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Abstract 

Control design for safe and time-efficient motion of automated vehicles in roundabout scenarios poses various challenges, 
especially adaptation to the actual traffic scenario and coordination of the vehicles. This paper proposes the design of a hierarchical 
motion control with learning feature for roundabout scenarios. The control is designed on two levels, such as on cloud level and 
on vehicle level. The control on the cloud level is designed by using reinforcement learning (RL), with which the energy efficient 
motion of the vehicle is achieved. The vehicle level contains a robust controller and a supervisor, with which the collision avoidance 
of the vehicles is guaranteed. The proposed control on a Hardware-in-the-Loop environment with small-scaled indoor vehicles in 
augmented reality is implemented. The effectiveness of the control and the safe motion of the automated vehicles under multi-
vehicle scenario are demonstrated. The provided scenario illustrates that safe, i.e., collision-free motion of all automated vehicles 
can be guaranteed. 
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1. Introduction 

Development of highly automated vehicles and intelligent traffic systems encourages the academic researchers to 
analyze the future control challenges of autonomous vehicles. Handling of complex traffic situations with fully 
autonomous vehicles and other participants - like human-driven vehicles - are known as current control design tasks. 
Collision avoidance, the minimization of traveling time or passenger comfort in traffic scenarios, such as crossing 
roundabouts, are basic constraints in the design of control strategies for autonomous vehicles. This paper focuses on 

 

 
* Corresponding author. Tel.: +36-1-279-6171; fax: +36-1-466-7503. 

E-mail address: peter.gaspar@sztaki.hu 

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2022) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2022 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the Transport Research Arena (TRA) Conference  

Transport Research Arena (TRA) Conference 

Collision-free motion control with learning features for automated 
vehicles in roundabouts 

Balázs Németha, Zsófia Farkasa,b, Zoltán Antala, Dániel Fényesa, Péter Gáspára,* 
aInstitute for Computer Science and Control (SZTAKI), Eötvös Loránd Research Network (ELKH), Kende utca 13-15., 1111 Budapest, Hungary 

bBudapest University of Technology and Economics, Department of Control for Transportation and Vehicle Systems, 
Stoczek utca 2., 1111 Budapest, Hungary  

Abstract 

Control design for safe and time-efficient motion of automated vehicles in roundabout scenarios poses various challenges, 
especially adaptation to the actual traffic scenario and coordination of the vehicles. This paper proposes the design of a hierarchical 
motion control with learning feature for roundabout scenarios. The control is designed on two levels, such as on cloud level and 
on vehicle level. The control on the cloud level is designed by using reinforcement learning (RL), with which the energy efficient 
motion of the vehicle is achieved. The vehicle level contains a robust controller and a supervisor, with which the collision avoidance 
of the vehicles is guaranteed. The proposed control on a Hardware-in-the-Loop environment with small-scaled indoor vehicles in 
augmented reality is implemented. The effectiveness of the control and the safe motion of the automated vehicles under multi-
vehicle scenario are demonstrated. The provided scenario illustrates that safe, i.e., collision-free motion of all automated vehicles 
can be guaranteed. 
© 2022 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the Transport Research Arena (TRA) Conference 
Keywords: automated vehicles; learning features; roundabouts; collision-free motion; control design; 

1. Introduction 

Development of highly automated vehicles and intelligent traffic systems encourages the academic researchers to 
analyze the future control challenges of autonomous vehicles. Handling of complex traffic situations with fully 
autonomous vehicles and other participants - like human-driven vehicles - are known as current control design tasks. 
Collision avoidance, the minimization of traveling time or passenger comfort in traffic scenarios, such as crossing 
roundabouts, are basic constraints in the design of control strategies for autonomous vehicles. This paper focuses on 

 

 
* Corresponding author. Tel.: +36-1-279-6171; fax: +36-1-466-7503. 

