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Abstract
Incomplete pairwise comparison matrices contain some missing judgements. A natural
approach to estimate these values is provided by minimising a reasonable measure of incon-
sistency after unknown entries are replaced by variables. Two widely used inconsistency
indices for this purpose are Saaty’s inconsistency index and the geometric inconsistency
index, which are closely related to the eigenvector and the logarithmic least squares prior-
ity deriving methods, respectively. The two measures are proven to imply the same optimal
filling for incomplete pairwise comparison matrices up to order four but not necessarily for
order at least five.
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“We conclude that if the dimension is small, and the researcher knows a priori that the errors
are small, and there is exactly one judgment for each pair of entities, there is little (only time,
effort, and a little accuracy) to argue against using the eigenvector.”1

1 Source: Crawford and Williams (1985, p. 405).
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1 Introduction

The pairwise comparisonmethodology is applied in many decision-making frameworks such
as the famous analytic hierarchy process (AHP), proposed by Saaty (Saaty, 1977, 1980).
Since the aim is to obtain the priorities for the alternatives, the resulting pairwise comparison
matrix should be transformed into a weight vector. To that end, a number of procedures have
been suggested (Choo&Wedley, 2004). The twomost popular techniques are the eigenvector
(Saaty, 1977) and the logarithmic least squares (often called geometric mean) (Crawford &
Williams, 1985) methods. They lead to the same solution if the pairwise comparisons are
consistent, that is, the direct comparison of alternatives i and j coincides with any indirect
comparison of them through a third alternative k. In addition, the two algorithms are verified
to give the sameweights if the number of alternatives is at most three (Crawford andWilliams
1985, p. 393).

Several studies have examined the similarity of the weight vectors derived by the eigen-
vector and the logarithmic least squares methods for at least four alternatives. According to
the Monte Carlo simulations of Herman and Koczkodaj (1996), the priorities are generally
closer if the matrix is less inconsistent. Kułakowski et al. (2022) give analytical proof of the
convergence. Mazurek et al. (2022) focus on the differences between the ordinal rankings
obtained using these two procedures.

However, a complete pairwise comparisonmatrix contains n(n−1)/2 comparisons, which
may be difficult to collect. First, the number of entries is a quadratic function of the number
of alternatives. Second, the experts can be unable to compare some items (Harker, 1987).
Third, the necessary information might be impossible to acquire, for example, because the
pairwise comparisons are derived from the results of matches in sports tournaments and some
players or teams have not met each other (Bozóki et al, 2016, Chao et al, 2018, Csató 2013).

In this case, the algorithms suggested for complete pairwise comparison matrices can be
used only after all missing judgements are estimated. A straightforward approach is consid-
ering an optimisation problem where the unknown comparisons are substituted by variables
and an inconsistency index provides the objective function (Koczkodaj et al., 1999). Shiraishi
et al. (1998) and Shiraishi and Obata (2002) have proposed this idea for the well-established
inconsistency index of Saaty. The implied minimisation problem has been analysed and dis-
cussed by Bozóki et al. (2010). Bozóki et al. (2010) also prove the necessary and sufficient
condition for the uniqueness of the optimal completion according to the geometric incon-
sistency index (Crawford & Williams, 1985; Aguarón & Moreno-Jiménez, 2003), which
minimises a logarithmic least squares objective function. The optimal completion can be
obtained by solving a system of linear equations.

We do not know any result on the relationship of the optimal completions according to
these two approaches if the pairwise comparison matrix contains some missing entries. The
current paper makes an important contribution to this issue. In particular, it is verified that the
two methods lead to the same result if the incomplete pairwise comparison matrix contains at
most four alternatives. Our finding is non-trivial because Saaty’s inconsistency indexC I and
the geometric inconsistency index GC I are not functionally dependent for n = 4 (Cavallo,
2020). Unsurprisingly, the theorem does not extend to the case of five alternatives.

