
Received 14 November 2023, accepted 30 November 2023, date of publication 4 December 2023,
date of current version 13 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3339248

Enhanced Experience Prioritization: A Novel
Upper Confidence Bound Approach
BÁLINT KŐVÁRI 1, BÁLINT PELENCZEI 2, AND TAMÁS BÉCSI 1, (Member, IEEE)
1Department of Control for Transportation and Vehicle Systems, Faculty of Transportation Engineering and Vehicle Engineering, Budapest University of
Technology and Economics, 1111 Budapest, Hungary
2Systems and Control Laboratory, Institute for Computer Science and Control, 1111 Budapest, Hungary

Corresponding author: Tamás Bécsi (becsi.tamas@kjk.bme.hu)

This work was supported in part by the European Union within the framework of the National Laboratory for Autonomous Systems under
Grant RRF-2.3.1-21-2022-00002; and in part by the Ministry of Innovation and Technology of Hungary from the National Research,
Development and Innovation Fund, through the TKP2021 Funding Scheme, under Project BME-NVA-02. The work of Bálint Pelenczei
was supported by the New National Excellence Program of the Ministry for Culture and Innovation under Grant ÚNKP-23-1-I-BME-19.
The work of Tamás Bécsi was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences under
Grant BO/00233/21/6.

ABSTRACT Value-based Reinforcement Learning algorithms achieve superior performance by utilizing
experiences gathered in the past to update their so-called value-function. In most cases, it is accomplished
by applying a sampling strategy to an experience buffer, in which state transitions are stored during the
training process. However, the design of such methods is not so intuitive. General theoretic approaches tend
to determine the expected learning progress from each experience, based on which the update of neural
networks can be carried out efficiently. Proper choice of these methods can not only accelerate, but also
stabilize the training significantly by increasing sampling efficiency, which indirectly leads to a reduction in
time and computing capacity requirements. As one of the most critical aspects of using Machine Learning
(ML) based techniques originates from the lack of decent computing power, thus endeavour to find optimal
solutions has long been a researched topic in the field of Reinforcement Learning. Therefore the main focus
of this research has been to develop an experience prioritization method acquiring competitive performance,
besides having the overall cost of training considerably lowered. In this paper, we propose a novel priority
value assignment concept for experience prioritization in Reinforcement Learning, based on the Upper
Confidence Bound algorithm. Furthermore, we present empirical findings of our solution, that it outperforms
current state-of-the-art in terms of sampling efficiency, while enabling faster and more cost-efficient training
processes.

INDEX TERMS Deep learning, experience prioritization, experience replay, machine learning, Q-learning,
reinforcement learning, sampling.

I. INTRODUCTION
In recent times, numerous researches in fields, including
autonomous vehicle control [1], robotics [2], manufacturing
[3], forecasting [4] and resource management [5], have
pointed out several advantages provided by the utilization
of Artificial Intelligence. Primarily, due to the complexity
of newly arising optimization and control tasks, usage of
traditional approaches, especially in real-time applications,
is immensely limited or not even feasible by virtue of

The associate editor coordinating the review of this manuscript and

approving it for publication was Maria Chiara Caschera .

their significant computational demand throughout the online
decision making process.

On the other hand, in case of Deep Learning-based
algorithms, prediction time of a pre-trained neural network
is in the order of milliseconds, hence real-time applicability
is ensured. However, these methods also have a crucial
disadvantage being, that during the offline training process,
enormous time and computational capacity requirements
emerge.

Firstly, according to the database being analyzed in [6],
the average computational cost of Deep Learning models
in Large-Scale Era, for which extended training data is
available, is about 2.44 · 1024 FLOPs. However, even for the

138488

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0003-2178-2921
https://orcid.org/0000-0001-9194-8574
https://orcid.org/0000-0002-1487-9672
https://orcid.org/0000-0002-3580-0505

B. Kővári et al.: Enhanced Experience Prioritization

FIGURE 1. Inflation-adjusted training cost of Machine Learning systems
published in recent years showing an increasing trend expressed in
USD [7].

most powerful AI supercomputing platform (being NVIDIA
HGXwith 16xNVIDIAA100GPUs), it takes nearly a year to
train such an averagemodel utilizing speed of 10 petaFLOPS.
Since training time hampers the efficiency of Deep Learning
research and development by making it more challenging
to explore different architectures, hyperparameters, or data
augmentation techniques, it is considered a key limitation.

Secondly, the true cost of training Deep Neural Networks
extends beyond computational requirements and into
economic considerations. Understanding and quantifying
involved costs is vital for researchers, practitioners, and
stakeholders to make informed decisions and optimize
resource allocation in Deep Learning projects. As shown in
Fig. 1, trends of recent years indicate highly increasing cost of
trainings, thus efficiency of training algorithms evolves into
a more and more critical objective to deal with. Therefore,
we consider this task, to optimize the efficiency of such
algorithms, as the main goal of this research.

In summary, our focus is on addressing the inefficiency
inherent in training deep neural networks, a challenge marked
by its considerable computational and time requirements.
This bottleneck not only hinders progress of research and
development in the field, but also imposes substantial
additional costs in industrial applications, where deep
neural networks have emerged as a preferred tool, given
their superior performance in various problem domains.
Industries heavily reliant on real-time applications, such
as autonomous vehicles or live-streaming analytics, face
potential performance setbacks due to these inefficiencies.
Additionally, the economic implications are significant,
encompassing increased computational costs and also a
potential reduction in competitiveness. Hence, addressing
this challenge both serves as a direct response to the economic
viability and success of real-world applications, particularly
in time-sensitive environments, and also ensures academic
advancement.

Undoubtedly, the inefficiency of training methods can
be derived from the way training data is treated across
the update process of Neural Networks. Early solutions
began to address this phenomenon, on the analogy of

neurobiology, by utilizing so-called replay methods, hence
facilitating memory formation and retrieval by reactivating
neural patterns, as elucidated in [8]. Although experience
replay has been adopted to all three major categories of
Machine Learning, the relevance of such seems greatest
in Reinforcement Learning, where enhancements may
substantially boost performance. It can be achieved by
dealing with sampling inefficiency, which is considered
a bottleneck, that hinders the scalability and real-world
applicability of RL algorithms. In contrast to other Machine
Learning areas of concern, such as supervised learning,
where sampling inefficiency is not a prominent concern, the
challenge lies prominently within the realm of Reinforcement
Learning. Furthermore, unlike supervised learning, where the
average number of epochs for training a model typically
ranges in the order of hundreds, it is well-acknowledged
in RL, that attaining the desired behavior often necessitates
orders of magnitude more episodes.