E-mail address: peter.gaspar@sztaki.hu 



3546 Balázs Németh  et al. / Transportation Research Procedia 72 (2023) 3545–35522 Balázs Németh et. al / Transportation Research Procedia 00 (2022) 000–000 

that problem, i.e., crossing roundabouts under multi-vehicle traffic context. In Morsali et. al (2021) has been designed 
a geometrical set, based on support vector machine method, to calculate trajectories for autonomous vehicles for safe 
crossing of roundabouts. The control method defines collision regions to contribute to the increase of traveling 
comfort. In Wang et. al (2012) has been proposed a collision avoidance algorithm for autonomous vehicles to follow 
the trajectory based on state estimation. A warning function and the approach of force field has been built in the 
method for the vehicles to avoid conflict areas and crossing the roundabout in safety. 

Roundabouts without traffic signals have also been deeply analyzed according to different aspects of the control of 
traffic and of autonomous vehicles. The motion and driving behavior of autonomous vehicles in complex traffic 
situations have been described and analyzed for the design of control algorithm for vehicles to cross roundabouts, 
contributing to safe traffic, see Nemeth et. al (2019). In Perez et. al (2011) has been designed a coordination scheme 
including trajectory planning and lateral control of vehicles in roundabouts. The proposed modular algorithm has been 
allowed to be tested in different situations. The behavior profiles of human drivers and a decision-making algorithm 
to coordinate autonomous vehicles in roundabout scenarios have been combined by Rodrigues et al. (2017). Based on 
drivers’ behavior, a decision-making framework to guarantee the safe and efficient motion of automated vehicles in 
roundabouts has been proposed by Hang et. al (2021). In that work game theory approaches have been built in the 
presented framework while model predictive control is used for motion prediction of the vehicles. In Debada et. al 
(2017) has been designed a control strategy using virtual vehicles approach to consider maneuvers of and create 
cooperation with other vehicles. The proposed algorithm guarantee balance in waiting time and smooth circulating 
speed in urban roundabout scenarios. 

In the control design of autonomous vehicles in complex traffic situations, the application of enhanced machine-
learning-based methods has become widespread in the scientific research community. Several papers have been 
focused on learning approaches to be built in the presented coordination algorithms to guarantee more efficient passage 
of the vehicles through roundabouts. For example, in Deveaux et. al (2021) has been analyzed the driving risks, e.g., 
collisions, to be the base for the control of autonomous vehicles in roundabouts. Considering Time-To-Collision data, 
a machine-learning-based algorithm together with a supervisor predict the probability of exit motion of vehicles to 
guarantee safe urban traffic. In Konstantinidis et. al (2021) and in Chalaki et. al (2020) have been used multi-agent 
reinforcement learning methods for the control of highly automated vehicles in roundabouts. In Konstantinidis et. al 
(2021) all vehicles drive according to the same control policy having observed only the environment. On the other 
hand, Chalaki et. al (2020) has proposed a zero-shot transfer of autonomous vehicle policy to control vehicles in 
roundabouts while improve different performances like traveling time or speed profiles. A Q-learning algorithm for 
autonomous vehicles to cross the roundabouts safely has been proposed by Garcia et. al (2019). By the defined Qvalue 
function the vehicles follow the appropriate behaviors for maneuvering to drive through the roundabout without 
collision. 

To summarize the existing results, the research activities have focused on the control methods of autonomous 
vehicles in roundabouts, and thus, several conclusions can be appointed. Firstly, numerous modern approaches have 
been proposed yet, it is necessary to design control method to be used for autonomous vehicles to drive complex 
maneuvers in various traffic scenarios. Secondly, several learning approaches have been defined for the coordination 
of autonomous vehicles in complex roundabout scenarios. Nevertheless, control algorithms - guaranteed safety 
conditions for the vehicles in crossing a roundabout - are needed to be developed. Furthermore, it is necessary to 
design additional communication and control architectures, e.g. cloud-based solutions, for the widespread 
implementation and application of CAV technologies in case of roundabout traffic situations. 

This paper proposes a hierarchical control for automated vehicles, with which their safe and efficient motion in 
roundabouts under multi-vehicle environment can be guaranteed. The proposed hierarchy contains a vehicle level 
control and a cloud level control. The aim of the cloud level control is to achieve enhanced control performances using 
the high computation capacity of the cloud. Thus, reinforcement learning on the cloud level for achieving minimum 
energy consumption of the vehicles is implemented. Moreover, on the vehicle level the safety requirement, i.e., 
collision avoidance, is guaranteed. The advantage of the solution is that safe performance specifications even at the 
degradation of the communication in the network can be guaranteed. Significant novel content of this work is the 
implementation of the method using indoor test vehicle environment with cloud connection. 
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The paper is organized as follows. The hierarchical control structure with the design on the vehicle level and on 
the cloud level is presented in Section 2. The focus of Section 3 is the demonstration of the effectiveness of the method 
under Hardware-in-the-Loop (HiL) implementation. Finally, the paper in Section 4 is concluded. 