The remainder of the study is organised as follows. The theoretical background is presented
inSect. 2. The connectionbetween the twooptimal completions is discussed inSect. 3. Finally,
Sect. 4 offers concluding remarks.
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2 Basic mathematical definitions

The numerical answers of the decision-maker to questions such as “How many times alter-
native i is preferred to alternative j?” are collected into a matrix, but we allow for missing
comparisons (indicated by ∗), too. Denote by R+ the set of positive numbers and by Rn+ the
set of positive vectors of size n.

Definition 1 Incomplete pairwise comparison matrix: Matrix A = [
ai j

]
is an incomplete

pairwise comparison matrix if ai j ∈ R+ ∪ {∗} such that for all 1 ≤ i, j ≤ n, ai j ∈ R+
implies a ji = 1/ai j and ai j = ∗ implies a ji = ∗.

The set of incomplete pairwise comparison matrices of order n is denoted by An×n∗ .
An incomplete pairwise comparison matrix A = [

ai j
]
is called complete if ai j �= ∗ for

all 1 ≤ i, j ≤ n.

Definition 2 Weighting method: A weighting method associates a weight vector w ∈ R
n+ to

any incomplete pairwise comparison matrix A = [
ai j

] ∈ An×n∗ .

Definition 3 Logarithmic least squares method (Kwiesielewicz, 1996; Takeda & Yu, 1995):
Let A = [

ai j
] ∈ An×n∗ be an incomplete pairwise comparison matrix. The weight vector

w = [wi ] ∈ R
n+ provided by the logarithmic least squares method is the optimal solution w

of the following problem:

min
∑

i, j : ai j �=∗

[
log ai j − log

(
wi

w j

)]2

subject to wi > 0 for all i = 1, 2, . . . n. (1)

This approach has originally been suggested for complete pairwise comparison matrices
(Crawford & Williams, 1985; De Graan, 1980; de Jong, 1984; Rabinowitz, 1976; Williams
& Crawford, 1980). The objective function (1) takes only known comparisons into account,
that is, the approximation of unknown comparisons is assumed to be perfect.

Definition 4 Logarithmic least squares optimal completion: Let A = [
ai j

] ∈ An×n∗ be an
incomplete pairwise comparison matrix. The logarithmic least squares optimal completion
is B = [

bi j
]
if bi j = ai j for all ai j �= ∗ and bi j = wi/w j otherwise, where w = [wi ] is the

optimal solution of (1).

Another natural idea is to replace the m missing comparisons with variables x ∈ R
m+,

pick up an inconsistency index (see Brunelli (2018) for a comprehensive survey of them),
and minimise the inconsistency of the resulting complete pairwise comparison matrix A(x).
It can be seen that logarithmic least squares optimal completion minimises the geometric
inconsistency index (Crawford & Williams, 1985; Aguarón & Moreno-Jiménez, 2003).

According to Saaty (1977), the level of inconsistency is a monotonic function of the
dominant eigenvalue for any complete pairwise comparison matrix. Thus, the corresponding
optimisation problem is as follows.

Definition 5 Eigenvector method (Shiraishi & Obata, 2002; Shiraishi et al., 1998): Let A =[
ai j

] ∈ An×n∗ be an incomplete pairwise comparison matrix. The weight vector w = [wi ] ∈
R
n+ provided by the eigenvector method is the optimal solution w of the following problem:

min
x∈Rm+

λmax (A(x))

λmax (A(x))w = A(x)w. (2)
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Fig. 1 The graph representation
of the incomplete pairwise
comparison matrix A in
Example 1

According to Definition 5, the variables in x are determined to minimise the dominant
eigenvalue of the corresponding complete pairwise comparison matrix, and the priorities are
given by the associated right eigenvector as suggested in the AHP methodology.

Definition 6 Eigenvalue optimal completion: Let A = [
ai j

] ∈ An×n∗ be an incomplete
pairwise comparison matrix. The eigenvalue optimal completion is B = [

bi j
]
if bi j = ai j

for all ai j �= ∗ and the value of bi j is determined by the corresponding coordinate of vector
x that is associated with the optimal solution of (2) if ai j = ∗.