Lately, many researchers strive to proceed in this topic
by uncovering more and more concepts with the same
focus to resolve the issue of inefficient sampling. In the
following section, we are going to provide a brief overview
of advancements in this field with particular attention to
experience prioritization techniques.

A. RELATED WORK
Firstly, in order to demonstrate the relevance and importance
of Reinforcement Learning methods in practical applications,
especially in real-time domains, a few promising areas are
introduced. In [9], stochastic game theory has been utilized in
order to model the nature of attacker-defender roles present
in a potential smart electrical power grid cyberattack. The
solution providing the best achievable defense strategies,
according to their experiments both on the benchmarkW&W
6-bus and a relatively large IEEE 30-bus system, was deep
Q-learning, achieving superior performance compared to
3 other state-of-the-art Reinforcement Learning methods
being PPO, AC and PG. In the domain of control
systems, [10] introduced an adaptive approach with the
use of Policy Iteration algorithm for the optimal regulation
problem in discrete-time linear time-invariant systems.
Notably, this algorithm ensures convergence, leveraging only
state measurements without requiring prior knowledge of
the system dynamics. In [11], a Reinforcement Learning
framework has been proposed for trajectory planning of an
aerial drone, integrating it to a pre-existent system of moving
elements by resolving potential conflicts in advance. Despite
the fact, that RL-based solutions have long been successfully
deployed in such complex practical tasks, the problem of
inefficient training scenarios yet remained unchanged, for
which experience prioritization may provide a solution.

Shortly after the emergence of Reinforcement Learning,
the need for prioritizing important state transitions became
apparent. In [12], the prioritized sweeping algorithm has
been introduced, which utilizes the change in absorption
probabilities (1 parameters) in order to determine importance

VOLUME 11, 2023 138489

B. Kővári et al.: Enhanced Experience Prioritization

FIGURE 2. Results of Prioritized Experience Replay [14] showing an
increase in training efficiency.

of a transition. Higher 1 values are considered more
interesting from the update’s point of view, as they
indicate a potential change in absorption probabilities of
the state’s predecessors. Between two consecutive real-world
observations, transitions are being sorted based on their
priority until a processing step limit is reached, resulting
in more important states being positioned at the top of the
priority queue.

The concept of storing state transitions have not been
implemented until the idea has been published much later,
in [13], where the so-called experience replay memory has
been proposed. This memory enabled agents to exploit
experiences of the past by saving the elements that clearly
define a transition. Afterwards, during the network updates,
stochastic sampling is carried out on the memory using
uniform distribution.

However, as mentioned earlier, this method treats all
experiences as equal, being a limitation, that needed to
be addressed in order to develop an optimal solution.
A combination of the above mentioned theories has been
demonstrated in [14], where authors suggested an approach,
namely Prioritized Experience Replay (PER), to handle
experiences of varying importance throughout the training.
By assigning priority values to each state transition, thus
formulating the probability distribution over the entire replay
memory, they empirically managed to demonstrate increased
training efficiency, as shown in Fig. 2. As PER quickly gained
more and more popularity among researchers, it soon became
the dominant method in the field, serving as the basis for
many subsequent techniques, described later on. However,
these techniques have still not been able to replace PER, being
the most commonly used method in literature to date, hence it
remained to be current state-of-the-art. Since this algorithm
serves as the basis of comparison in this paper as well, for
further details on methodology, refer to II-B1.

The authors of [16] adapted Prioritized Experience Replay
for Deep Deterministic Policy Gradient agents, while [15]
proposed Ape-X, an extension for PER to a distributed
setting. In Ape-X, the agent is split into multiple entities,
as shown on the schematic in Fig. 3, including several

FIGURE 3. Schematic of the distributed agent concept in Distributed
Prioritized Experience Replay [15].

actors and a single learner. Each actor has its own separate
environment, but their replay memory is shared among the
others. The role of the actors in the training is to generate
training data, while the learner is responsible for the network
updates and priority value assignment in the buffer. Authors
of [17] developed Prioritized Sequence Experience Replay,
which can also be considered as an expansion of the original
PER idea. The authors have theoretically proven, that by
prioritizing experience sequences, this method is guaranteed
to converge faster compared to PER given, that the learning
rate of the asynchronous Q-learning algorithm equals to
1 and all possible action sequences are executed exhaustively.
Even though the proposed method demonstrated superior
performance compared to the original PER algorithm across
a substantial majority of Atari benchmark tasks, experimental
findings reveal an increase in absolute training time and,
consequently, resource utilization in case of expanding the
decay window, thus managing longer experience sequences.

Various other approaches have been proposed tackling
the problem of inefficient sampling, such as [18],
in which two specialised actor-critic algorithms have been
introduced, called TRACER and eNACER. In TRACER,
an augmentation of the Advantage Actor Critic (A2C)
algorithm has been carried out with the adaption of a Trust
Region Policy Optimisation method, utilizing experience
replay. eNACER is a modified version of the so-called
Natural Actor-Critic method, where gradients are estimated
with the procedure of least squares, instead of being
calculated explicitly from the Fisher Matrix. In case of both
methods, sampling efficiency has shown to be increased
relative to other RL-based solutions in the comparison.
Reference [19] presented another method, being STochastic
Ensemble Value Expansion (STEVE), that combines superior
performance of model-free approaches with advantageous
sampling complexity of model-based algorithms. Based on
a statistical analysis, they showed a massive increase in
sampling efficiency compared to model-free solutions on a
variety of complex tasks. For a comprehensive overview of
other potential solutions to inefficient sampling, see [20].

