007. Therefore, a class of 
pairwise comparison matrices with minimal inconsistency can be sought 
such that the right and inverse left eigenvectors lead to a different 
ranking of the alternatives, similar to the issue of Pareto inefficiency 
(Bozóki, 2014). 

Second, the left and right eigenvector components might imply an 
opposite order of the alternatives. In the case of the pairwise comparison 
matrix 

M(2) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1.624 0.574 1.072 1.054

0.616 1 1.132 1.089 1.269

1.743 0.884 1 1.515 0.467

0.933 0.919 0.660 1 1.694

0.949 0.788 2.140 0.590 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

the priorities from the right eigenvector are 

wR( M(2)) = [ 19.75 19.16 20.85 19.53 20.71 ],

and the priorities from the componentwise reciprocal of the left eigen-
vector are 

w− L( M(2)) = [ 20.25 20.55 19.31 20.27 19.62 ].

Hence, the ranking of the alternatives is 3 ≻ 5 ≻ 1 ≻ 4 ≻ 2 in the former 
case, which is reversed to 2 ≻ 4 ≻ 1 ≻ 5 ≻ 3 in the latter case. The 
inconsistency ratio is CR(M(2)) ≈ 0.078. 

Third, it has been thought that “Only very close priorities suffer from 
ranking contradictions” (Ishizaka & Lusti, 2006, p. 398). Even though the 
exact meaning of very close remains obscure, the following example 
probably disproves this statement: 

Fig. 5. The maximal ratios of weight vectors as a function of the inconsistency ratio CR (resolution of the intervals: 0.005).  
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M(3) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.371 2.013 5.389 0.243

2.698 1 4.596 7.527 0.736

0.497 0.218 1 2.321 0.167

0.186 0.133 0.431 1 0.385

4.120 1.359 5.973 2.598 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where the weights from the right eigenvector are 

wR( M(2)) = [ 15.26 33.23 7.74 5.68 38.08 ],

and the weights from the componentwise reciprocal of the left eigen-
vector are 

w− L( M(2)) = [ 15.29 37.84 8.55 4.93 33.39 ].

Consequently, the best alternative is the fifth according to the right and 
the second according to the inverse left eigenvector. The absolute value 
of the difference between the weights of the second and the fifth alter-

natives is 4.85 and 4.44, respectively, if the sum of weights is normalised 
to 100. The inconsistency ratio is CR(M(3)) ≈ 0.0993. 

7. Conclusions 

The paper has addressed one of the most serious shortcomings of the 
eigenvector method, a widely used priority deriving technique for 
pairwise comparison matrices. In particular, we have compared the 
weights implied by the right and inverse left eigenvectors, as well as by 
the row geometric mean for a large set of randomly generated matrices. 
The two eigenvectors turned out to lead to different priorities and 
rankings relatively often, and their disagreement is not necessarily a 
monotonic function of the level of inconsistency and the number of al-
ternatives. Although the problem is less threatening if inconsistency 
remains below the acceptable threshold, the left and right eigenvector 
components may imply an opposite priority order or a rank reversal 
between alternatives with distant weights even if the value of the 
inconsistency ratio does not exceed 10%. 

There are at least two important conclusions to be drawn from these 

Fig. 6. The Kendall rank correlation coefficients of weight vectors as a function of the inconsistency ratio CR (resolution of the intervals: 0.005).  
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results. Our findings uncover that the row geometric mean is almost at 
the midpoint between the principal right and inverse left eigenvectors, 
hence, it is a reasonable compromise between them. Therefore, a novel 
argument is provided for following this method, which is also easy to 
calculate and satisfies many attractive theoretical properties. Further-
more, we have reinforced an important message of Johnson et al. 
(1979): assuming the existence of a single ranking or priority vector is 
usually too demanding. Rather, a range of possible orderings and 
weights can be allowed (instead of a single ranking and exact priorities) 
such that the range is wider for a higher level of inconsistency and un-
certainty in the input data. 

Finally, this research is far from finished and can be continued in 
several directions. First, the disagreement between the two eigenvectors 
is worth analysing on particular classes of pairwise comparison 
matrices. For instance, following the work of DeTurck (1987), it would 
be interesting to characterise the set of matrices for which the reciprocal 
property between the left and right eigenvector components hold. Sec-
ond, a new weighting method can be introduced by aggregating the two 
eigenvectors appropriately. Third, other deficiencies of the eigenvector 
method, such as Pareto inefficiency (Blanquero, Carrizosa, & Conde, 
2006; Bozóki & Fülöp, 2018), might be studied in a similar Monte Carlo 
experiment. 

Acknowledgments 
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Petróczy, D. G., & Csató, L. (2021). Revenue allocation in Formula One: A pairwise 
comparison approach. International Journal of General Systems, 50(3), 243–261. 

Rabinowitz, G. (1976). Some comments on measuring world influence. Conflict 
Management and Peace Science, 2(1), 49–55. 

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of 
Mathematical Psychology, 15(3), 234–281. 

Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource 
Allocation. New York: McGraw-Hill.  
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L. Csató                                                                                                                                                                                                                                           

http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0001
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0002
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0003
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0004
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0005
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0006
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0007
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0008
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0009
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0010
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0011
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0012
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0013
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0014
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0015
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0015
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0016
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0017
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0017
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0018
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0019
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0020
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0021
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0021
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0022
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0022
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0023
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0024
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0025
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0026
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0026
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0026
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0027
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0027
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0028
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0029
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0030
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0031
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0031
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0032
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0032
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0033
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0033
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0034
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0034
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0035
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0035
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0036
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0036
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0036
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0037
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0037
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0037
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0038
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0038
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0039
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0039
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0040
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0040
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0041
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0041
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0042
http://refhub.elsevier.com/S0377-2217(23)00725-7/sbref0042

	Right-left asymmetry of the eigenvector method: A simulation study
	1 Introduction
	2 Theoretical background
	3 The significance of the problem
	4 Literature review
	5 The design of numerical experiments
	6 Results
	7 Conclusions
	 Acknowledgments
	References