Graph representation offers a convenient tool to classify incomplete pairwise comparison
matrices (Szádoczki et al., 2022).

Definition 7 Graph representation: Let A = [
ai j

] ∈ An×n∗ be an incomplete pairwise
comparison matrix. It is represented by the undirected graph G = (V , E) such that

• there is a one-to-one mapping between the vertex set V = {1, 2, . . . , n} and the
alternatives;

• the edge set E is determined by the known comparisons: (i, j) ∈ E ⇐⇒ ai j �= ∗.
These concepts can be illustrated by the following example.

Example 1 Consider the following incomplete pairwise comparison matrix of order four, in
which a13 (thus a31) and a24 (thus a42) remain undefined:

A =

⎡

⎢⎢
⎣

1 a12 ∗ a14
a21 1 a23 ∗
∗ a32 1 a34
a41 ∗ a43 1

⎤

⎥⎥
⎦ .

Figure 1 shows the associated graph G.

The necessary and sufficient conditions for the uniqueness of the logarithmic least squares
and the eigenvalue optimal completions, respectively, are the same.

Lemma 1 The optimal solution to both optimisation problems (1) and (2) is unique if and
only if the graph representing the incomplete pairwise comparison matrix is connected.

Proof See Bozóki et al (2010, Theorems 2 and 4). 	

Lemma 1 demands a natural requirement for uniqueness since it is impossible to asso-

ciate priorities for two distinct sets of alternatives if they are not compared, hence, the
corresponding graph is disconnected.

Naturally, Lemma 1 does not imply that the logarithmic least squares and the eigenvalue
optimal completions coincide if graph G is connected. This inspires our research question:
When are the corresponding complete pairwise comparison matrices the same?
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3 Themain result

The investigation is worth beginning with small problems in the number of alternatives. The
case of n = 3 is almost trivial. If one comparison is missing and the associated graph is
connected, then it should be a spanning tree. Consequently, there exists a unique consistent
completion B = [

bi j
]
, for which the optimum of (1) is zero and the optimum of (2) equals n,

that is, both objective functions reach their theoretical minimum. In other words, if aik = ∗,
then bik = ai j a jk .

Somewhat surprisingly, the two optimal completions coincide even for n = 4.

Theorem 1 Let A = [
ai j

] ∈ A4×4∗ be an incomplete pairwise comparison matrix of size
four such that the associated graph G is connected. The logarithmic least squares and
the eigenvalue optimal completions are the same, independently of the number of unknown
comparisons.

Proof First, we show that the pairwise comparison matrix can be considered in the form of

A =

⎡

⎢⎢
⎣

1 1 y x
1 1 1 z

1/y 1 1 1
1/x 1/z 1 1

⎤

⎥⎥
⎦ (3)

without loss of generality.
See Fernandes and Furtado (2022, Formula (2)) for the eigenvector method.
The sufficiency of representation in the form (3) for the logarithmic least squares method

follows from the fact that if the i th row is multiplied by a positive scalar (and, simultaneously,
the i th column is divided by it), then the corresponding coordinate wi of the optimal weight
vector w = [wi ] is the (same) multiple of the original one before normalisation. Multiply
the first, second, and fourth rows of a general pairwise comparison matrix

⎡

⎢⎢
⎣

1 a b c
1/a 1 d e
1/b 1/d 1 f
1/c 1/e 1/ f 1

⎤

⎥⎥
⎦

by 1/(ad), 1/d , and f , respectively, and divide the first, second, and fourth columns by these
numbers to get

⎡

⎢⎢
⎣

1 1 b/ad c/(ad f )
1 1 1 e/(d f )

ad/b 1 1 1
ad f /c d f /e 1 1

⎤

⎥⎥
⎦ ,

which has exactly the form of (3).
If the coordinate transformation x = et , y = eu , z = ev is applied, λmax(x, y, z) =

λmax
(
et , eu, ev

)
becomes a strictly convex function in t, u, v ∈ R (Bozóki et al. 2010,

Section 3). This makes the first-order conditions sufficient for minimality.
Four possible cases shall be discussed.