In addition to the methods described so far, there are
a handful of entirely different experience prioritization
techniques, including the one developed in [21], where a
so-called Energy-Based Prioritization(EBP) framework has
been utilized in a robotic arm manipulation environment.
The core idea is to determine total energy of a trajectory by
computing cumulative transition energy based on principles

138490 VOLUME 11, 2023

B. Kővári et al.: Enhanced Experience Prioritization

of physics according to 1 as:

Etraj(τ) = Etraj(s0, s1, . . . sT) =
T∑
t=1

Etran(st−1, st) (1)

where τ is the trajectory and si are the states of time step i. The
agent then stores these energy values for the corresponding
state transitions and prioritizes trajectories with higher energy
values, which eventually serve directly as a probability
distribution during sampling. Reference [22] introduced the
concept of Curiosity-Driven Prioritization (CDP), that mainly
focuses on infrequent experiences. By estimating density ρ

of each transition via a Variational Gaussian Mixture Model
(V-GMM), the agent aims to prioritize experiences with lower
densities. In order to avoid noises caused by outliers of high
deviation in density values and therefore ensure robustness,
a rank-based prioritization is used after sorting the replay
memory based on complementary densities (ρ̄ = 1 − ρ).
Reference [23] proposed Topological Experience Replay
(TER), which prioritizes state transitions by constructing a
graph from gathered training data and applying a reverse
sweep algorithm to update a Q-function. The graph is
structured in a way, that vertices represent environment
states, while edges are equvivalent of state transitions aka
experiences. The algorithm constantly keeps track of terminal
and root nodes, hence the task is to follow a sampling
strategy by determining a sequence of worthwhile transitions.
In this case, it is achieved by applying reverse Breadth-First
search (BFS) starting from terminal states, followed by its
predecessors. Lastly, [24] defined learn-ability of a training
sample and introduced an algorithm that allows the agent
to leverage information content on outstanding efficiency by
distinguishing unlearnable and noisy samples. Learn-ability,
according to their hypothesis, is calculated from so-called
reducible TD-error, which theoretically measures how much
the TD-error can be expectedly be decreased over training.
For the sake of formalizing Reducible Loss (ReLo), which
serves as a priority metric throughout the update process, two
separate losses needs to be determined: one with respect to
the action network Lθ , and the other one with respect to the
target network L

θ̂
, from which ReLo is computed according

to 2 as:

ReLo = Lθ − Lθ̂
(2)

In summary, various approaches, including PER, have been
proposed to address the problem of inefficient sampling in
Reinforcement Learning. These methods have demonstrated
improved training efficiency and sampling performance,
leading to advancements in the field, although prevailing
experience prioritization method has remained to be the
approach of Prioritized Experience Replay, which therefore
is still considered state-of-the-art.

B. CONTRIBUTION
Regardless of the specific training algorithm used, one
cannot argue that sampling strategy has a crucial role in

training efficiency. Moreover, recent developments in the
field of experience prioritization have seen a limited number
of fundamentally new ideas, with many existing solutions
relying heavily on the well-established concept of Prioritized
Experience Replay. This claim can be attributed to the
fact, that although bountiful approaches have been proposed
over time, as detailed in I-A, such methods focusing on
increasing sampling efficiency have been improving at a
relatively slow pace compared to other elements critical in
Reinforcement Learning, where breakthroughs have been
accomplished in various subfields, including algorithms
[25], [26], neural network architectures [27], [28] and
also state space representations [29], [30]. Consequently,
the predominant technique for prioritizing experiences in
RL has persisted since the aforementioned method gained
recognition. This enduring popularity can be attributed to
several factors, including its inherent simplicity, suitability
for a diverse set of algorithms and domains, and its potential
for integration with various algorithms to improve their
performance and stability. In summary, considering the above
mentioned justifications, it can be concluded that Prioritized
Experience Replay continues to be one of the prevailing
state-of-the-art techniques.

As a result, the primary contribution of this research is
to demonstrate the superiority of the proposed experience
prioritization approach over the existing state-of-the-art
method documented in literature. This is achieved through
a comprehensive evaluation that exhaustively analyzes
performance indicators of sampling processes. Therefore,
contributions of this paper can be summarized as follows:

• This paper proposes a novel priority value assignment
concept, that incorporates a new approach for the
exploration-exploitation trade-off. The results show,
that by leveraging limitations of the aforementioned
state-of-the-art technique, sampling efficiency can be
further enhanced using the proposed method.

• The Deep-Q Network algorithm has been trained along
with the newly introduced experience prioritization
technique and current state-of-the-art method to
compare their performance on four commonly used
Reinforcement Learning tasks present in literature.

• Strictly under identical conditions, a meticulous
evaluation of these agents has been conducted, with
specific focus on assessing the effectiveness of
experience sampling strategies applied during the
training process.

II. METHODOLOGY
A. REINFORCEMENT LEARNING
As a result of rapid increase in available computing capacity,
Reinforcement Learning has garnered significant attention
[31] from many researchers having interests in Machine
Learning due to its promising properties and satisfactory
results provided in various sequential decision-making
problems.

VOLUME 11, 2023 138491

B. Kővári et al.: Enhanced Experience Prioritization

Reinforcement Learning stands as a special branch within
the field of Machine Learning. Unlike Supervised Learning,
RL does not necessitate an immense, labeled dataset,
acquisition of which is often limited or not even feasible
in certain scenarios. Instead, the required training data is
generated through a sequence of interactions between the
agent and an environment object.

A key differentiating factor of RL compared to other
Machine Learning methods originates from the above
mentioned interaction iterations. From each iteration a state
transition tuple needs to be composed, in which a so-called
reward function is applied in order to quantify the goodness of
actions, subsequently being utilized during network updates.
This characteristic provides the advantage of not being
restricted by constraints imposed by an initial dataset, but
rather influenced by the designer’s choices in defining
crucial elements, such as state and action spaces, as well
as the mentioned reward function. Thoughtful selection
of abstractions in a given task plays a vital role in the
credit assignment process, ultimately shaping the attainable
performance of agents.

Since online prediction time of a trained neural network
is in the order of milliseconds, one out of several
advantages of RL is its limitless real-time applicability,
that enables agents to quickly react and adapt to changing
conditions or events, being a useful property in dynamic
environments such as robotics or traffic control tasks [32],
[33]. Furthermore, an additional benefit of applying neural
networks as non-linear function approximators is the attribute
of scalability, which proves particularly advantageous in
complex structures composed of multiple interconnected
components. This characteristic empowers RL agents to
expand their capabilities to handle large-scale systems,
effectively coordinating actions and making decisions across
multiple levels of abstraction. This is especially relevant
in domains such as network management, supply chain
optimization, and smart grids [34], [35], [36]. Lastly,
a virtue of RL, long-studied by many, is generalization
capability, that facilitates handling variations, uncertainties,
unforeseen circumstances and edge cases emerging within
the environment. It ensures, that decisions remain reliable
and robust, even in situations that deviate from the training
distribution. Moreover, this property forms the foundation
of transfer learning techniques [37], enabling RL agents to
transfer their acquired policies from one task or environment
to another. Hence it minimizes the need for extensive
retraining, reducing costs in terms of time and computational
resources, while expediting learning in additional scenarios.