2. Hierarchical control for automated vehicles with performance guarantees 

The architecture of the hierarchical control with each levels is illustrated in Fig. 1(a). The goal of the control is to 
provide single motion input u(k) for a given individual vehicle, i.e., longitudinal acceleration command a1(k), with 
which the vehicle moves along its route. u(k) is computed by the supervisor, such as u(k) = uK(k) +∆(k), where uK(k) is 
the output of the robust controller on the vehicle level. ∆(k) ∈ Δ̂ is an additional term of the control input and Δ̂ is the 
finite domain of ∆(k). In the control architecture, uL(k) is a candidate control input, which is suggested by the RL-
based controller. The value of ∆(k) is a result of an optimization process in the supervisor, which minimizes the 
difference between u(k) and uL(k) and guarantees collision avoidance between the automated and the other vehicles 
(Nemeth et. al (2021)). 

 
 

 

Fig. 1. (a) Illustration of the control architecture; (b) Vehicle interactions in roundabout. 

The constraint between the vehicles through a method of conflict points is formulated. Roundabout can be handled 
as a complex scenario with intersection and vehicle following tasks, i.e., safe motion requires the modification of the 
conflict point during the motion of the vehicle, see Fig. 1(b). In case of entering into the roundabout the conflict point 
can be defined as the crossing of the vehicle routes. After entering into roundabout, automated vehicle must follow 
preceding vehicle. In this case, the actual position of the preceding vehicle is the continuously varying conflict point. 
The aim of the constraint is to keep safety distance ssafe between automated and other vehicles, e.g., further automated 
vehicles or human-driven vehicles: s2

1(k + 1) + s2
2(k + 1) ≥ s2

safe, where k + 1 represents the next time step. 
Thus, the constrained optimization problem of the supervisor for n number of vehicles is formed as 
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The solution of the optimization problem (1) is ∆(k), from which the control input u(k), as the sum of uK(k) and ∆(k) 
is resulted. 

The computation of uL(k) is resulted by a neural network, which has been trained through a reinforcement learning 
process. The model for the learning process contains the supervisor, the robust controller and the vehicle-traffic 
environment. Due to the incorporation of the supervisor and the robust controller, the avoidance of the collision during 
the training process of the agent in every episode is guaranteed. The goal of the neural network is to improve the 
economy performance of the automated vehicle, i.e., the minimization of u. Moreover, it is also recommended to learn 
the decisions of the supervisor, which means that (u(k) − uL(k))2 is recommended to minimize. Thus, the reward 
function r(k) is composed as follows: 

r(k) = −Q1u2(k) − Q2(u(k) − uL(k))2,    (2) 

where Q1 and Q2 positive values are design parameters, which scale the importance of each term in r(k). 
The goal of the reinforcement learning process is to maximize reward (2) during the episodes. In this work deep 

deterministic policy gradient (DDPG) for the training process of the agent is carried out. It is a model-free, off-policy 
reinforcement learning method (Lillicrap et. al (2016)) in an actor-critic structure, which computes an optimal policy 
that maximizes the long-term reward. The observations, i.e., measured signals of the neural network are s1,i(k) value, 
u(k − 1), uL(k − 1) and uK(k). The output of the RL-based controller is uL(k), which is a candidate control input for 
advising purposes. 

3. Implementation of the motion control algorithm 

The goal of this section is to propose the effectiveness of the algorithm through its implementation on small-scaled 
test vehicles. In the demonstration a Hardware-in-the-Loop (HiL) environment has been used, in which augmented 
reality (AR) and multiple indoor vehicles are contained. The goal of the presented example, i.e., motion of automated 
vehicles in a roundabout scenario, is to show the safe motion of the automated vehicles, which use the proposed 
control algorithm. The roundabout example in Fig. 2 is illustrated. The roundabout has anticlockwise circulation and 
three entrance/exit connections. The safety performance requirement against the vehicles is to keep at least ssafe = 1m 
distance from each other. 