Case 1: One comparison (x) is missing
If x is missing in (3), then the logarithmic least squares optimal completion is x = √

yz,
see (1), Lemma 1 and the system of linear equations in the proof of Bozóki et al (2010,
Theorem 4).
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Based on the calculations of Fernandes and Furtado (2022, Formulas (12) and (13)) for
n = 4, the characteristic polynomial of matrix (3) is λ4 − 4λ3 + pλ + q , where

p = −z − 1

z
− y − 1

y
− x

y
− y

x
− x

z
− z

x
+ 8, and

q = −x − 1

x
+ y + 1

y
+ z + 1

z
+ x

y
+ y

x
+ x

z
+ z

x
− y

z
− z

y
− x

yz
− yz

x
− 2.

Symbolic calculations by Maple reveal that

∂λi

∂x

∣
∣
∣
∣
x=√

yz
= 0 for all i = 1, 2, 3, 4,

namely, all eigenvalues take an extremal value at x = √
yz. Consequently,

∂λmax

∂x

∣
∣
∣
∣
x=√

yz
= 0,

which, taking the argument above into consideration, implies that λmax is indeed minimized
at x = √

yz.

Case 2: Two comparisons (x, y) are missing in the same row/column
If x and y are missing in (3), then the logarithmic least squares optimal completion is given
by x = z2/3 and y = z1/3. According to symbolic calculations,

∂λi

∂x

∣∣∣∣
x=z2/3, y=z1/3

= ∂λi

∂ y

∣∣∣∣
x=z2/3, y=z1/3

= 0 for all i = 1, 2, 3, 4,

thus,

∂λmax

∂x

∣∣∣∣
x=z2/3, y=z1/3

= ∂λmax

∂ y

∣∣∣∣
x=z2/3, y=z1/3

= 0.

Case 3: Two comparisons (y, z) are missing in different rows/columns
If y and z are missing in (3), then the logarithmic least squares optimal completion is given
by y = √

x and z = x3/4. According to symbolic calculations,

∂λi

∂ y

∣∣∣∣
y=√

x, z=x3/4
= ∂λi

∂z

∣∣∣∣
y=√

x, z=x3/4
= 0 for i = 1, 2, 3, 4,

thus,

∂λmax

∂ y

∣∣∣∣
y=√

x, z=x3/4
= ∂λmax

∂z

∣∣∣∣
y=√

x, z=x3/4
= 0.

Case 4: Three comparisons (x, y, z) are missing
If x , y, and z are all missing in (3), then there is a unique consistent completion given by
x = y = z = 1, and the minimum of λmax is equal to 4.

The proof is completed because the associated graph G is guaranteed to be disconnected
if there are at least four missing comparisons. 	


If the graph G representing the incomplete pairwise comparison matrix A ∈ A4×4∗
is disconnected, then both optimisation problems (1) and (2) have an infinite number of
solutions.

Theorem 1 cannot be generalised by increasing the number of alternatives.
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Lemma 2 The logarithmic least squares and the eigenvalue optimal completions might be
different for incomplete pairwise comparison matrices of order five.

Proof Consider the following pairwise comparison matrix:

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 1/2 5 1/6 ∗
2 1 4 1/2 1/6
1/5 1/4 1 1/6 1/7
6 2 6 1 1/2
∗ 6 7 2 1

⎤

⎥
⎥
⎥
⎥
⎦

.

Let B and C the logarithmic least squares and the eigenvalue optimal completions, respec-
tively. It can be checked that b15 = 0.1705 and c15 = 0.1798, namely, the estimation of the
missing comparison between the first and the last alternatives are different according to the
two methods. But this is expected as the objective functions to be minimised are different,
too. 	

Remark 1 By cloning the second alternative, the example of Lemma 2 can be used to verify
that the logarithmic least squares and the eigenvalue optimal completions might be different
for incomplete pairwise comparison matrices of any order higher than five.