The mathematical framework of Reinforcement Learning
is determined by the Markov Decision Processes (MDP)
[38], often referred to as < S,A,R,P >, where the object
responsible for the actions is called an agent. A Markov
Decision Process is clearly defined by four elements, which
are respectively as follows:
• st ∈ S is the state at time step t , where S is the state
space

• at ∈ A is the action chosen at time step t from state st ,
where A is the action space

• rt+1 is the reward quantifying the quality of state
transition from state st due to the selection of action at

• P(st+1|st , at) is the probability that choosing action at
from state st at time step t will lead to state st+1 at time
step t + 1

As per described above, the training involves a sequence of
interactions between the agent and the environment, leading
to generation of state transition tuples, hence forming the
required training samples. In this context, the environment
serves a dual purpose in this process: on the one hand,
it provides essential information about the state of the
environment, enabling the agent to make decisions based
on the observed data. On the other hand, it quantifies the
effectiveness of chosen actions by returning a scalar feedback
value, known as the reward. An iteration of the training loop,
depicting the aforementioned methodology, is as follows:

1) The agent uses the observation received from the
environment at the previous time step to make a
decision.

2) This decision is then conveyed to the environment as an
action, leading to a change of the environment’s current
state.

3) The change in the environment’s state causes a
state transition, which encompasses two important
outcomes: the subsequent state representation and a
corresponding reward value.

4) These metrics are then relayed back to the agent.
5) The new state representation is utilized by the agent for

subsequent decision-making, while the reward value
serves as a feedback signal, based on which the update
of neural network can be carried out.

Throughout the training, weight and bias parameters
of the neural network are iteratively updated using two
additional key components, being the loss function and the
backpropagation method. From a mathematical perspective,
the agent’s objective during training is to maximize the
cumulative reward, which is a weighted sum of rewards
obtained over an episode. This mathematical goal is formally
represented in 3 as:

Gt =
T∑

k=t+1

γ k−t−1 · Rt (3)

where t is the time step, T is the time step at which
termination of current episode occurs, Rt is the value of
reward received at time step t and γ is the so-called discount
factor used to balance importance of immediate rewards over
future rewards.

1) VALUE-BASED METHODS
Value-based methods represent a category of algorithms in
Reinforcement Learning with the aim of giving an accurate
estimation of the so-called value function associated with
states, action advantages and state-action pairs. The value

138492 VOLUME 11, 2023

B. Kővári et al.: Enhanced Experience Prioritization

function characterizes the expected return or cumulative
reward achievable by the agent, while following a specific
policy throughout the episode. Hence, the primary objective
of the agent is to acquire an optimal value function, that
maximizes expected cumulative reward. By approximating
values of states or state-action pairs, the agent gains the ability
to make well-informed decisions regarding which actions to
execute for the purpose of maximizing its long-term reward.
Value of a state can be calculated according to 4 as:

Vπ (s) = Eπ [Gt |St = s] (4)

where E is the expected value operator, Gt is the cumulative
reward, s is the state for which the value estimation is carried
out and π is the policy the agent needs to follow after time
step t to realize the estimated value.

It is essential to acknowledge, that value-based methods
primarily focus on estimating the value function, rather than
directly acquiring a policy. However, a policy can be derived
from the estimated values by selecting the action with the
highest value within each state.

2) Q-LEARNING ALGORITHMS
Among various approaches within the value-based algorithm
family, an outstanding example is provided by Q-learning
methods [39].Q-learning, being an off-policy and model-free
algorithm class, meaning that it does not require prior
knowledge of the environment’s inner dynamics or transition
probabilities. During the training process, estimation of
the action-value function, commonly referred to as the
Q-function, is continuously updated. Similarly to general
value-based solutions, theQ-value can be acquired according
to 5 as:

Qπ (s, a) = Eπ [Gt |St = s,At = a] (5)

where an additional a parameter is included in comparison
with 4, which is the action chosen from state s.

The iterative update of Q-values is based on the
observed rewards and state transitions experienced during
the interaction sequence, starting from an initial Q-table
or Q-function, and choosing actions based on an
exploration-exploitation strategy, such as ϵ-greedy. Using
these observations, Q-values are updated according to the
Bellman equation, which expresses the relationship between
Q-values of successive states according to 6 as:

Q(s, a)← Q(s, a)+ α · [r + γ · max
a′

Q(s′, a′)− Q(s, a)]

(6)

where α is the learning rate, r is the reward value, γ is
the discount factor and max

a′
Q(s′, a′) is the highest Q-value

obtainable from subsequent state s′.

3) DEEP Q-NETWORK
Deep Q-Network, often abbreviated as DQN, is a
Reinforcement Learning algorithm, that combines principles

of Q-learning with powerful capabilities of deep neural
networks. Originally introduced in [13] demonstrating the
method on Atari games, DQN has garnered significant
attention from researchers due to its impressive performance
not only in the gaming domain, but also in a diverse set
of fields including robotics, recommendation systems and
autonomous driving.

The key idea behind DQN is to use a deep neural
network to estimate the Q-function, hence the handling of
high-dimensional, complex input spaces is easily feasible.
Approximation of the optimal Q-function is resolved by
minimizing the mean squared error loss between predicted
and target Q-values, as can be seen formally described in 7:

LMSE =
1
N
·

N∑
i=1

(
yi − ŷi

)2 (7)

where N is the number of training samples, yi is the target
value and ŷi is the predicted value for sample i.

Introduction of the DQN algorithm incorporates two
main novelties, one of which involves the application of
two identically structured neural networks. The primary
network, known as the action network, is responsible for
decision-making, while the secondary network, referred to
as the target network, is used to compute target Q-values.
Update of the neural network is performed on the action
network, while parameters are periodically copied to the
target network at a fix rate of time steps. This approach
helps stabilize the learning process by providingmore reliable
target values during training achieved by reducing correlation
between consecutive state transitions. Target Q-values are
calculated using the Bellman equation, similarly to traditional
Q-learning, according to 8:

Q (st , at ; θt) = rt+1 + γ · max
a

Q
(
st+1, at+1; θ∗t

)
(8)

where θt is the parameter set of the action network, while θ∗t
is the parameter set of the target network.