 

Fig. 2. Illustration of the roundabout example. 
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In the example three automated vehicles are involved, two of them are real physical small-scaled vehicles and one 

of them is virtual vehicle in the AR. The scheme of the HiL architecture is illustrated in Fig. 3. The positions of the 
physical vehicles through OptiTrack motion capture system are measured and this information via ROS network is 
transferred. In the architecture the motions of the virtual vehicles on a PC, as a node of the ROS network, are simulated. 
These motions in the AR on a tablet are visualized. On the tablet the Android-based Unity environment with Vuforia 
AR engine is used, with which the pose of the tablet, related to a fixed marker on the floor is estimated. From the 
viewpoint of control implementation, the RL-based control on the cloud is found, and the robust control with 
supervisor on the physical vehicles (or on the PC for virtual vehicles) are installed. The lateral motion of the physical 
vehicle based on their lateral error from the centerline through a PID controller is influenced. 

 
 

 

Fig. 3. Scheme of the HiL architecture with multiple vehicles. 

Some scenes of the simulation scenario are illustrated in Fig. 4. At the beginning of the scenario vehicle 1 and 
vehicle 2 are in conflict, see Fig. 4(a). Although vehicle 1 decides to enter into the roundabout at Entrance I., but the 
distance between vehicle 1 and vehicle 2 is kept above ssafe, see Fig. 5(d) around 1.5s. The avoidance of the collision 
the achieved by the reduction of u2 (see Fig. 5(b)), which induces the reduction of v2, as it is shown in Fig. 5(c). In 
Fig. 4(b) the conflict of vehicle 1 and vehicle 3 is shown, which results in the speed reduction of vehicle 1, see Fig. 
5(c) after 2s. For a short time between 2s...4s, until vehicle 2 does not leave the roundabout at Exit II. (see Fig. 4(c)), 
all of the vehicles move together. In this phase of the scenario, s1 and s2 have small values, but ssafe has been kept, see 
Fig. 5(d). At the last part of the scenario, vehicle 1 follows vehicle 3 and both vehicles leave the roundabout at Exit I. 
The motion of the vehicles together with the characteristics of s1 (see Fig. 5(d)) demonstrate that the proposed motion 
control algorithm is able to guarantee safe vehicle following and the handling of vehicle interactions. 

Finally, it is suggested to compare the signals of uL and u for each vehicle, see Fig. 5(a)-(b). The objective of the 
supervisor is defined by (1), i.e., the difference between u and uL must be minimized, while the constraints of the 
optimization are kept. It can be seen that the characteristics of u and uL for all vehicles are close to each other. 
Nevertheless, the difference between u and uL guarantees the safe motion of the automated vehicles. 
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Fig. 4. (a) Vehicle 1 enters into the roundabout; (b) Vehicle 3 enters into the roundabout; 
(c) Vehicle 2 leaves the roundabout; (d) Vehicle 3 leaves the roundabout 
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Fig. 5. (a) Candidate input from cloud; (b) Acceleration input; 
(c) Speeds of the vehicles; (d) Distances from the actual conflict point 

4. Conclusions 

The paper has proposed a hierarchical algorithm for the motion control of automated vehicles to guarantee their 
safe crossing of roundabouts. The presented method has been implemented for four-wheeled indoor test vehicles and 
has been tested in multi-vehicle environment. As a contribution, the designed hierarchical control strategy with 
learning features guarantees the driving of the vehicle through the roundabout without collision. Furthermore, the 
control algorithm, including the reinforcement learning method on the cloud level, contributes to reducing control 
energy of the vehicles, i.e., better environmental performances are guaranteed. 

For future work, the extension of the presented hierarchical control for automated vehicles driving in multi-lane 
roundabouts and complex urban traffic scenarios is considered. For this purpose, a systematic method is needed to be 
applied for the determination of conflict points between the vehicles. Thus, the learning of the RL-based control may 
become more complex, because of the multiple features of the control design task, i.e., by the increasing complexity 
of the reward function and number of observation.  