The incomplete pairwise comparison matrices used as a counterexample in the proof of
Lemma 2 is minimal with respect to both the number of alternatives and the number of
missing entries. However, Lemma 2 does not mean that the logarithmic least squares and
the eigenvalue optimal completions will always be different if the number of alternatives
is at least five. For example, they imply the same completion if the incomplete pairwise
comparison matrix can be made consistent with an appropriate choice of the missing entries.

4 Conclusion

In this paper,wehave considered the optimal completionof a pairwise comparisonmatrixwith
missing entries if the unknown elements are substituted by variables and the inconsistency of
the associated completematrix isminimised. The logarithmic least squares and the eigenvalue
optimal completions are found to be the same if the number of alternatives does not exceed
four.

The finding is somewhat surprising because the logarithmic least squares and eigenvector
methods can provide different priority vectors for pairwise comparison matrices of order
four. Furthermore, some theoretical shortcomings of the eigenvector method such as left-
right asymmetry (Bozóki & Rapcsák, 2008; Ishizaka & Lusti, 2006; Johnson et al., 1979)
and Pareto inefficiency (Blanquero et al., 2006; Bozóki & Fülöp, 2018) might be a problem
if a decision-making problem contains four alternatives. According to Theorem 1, this issue
becomes relevant only for n ≥ 5 in the case of incomplete pairwise comparison matrices.
Finally, since both approaches lead to the same optimal completion up to n ≤ 4, one can
“expect” from other completion methods for pairwise comparison matrices with missing
entries to provide the same solution. Consequently, Theorem 1 may present a kind of axiom
for these techniques, eleven of them discussed by (Tekile et al., 2023).

Our result also brings up several interesting research questions such as:

• Are there other classes of incomplete pairwise comparison matrices where the two
approaches lead to the same estimation of missing entries?
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• Does the equivalence hold if the optimal completion is obtained by minimising a third
inconsistency index?

• When has an incomplete pairwise comparison matrix only one reasonable optimal
completion?

Hopefully, all these directions will be investigated in the future.

Funding Open access funding provided by ELKH Institute for Computer Science and Control.

Declarations

Conflicts of interest László Csató declares that he has no conflict of interest. Kolos Csaba Ágoston declares
that he has no conflict of interest. Sándor Bozóki declares that he has no conflict of interest.

Human participants or animals This article does not contain any studies with human participants or animals
performed by any of the authors.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Aguarón, J., & Moreno-Jiménez, J. M. (2003). The geometric consistency index: Approximated thresholds.
European Journal of Operational Research, 147(1), 137–145.

Blanquero, R., Carrizosa, E., & Conde, E. (2006). Inferring efficient weights from pairwise comparison
matrices. Mathematical Methods of Operations Research, 64(2), 271–284.

Bozóki, S., Csató, L., & Temesi, J. (2016). An application of incomplete pairwise comparison matrices for
ranking top tennis players. European Journal of Operational Research, 248(1), 211–218.

Bozóki, S., & Fülöp, J. (2018). Efficient weight vectors from pairwise comparison matrices. European Journal
of Operational Research, 264(2), 419–427.

Bozóki, S., Fülöp, J.,&Rónyai, L. (2010).On optimal completion of incomplete pairwise comparisonmatrices.
Mathematical and Computer Modelling, 52(1–2), 318–333.

Bozóki, S.,&Rapcsák,T. (2008).OnSaaty’s andKoczkodaj’s inconsistencies of pairwise comparisonmatrices.
Journal of Global Optimization, 42(2), 157–175.

Brunelli, M. (2018). A survey of inconsistency indices for pairwise comparisons. International Journal of
General Systems, 47(8), 751–771.

Cavallo, B. (2020). Functional relations and Spearman correlation between consistency indices. Journal of
the Operational Research Society, 71(2), 301–311.

Chao, X., Kou, G., Li, T., et al. (2018). Jie Ke versus AlphaGo: A ranking approach using decision making
method for large-scale data with incomplete information. European Journal of Operational Research,
265(1), 239–247.

Choo, E. U., & Wedley, W. C. (2004). A common framework for deriving preference values from pairwise
comparison matrices. Computers & Operations Research, 31(6), 893–908.