Furthermore, DQN uses a technique known as experience
replay, which enhances learning efficiency. This involves
storing the agent’s experiences in a tuple, encompassing
the corresponding state, action, reward and next state, in a
designated buffer called the experience replay memory.
During training, a batch of experiences is stochastically
sampled from the replay buffer according to a uniform
distribution, aiding in decorrelation of successive training
samples and reducing bias in the parameter updates.

In summary, the modified training process, as illustrated
in Fig. 4, showcases the two key innovations of DQN: the
utilization of an experience replay memory and the presence
of a separate target neural network both contributing to a
decrease in correlation between experiences resulting in a
more efficient training method.

B. EXPERIENCE PRIORITIZATION
DQN algorithm, as described above, introduced the concept
of experience replay memory to facilitate the reuse of

VOLUME 11, 2023 138493

B. Kővári et al.: Enhanced Experience Prioritization

FIGURE 4. Training loop of Deep-Q Network algorithm emphasising two proposed additional features: the
separate target network and the experience replay memory.

training samples gathered in the past, thereby accelerating
convergence and enhancing training efficiency. However,
experiences are handled quite suboptimally by employing
uniform stochastic sampling during training, resulting
in equal probability for all experiences. Consequently,
this raises the question, whether information density of
experiences is truly equivalent. While state transitions
occuring more frequently in the environment may contain
redundant information, there may also be occasional cases
from which the constructed experiences are crucial from the
agent’s perspective.

For this reason, it can be stated that importance of training
samples, in a given state of the agent, may differ from
one another. The following sections provide comprehensive
insights into both current state-of-the-art method and the
newly proposed solution, which aim to enhance sampling
efficiency by prioritizing certain experiences during the
replay of state transitions.

1) PRIORITIZED EXPERIENCE REPLAY
Prioritized Experience Replay (PER), proposed in [14],
is still the most commonly utilized experience prioritization
technique in literature, focusing on addressing the
aforementioned issue of difference between importance of
training samples.

The underlying idea behind experience prioritization
is straightforward: set up an order from available state
transitions or assign a metric to each experience, thus
constructing a list, ranking training samples based on their
importance at a given state of the agent’s knowledge. In case
of value assignment-based methods, the task is to assign a
so-called priority value such, that the higher the importance of
experience is, the greater its priority value. The challenge lies

in determining the appropriate metric or criterion by which
the priority of individual experiences can be computed.

In the context of Prioritized Experience Replay, the
prioritization relies on the Temporal Difference (TD) error,
which serves as a measure of discrepancy between the
observed reward during the state transition and the predicted
value for the initial state. Essentially, higher TD-error
indicates a greater expected learning progress, indicating that
the specific sample contains valuable information, that can
contribute significantly to the agent’s training. Probability
distribution for stochastic sampling over the entire experience
replay memory can be calculated according to 9 as:

P(i) =
pα
i∑
k p

α
k

(9)

where P(i) is the probability of choosing training sample i, α
is the exponent determining the scale of prioritization and pi
is the priority value of transition i.

The original paper presents two separate approaches for
calculating priority values, one of which is an indirect,
rank-based prioritization method formalizing priorities as
shown in 10:

pi =
1

rank(i)
(10)

where rank(i) means the numeric rank of sample i in the
ordered list constructed based on absolute TD-errors of
experiences |δi|.
The other design, utilized more frequently in literature,

introduces a direct proportional prioritization, where priority
values are calculated according to 11 as:

pi = |δi| + ϵ (11)

where |δi| is the absolute TD-error of sample i and ϵ is a small
constant preventing edge cases of having zero TD-error.

138494 VOLUME 11, 2023

B. Kővári et al.: Enhanced Experience Prioritization

In order to address bias caused by the utilization of
non-uniform sampling, importance sampling weights have
been proposed to adjust the updates of neural networks,
ensuring a balance in training processes. Mathematically,
importance sampling weights are formulated as shown in 12:

wi =
(
1
N
·

1
P(i)

)β

(12)

where β is the exponent determining the scale of bias
compensation, N is the number of samples present in the
replay buffer and P(i) is the probability of choosing transition
i.

Substantial benefits of Prioritized Experience Replay in
terms of training efficiency and final performance have been
demonstrated by numerous empirical experiments across
diverse domains, ranging from games to more complex
continuous control tasks [40], [41].

2) ENHANCED REWARD PRIORITIZATION METHOD
So-called exploration-exploitation dilemma is a fundamental
challenge in Reinforcement Learning, that arises from the
need to balance between exploring unknown situations of the
environment and exploiting existing knowledge to maximize
cumulative reward.

It is considered a trade-off, in which exploration term
refers to the process of gathering new training data from
the environment, that have not been explored extensively.
This enables the agent to discover potentially superior actions
or states, that could lead to higher long-term rewards.
On the other hand, exploitation involves leveraging the
already acquired knowledge to choose actions, that are
known to yield higher immediate rewards based on past
experiences. Achieving an optimal balance between the two
terms is crucial for training and sampling efficiency. Various
exploration strategies and algorithms have been developed,
according to [42], in order to address the trade-off, such
as ϵ-greedy, softmax exploration, Thompson sampling, and
Upper Confidence Bound (UCB), originally proposed in [43],
described in detail later on.

Maintaining balance between exploration and exploitation
is crucial in case of Prioritized Experience Replay as
well. Algorithm of PER may inadvertently prioritize certain
transitions excessively due to stochastic sampling heavily
relying on TD-error metrics of experiences, being an
exclusively exploit term. Therefore it can potentially hinder
exploration, as per the above mentioned theory, for which this
paper provides a solution by resolving the dilemma through
a novel approach.

Upper Confidence Bound is a popular algorithm used
in Reinforcement Learning to tackle the exploration-
exploitation problem. It is based on the principle of balancing
by so-called confidence bounds to estimate the value of
different actions or states. In UCB, each action or state
is associated with an upper confidence bound value, that
quantifies the uncertainty or confidence. The UCB value is

calculated as shown in 13:

UCB = x̄j +

√
2 · ln (n)

nj
(13)

where x̄j realizes the exploitation term, meaning the average
observed reward obtained from state or action j. The idea
behind the exploration component is to prioritize actions or
states with higher uncertainty, as they may have the potential
for higher rewards. Thus nj is the number of times action
or state has been selected, while n is the overall number of
selections.