Acknowledgements 

The research was supported by the European Union within the framework of the National Laboratory for 
Autonomous Systems (RRF-2.3.1-21-2022-00002). The paper was partially funded by the National Research, 
Development and Innovation Office under OTKA Grant Agreement No. K 135512. 

The research of Zs. Farkas was supported by the Hungarian Government and co-financed by the European Social 
Fund through the project “Talent management in autonomous vehicle control technologies” (EFOP-3.6.3-VEKOP16-
2017-00001).  

References 

Chalaki, B., Beaver, L.E., Remer, B., Jang, K., Vinitsky, E., Bayen, A.M., Malikopoulos, A.A., 2020. Zero-shot autonomous vehicle policy transfer: 
From simulation to real-world via adversarial learning. In ”2020 IEEE 16th International Conference on Control Automation (ICCA)”, pp. 35–
40.  

Debada, E., Makarem, L., Gillet, D., 2017. A virtual vehicle based coordination framework for autonomous vehicles in heterogeneous scenarios. 
In ”2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)”, pp. 51–56. 

Deveaux, D., Higuchi, T., Uc¸ar, S., Wang, C.H., Harri, J., Altintas, O., 2021. Extraction of Risk Knowledge from Time To Collision Variation¨ In 
Roundabouts. in ”2021 IEEE International Intelligent Transportation Systems Conference (ITSC)”, pp. 3665–3672. 

Garcia, C.L., Puertas, E., Fernandez Andres, J., Aliane, N., 2019. Autonomous Driving in Roundabout Maneuvers Using Reinforcement´ Learning 
with Q-Learning. Electronics, Volume 8, Number 12. 

Hang, P., Huang, C., Hu, Z., Xing, Y., Lv, C., 2021. Decision Making of Connected Automated Vehicles at an Unsignalized Roundabout 
Considering Personalized Driving Behaviours. IEEE Transactions on Vehicular Technology, Volume 70, Number 5, pp. 4051–4064, 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

v 1 
v 2 
v 3 

0.5 

1 

1.5 

2 

2.5 

s 1 
s 2 
s 3 

c
) 

d
) 



3552 Balázs Németh  et al. / Transportation Research Procedia 72 (2023) 3545–3552
8 Balázs Németh et. al / Transportation Research Procedia 00 (2022) 000–000 

Konstantinidis, F., Sackmann, M., De Candido, O., Hofmann, U., Thielecke, J., Utschick, W., 2021. Parameter Sharing Reinforcement Learning 
for Modeling Multi-Agent Driving Behavior in Roundabout Scenarios in ”2021 IEEE International Intelligent Transportation Systems 
Conference (ITSC)”, pp. 1974–1981. 

Morsali, M., Frisk, E., Aslund, J., 2021. Geometrical Based Trajectory Calculation for Autonomous Vehicles in Multi- Vehicle Traffic Scenarios. 
In ”2021 IEEE Intelligent Vehicles Symposium (IV)”. 

Németh, B., Gáspár, P., 2021. The design of performance guaranteed autonomous vehicle control for optimal motion in unsignalized intersections. 
Applied Sciences, 11(8). 

Perez, J., Milanés, V., de Pedro, T. Vlacic, L., 2011. Autonomous driving manoeuvres in urban road traffic environment: a study on roundabouts. 
In ”IFAC Proceedings Volumes”, Volume 44, Issue 1, pp. 13795–13800. 

Rodrigues, M., Gest, G., McGordon, A., Marco, J., 2017. Adaptive behaviour selection for autonomous vehicle through naturalistic speed planning. 
In ”2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC)”, pp. 1–7. 

Wang, L., Huang, W., Liu, X., Tian, Y., 2012. Vehicle collision avoidance algorithm based on state estimation in the roundabout. In ”2012 Third 
International Conference on Intelligent Control and Information Processing”, pp. 407–412. 

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D., 2016. Continuous control with deep reinforcement 
learning. In ”International Conference on Learning Representations”. 

Gaspár, P., Németh, B., 2019. Predictive Cruise Control for Road Vehicles Using Road and Traffic Information. Springer Verlag. 