Crawford, G., & Williams, C. (1985). A note on the analysis of subjective judgment matrices. Journal of
Mathematical Psychology, 29(4), 387–405.

Csató, L. (2013). Ranking by pairwise comparisons for Swiss-system tournaments. Central European Journal
of Operations Research, 21(4), 783–803.

De Graan, J. G. (1980). Extensions of the multiple criteria analysis method of T. L. Saaty. Report, National
Institute for Water Supply, Voorburg.

123

http://creativecommons.org/licenses/by/4.0/


Annals of Operations Research (2024) 333:239–247 247

de Jong, P. (1984). A statistical approach to Saaty’s scaling method for priorities. Journal of Mathematical
Psychology, 28(4), 467–478.

Fernandes, R., & Furtado, S. (2022). Efficiency of the principal eigenvector of some triple perturbed consistent
matrices. European Journal of Operational Research, 298(3), 1007–1015.

Harker, P. T. (1987). Incomplete pairwise comparisons in the analytic hierarchy process. Mathematical
Modelling, 9(11), 837–848.

Herman, M. W., & Koczkodaj, W. W. (1996). A Monte Carlo study of parwise comparison. Information
Processing Letters, 57(1), 25–29.

Ishizaka, A., & Lusti, M. (2006). How to derive priorities in AHP: a comparative study. Central European
Journal of Operations Research, 14(4), 387–400.

Johnson, C. R., Beine, W. B., &Wang, T. J. (1979). Right-left asymmetry in an eigenvector ranking procedure.
Journal of Mathematical Psychology, 19(1), 61–64.

Koczkodaj, W. W., Herman, M. W., & Orlowski, M. (1999). Managing null entries in pairwise comparisons.
Knowledge and Information Systems, 1(1), 119–125.

Kułakowski, K., Mazurek, J., & Strada, M. (2022). On the similarity between ranking vectors in the pairwise
comparison method. Journal of the Operational Research Society, 73(9), 2080–2089.

Kwiesielewicz, M. (1996). The logarithmic least squares and the generalized pseudoinverse in estimating
ratios. European Journal of Operational Research, 93(3), 611–619.

Mazurek, J., Kułakowski, K., Ernst, S., et al. (2022). Some notes on the similarity of priority vectors derived
by the Eigenvalue method and the geometric mean method. Procedia Computer Science, 207, 504–513.

Rabinowitz, G. (1976). Some comments on measuring world influence. Conflict Management and Peace
Science, 2(1), 49–55.

Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures. Journal of Mathematical
Psychology, 15(3), 234–281.

Saaty, T. L. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York:
McGraw-Hill.

Shiraishi, S., & Obata, T. (2002). On a maximization problem arising from a positive reciprocal matrix in
AHP. Bulletin of Informatics and Cybernetics, 34(2), 91–96.

Shiraishi, S., Obata, T., & Daigo, M. (1998). Properties of a positive reciprocal matrix and their application
to AHP. Journal of the Operations Research Society of Japan, 41(3), 404–414.

Szádoczki, Zs., Bozóki, S., & Tekile, H. A. (2022). Filling in pattern designs for incomplete pairwise
comparison matrices: (Quasi-)regular graphs with minimal diameter. Omega, 107(102), 557.

Takeda, E., & Yu, P. L. (1995). Assessing priority weights from subsets of pairwise comparisons in multiple
criteria optimization problems. European Journal of Operational Research, 86(2), 315–331.

Tekile, H. A., Brunelli, M., & Fedrizzi, M. (2023). A numerical comparative study of completion methods for
pairwise comparison matrices. Operations Research Perspectives, 10(100), 272.

Williams, C., & Crawford, G. (1980). Analysis of subjective judgment matrices. Interim report R-2572-AF,
Rand Corporation, Santa Monica.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	On the coincidence of optimal completions for small pairwise comparison matrices with missing entries
	Abstract
	1 Introduction
	2 Basic mathematical definitions
	3 The main result
	4 Conclusion
	References