In this paper, we propose a novel approach for
reward prioritization based on an alternative priority
value assignment concept incorporating the mathematical
formalization of Upper Confidence Bound into the context
of experience replay. Our method calculates priority values
assigned to training samples according to 14 as:

P(i) =
pα
i∑
k p

α
k
+ cp ·

√
2 · ln(max

k
nk)

ni + ϵ
(14)

where the exploration component is represented by the
relation between the ni, which is the fit count indicating
the number of times experience i has been utilized
for network updates, and nk , which is the fit count
of the experience that has the highest count in the
memory buffer. ϵ is a small constant, that prevents
zero division and cp is another constant within the
interval of [0; 1] regulating balance between exploration and
exploitation.

Our method combines the advancement from resolving
deficiencies of the PER algorithm and the formation of
balance between exploration and exploitation, resulting in
higher sampling efficiency and an accelerated converge
compared to current state-of-the-art method.

Like all algorithms, the method presented herein possesses
inherent limitations. Notably, certain RL algorithms,
such as TRPO, SARSA, PPO, traditional Q-learning
and Monte Carlo methods, deviate from the common
practice of incorporating experience replay methods.
In these cases, training samples generated during the
learning process are immediately utilized to tune the
neural network. Consequently, the utilization of UCB-based
experience prioritization, a mechanism employed to enhance
performance by addressing the exploration-exploitation
dilemma, is unfeasible for such algorithms. It is noteworthy,
however, that these alternative algorithms inherently
incorporate distinct solutions to overcome the same
challenges associated with the exploration-exploitation
dilemma within the realm of Reinforcement Learning.

III. ENVIRONMENT
The environment, as mentioned above, plays a vital role
in the Reinforcement Learning training loop, as it realizes
an external system or simulated world, within which
state transitions are carried out based on the agent’s

VOLUME 11, 2023 138495

B. Kővári et al.: Enhanced Experience Prioritization

decisions. By offering essential feedback values, namely
state observations and rewards, the agent is able to derive
information from its actions’ consequences to generate
required training data.

Typically, the environment comprises of several
components, including a state space, an action space,
transition dynamics, and a reward function. The state space
encompasses a set of possible states to which transitions
can lead to, while the action space defines available legal
actions, that the agent can execute from a given initial
state. Transition dynamics elucidate the process of evolving
from one state of the environment to another based on
chosen actions. Furthermore, the environment incorporates
a so-called reward function, through which a scalar feedback
value is determined, which conveys the immediate efficiency
of the agent’s actions.

The form of the environment can manifest in several ways,
ranging from straightforward grid worlds and board games
to sophisticated simulations mirroring real-world systems,
such as robotics, traffic networks, or financial markets. In this
study, we utilize sandbox-like, widely used environments
provided by the Gym package in order to highlight the impact
of different algorithms on sampling strategies.

A. GYM ENVIRONMENTS
Gym is a widely used toolkit in literature for developing,
evaluating and comparing Reinforcement Learning-based
methods. Originally proposed in [44], this framework has
since gained significant attention due to its numerous
benefits, some of which are being the following:
• Standardization: Offering a standardized interface, Gym
environments enable researchers to effectively compare
and evaluate their Reinforcement Learning algorithms
in a fair and reproducible way. This consistent interface
allows algorithms to be seamlessly applied to various
tasks, while ensuring accurate comparisons between
different approaches.

• Accessibility: Being an openly accessible, free resource
and having a comprehensively documented API both
contribute to the level of accessibility, allowing
researchers of all levels of expertise and experience to
utilize the features provided.

• Flexibility: Structure of the Gym framework is designed
to support future customizations and extensions
according to specific needs and ideas in a relatively
simple manner. This adaptability facilitates
modifications of existing pre-defined environments as
well as implementation of new ones, hence boosting
research and development in emerging domains and
exploration of innovative problem formulations.

Apart from the aforementioned advantages, the toolkit
offers a vast collection of tasks and problems suitable for
experiments to be carried out on different solutions, including
classic control tasks, robotics simulations, and Atari games.
Each environment is encapsulated in a Gym wrapper and
comes with a well-defined interface, enabling agents to

FIGURE 5. Schematic of the Gym interface.

interact with the environment through their chosen actions
and receive state representations and rewards in return.
In Fig. 5, a schematic illustration of the Gym interface
is shown, where the central component is responsible for
both issuing control commands, conveying them to the
actual environment and realizing data transfer between the
communicating parties.

For the sake of diversity, four completely different
problems have been chosen for the thorough investigation
of our method, thus formulating a varied set of challenges.
As the complexity of each environment can vary significantly,
it is crucial to define the relevant criteria for assessing their
relative difficulty via objective metrics. One approach is to
compare the complexity of state and action spaces, hence
higher-dimensional state spaces may pose greater challenges
for exploration, while larger action spaces may increase the
complexity of decision-making.

In addition, the resolution to the exploration- exploitation
dilemma, namely through exploration efficiency, measures
the agents’ effectiveness in navigating the state space.
Moreover, environments featuring sparse rewards,
characterized by delayed and infrequent feedback, introduce
additional challenges to the aforementioned trade-off.

Post-analysis of training runs is instrumental in assessing
task difficulty. Learning curve analysis on the one hand
examines convergence rates, where slower rates may indicate
more challenging tasks, on the other hand it also measures
stability of the learning process across different runs. Reward
distribution analysis, which involves investigating reward
entropy, offers insights into the level of challenge, with higher
entropy suggesting increased uncertainty.

Quantitatively measuring the difficulty of a Reinforcement
Learning problem is a challenging yet essential aspect of
comprehending algorithm performance. In order to facilitate
an accessible framework for benchmarking, the environments
presented in this paper are all categorized as relatively easy on
an absolute scale. However, given the diversity of problems,
a rank based on difficulty can be constructed, in which
Cliff Walking emerges as the easiest task for the agent to
completely learn the desired behavior, followed by CartPole,
Acrobot, and finally, the Taxi environment.

1) CARTPOLE
The CartPole environment is a classic control task included
in the toolkit with the aim to simulate a simplified scenario of
an unstable pole balanced on a cart. Initially proposed in [45],

138496 VOLUME 11, 2023

B. Kővári et al.: Enhanced Experience Prioritization

this problem formulation is based on the inverted pendulum,
which serves as a benchmark in control theory for testing
different approaches. The goal of the agent within the training
is to learn maintaining the pole in an upright position as long
as possible.

The state vector of the environment consists of four
physical parameters being the cart’s position along the track
x, the cart’s velocity v, the angle of the pole relative to
the vertical θ and the angular velocity of the pole ω. The
action space defines two distinct actions {0; 1} for each state,
allowing only the specification of a fixed-magnitude force’s
direction applied to the cart.

Episodes are deemed successful in case the termination
occurs after 475 time steps. The agent receives a reward of
+1 for a successful episode, while failing beforehand results
in a penalty of −1. Each time step not leading to immediate
termination of the game yields a reward value of 0.

2) ACROBOT
Introduced in [46], Acrobot is another a physics-based
simulation, modelling a two-link pendulum system with
an actuated joint between the links. The objective in this
environment is to swing the free end of the outer link up to
a predefined target height as quickly as possible by applying
appropriate torque through the actuator in each time step.

Observations comprise sine and cosine values of the two
poles’ angles denoted as sinθ1, cosθ1 and sinθ2, cosθ2, as well
as the angular velocities of the poles ω1 and ω2 respectively.
Actions correspond to the torque being applied by the
actuator and are selected from the set {−1; 0; 1} Nm.
The agent incurs a negative reward of −1 for each

non-terminal step, thus encouraging agile completion of the
task. However, when the free end reaches the target height,
an exceptional reward value of 0 is received.

3) CLIFF WALKING
Adopted from [47], Cliff Walking is a grid-world setting,
where an agent explores a grid map containing a cliff, aiming
to navigate from a fixed initial position to a predetermined
goal cell, while minimizing the number of movements and
avoiding falling off the cliff.

The state representation is a vector of length 48, where
each element represents the state of the rectangular 4 x 12
grid-world’s cells. The agent starts at a designated starting
position located in the bottom-left corner, with the goal
cell situated in the bottom-right. The agent is able to
take actions in four directions: up, right, down and left,
within the grid. However, there is a cliff region along
the bottom row of the grid, that immediately assigns a
negative reward to the corresponding state transition as a
penalty.

Generally, a reward value of −1 is collected in each time
step, unless the agent falls into a cliff, resulting in a reward of
−100 instead. An episode terminates if the agent reaches the
goal cell on the map or a predefined limit of time steps.

4) TAXI
The Taxi task, originally presented in [48], features a
simplified simulation of a taxi operation within a grid-world
environment. The primary objective for the agent is to deliver
passengers from designated pick-up to drop-off cells, while
minimizing travel time.

The map is represented as a 5 x 5 grid, allowing the agent
to occupy any of the 25 locations. There are four passengers
and five possible allocations for them, including one scenario
in the car. Additionally, there are four desired drop-off points,
thereby constructing a vector of length 500, from which the
scalar observation can be calculated as shown in 15:

s = ((tr ∗ 5+ tc) ∗ 5+ p) ∗ 4+ d (15)

where s is the scalar representation of the state, tr and
tc denote the row and column of the agent’s location
respectively, p indicates the passenger’s position and d
signifies the destination’s location. The action space consists
of six elements: moving up, down, left or right, as well as
performing pick-up and drop-off actions.

The agent is granted a reward of +20 for successfully
delivering a passenger to the correct location, although incurs
a penalty of −10 in case the pickup or drop-off actions are
executed at an incorrect location. Throughout the episode,
at each time step, a time penalty is given with a value of
−1 reflecting the secondary goal of completing the task
rapidly.

B. TRAINING
The training process holds principal importance in Deep
Learning methods on account of the agent’s performance
is evolved throughout this progress. In order to generate
a diverse set of training data, randomization is a key
component. In each environment, except for Cliff Walking,
the initial state is randomized over legal situations available,
in a standardized manner, utilizing the Gym framework.
This randomization of commencing conditions enables
the environment to provide wide range of experiences,
facilitating the development of a robust agent. Moreover,
precise definition of termination conditions is also essential
for the analyzed problems, although it is also provided by the
Gym package.

Experiments have been conducted on both agents,
utilizing Prioritized Experience Replay and a novel Upper
Confidence Bound-based prioritization approach. To validate
our hypothesis and to demonstrate the robustness of
our solution, a total of 5 training runs per environment
have been carried out for both algorithms under identical
conditions. Since further analysis about the robustness of
our approach would require transitioning to a sim2real
scenario, for the sake of straightforward comparability,
an easily accessible, yet quite pragmatic method has been
adopted, namely diversifying the training schemes by seeded
pseudorandomness.

In the first stage, general trainings have been accomplished
with alike hyperparameter sets, and neural network

VOLUME 11, 2023 138497

B. Kővári et al.: Enhanced Experience Prioritization

FIGURE 6. Mean reward of the evaluated solutions during 5 training runs.

FIGURE 7. Time steps of the prioritization methods during 5 executions.

architectures on the four, previously described environments.
Final hyperparameters and neural network structure utilized
by both agents have been determined by grid search to obtain
the highest achievable performance. This segment of the
experimentation pointed out, that performance of such can be
attained by the exact same values for PER and the UCB-based
prioritization meaning, that sampling strategy does not
influence the agents’ sensitivity to these parameters. The only
value that differs from, more specifically is additional to,
the PER methodology is cp introduced in Eq. 14, a constant
regulating balance between exploration and exploitation.
As the extent of exploration, from the training efficiency’s
point of view, is a highly task-dependent property, one has
to experiment with its value in the interval of [0; 1] in
order to fine-tune the exploration-exploitation trade-off, thus
establishing the right balance.

The latter analysis primarily aimed to compare
performance indicators of the proposed method relative to
state-of-the-art algorithm. In the subsequent phase however,
a unique warm-up stage has been implemented prior to
updating any of the neural networks’ parameters. During this
stage, experience replay memories have been filled up with
the same state transition tuples regarding each method, which
remained unchanged throughout the training process, in order
to highlight the difference in sampling efficiency between
the two techniques, thereby further supporting our theoretical
claims.

FIGURE 8. Cumulative reward of the applied techniques during 5 seeded
scenarios.

FIGURE 9. Statistical comparison of 5 training runs on the Acrobot
environment utilizing identical, fixed-size replay memories.

C. EVALUATION
The raw data, obtained from recorded measurements of
the above mentioned training methods, has undergone
a comprehensive evaluation procedure, while evolution
of various training and performance metrics have been
monitored with a specific emphasis on the efficiency of
applied sampling strategies. These metrics include the
number of time steps in the episode until termination, the
mean reward per episode, the cumulative sum of rewards
throughout an episode and also absolute time of training runs,
to which computational resource requirements are similarly
proportional as per expectations.

For the sake of establishing a thorough overview of the
prioritization techniques and acquire an extensive insight
into disparate solutions, the second training approach has
been further analyzed using multiple fixed-length experience
buffers employed. These memories have been configured
with the following capacities of 10000, 30000, 50000 and
100000, respectively.

IV. RESULTS
A. FIRST PHASE—GENERAL EVALUATION
In this section, a detailed analysis of the processed training
data is demonstrated with respect to Prioritized Experience
Replay and the novel Upper Confidence Bound-based

138498 VOLUME 11, 2023

B. Kővári et al.: Enhanced Experience Prioritization

TABLE 1. Statistical comparison of absolute mean training times [s] with corresponding standard deviations.

FIGURE 10. Two-dimensional t-SNE embedding of state transitions’ initial
states at the end of training in the Acrobot enviroment.

TABLE 2. Statistical comparison of mean number of episodes required to
learn the task.

prioritization approach, while monitoring and evaluating the
evolution of commonly examined training metrics.

Results of mean reward values collected per episode
are displayed in Fig. 6 for each of the four inspected
environments, during 5 seeded training runs using a simple
low-pass smoothing filter for the sake of transparency in the
values. The agent using our enhanced prioritization strategy
is shown in orange, while the one utilizing state-of-the-art
experience prioritization method is shown in blue. These
results, as well as the displayed converge plots of mean time
steps per episode in Fig. 7 and cumulative reward values
throughout episodes in Fig. 8, equivalently demonstrate the
ultimate superiority of our approach over the other concept
in terms of sampling efficiency, as enhanced attributes of
the convergence curves are clearly visible. Not only do
they show oscillations of lower magnitude and frequency
during training, but the number of episodes and absolute
time required for completely learning a task has also been
decreased by a decent amount.

Mitigation of the required network updates on one hand
leads to an increase in speed of convergence, but on the other
hand results in a significant reduction in training time with
the newly presented method compared to the PER algorithm.
This phenomenon is shown numerically in Table 1, where
a remarkable 10 − 30% rate of improvement is observable,

depending on the problem formulation. The evolution of
the standard deviation values displayed within the brackets
also indicate that our proposed method allows a much more
stable learning process, with smaller deviations around the
mean values. Similarly, Table 2 demonstrates the average
number of episodes, that is required for the agent to learn
completing a task. In most cases, our proposed algorithm
achieves better performance looking at these values, except
for the Cliff Walking environment, which might be because
its straightforward solution cannot formulate any contrast
between the two methods. However, regarding absolute time
consumption, our method has achieved better results on this
environment as well.

Consequently, since the absolute elapsed time for
training is closely related to the need for computational
resources, these findings point out an expected cutback of
similar proportionality on computing capacity requirements.
As detailed in the Introduction, the overall cost of training
can be expressed as the sum of indirect costs arising from
training time and computational demand of the process, hence
a considerable advancement has been achieved on the basis
of increased sampling efficiency.

B. SECOND PHASE—FIXED REPLAY MEMORY
In order to further validate our theory, that the enhanced
experience prioritization approach obtained a higher level of
sampling efficiency, an extensive supplementary experiment
has been carried out, during which the two solutions are given
identically filled experience replay memories with the same
state transitions through a warm-up stage, thus the only factor
influencing length of trainings is sampling efficiency. In case
the agent makes better use of the same training data stored in
each memory, in other words, samples from the experience
pool on a higher efficiency, a fewer amount of network
updates and therefore less training episodes are required for
achieving the same level of performance.

In Fig. 9, average values of 5 seeded training runs have
been displayed on the Acrobot task, while utilizing fixed
replay memories of identical experiences. The involved
metrics are minimum, maximum and average values of the
number of episodes required to complete the training (in this
case, moving average of last 10 episodes has to achieve a
time step value below 100). It is clearly visible, that in each
case of memory size, our proposed algorithm has managed
to accomplish superior sampling strategy, as can be derived
from all the statistical parameters.

Furthermore, Fig. 10 displays some insight of the higher
performance gained by our proposed solution. The dots in the

VOLUME 11, 2023 138499

B. Kővári et al.: Enhanced Experience Prioritization

figure represent single experiences, while coloring indicates
the absolute difference in the number of updates, in which the
given experience has been utilized, for each training sample,
as can be seen in 16:

RGB = |1ni| =
∣∣ni, PER − ni, UCT ∣∣ (16)

where ni is the fit count of transition i. Thus moving
from blue to red colored locations highlights the increasing
focus-shift regarding experiences between the two algorithms
via the t-Distributed Stochastic Neighbor Embedding (t-SNE)
method, applied to initial state representations of the final
experience replay memory with size of 10000 after training
in the Acrobot task.

V. CONCLUSION
Reinforcement Learning remains a uniquely prominent,
yet quite intricate approach to several optimization and
control tasks primarily concerning sequential decision
making problems due to its potential to provide superior
performance among other methods, such as Supervised
Learning, where the agent is limited to the training dataset
applied, and classical algorithms, that utilize tremendous
volume of computational power in the online decisionmaking
process, thereby not allowing real-time applicability without
restrictions.

However, a serious disadvantage of Deep Learning-based
solutions, including RL algorithms, is that the training phase
involves overwhelming resource allocation due to inadequate
treatment of training data. Sampling efficiency is a crucial
metric for assessing performance of such processes. Several
concepts have been published to address this issue, one of
which is experience prioritization, through which sampling
can be improved by determining priority of each state
transition stored in a memory.

In this paper, a novel approach has been proposed, that
revisits the exploration-exploitation dilemma by formalizing
a new priority value assignment concept. Drawing inspiration
for mathematical formality from the Upper Confidence
Bound algorithm, our approach incorporates the number
of neural network updates, an experience has undergone
as a basis of the exploration term, while the exploitation
component remains to be the normalized Temporal
Difference-error. Therefore, a new trade-off strategy has been
presented in the field of Reinforcement Learning, addressing
the problem of inefficient sampling.

Our results show, that utilizing our proposed method
both improves sampling efficiency and enhances learning
stability compared to current state-of-the-art technique, being
Prioritized Experience Replay, as evidenced by statistical
analysis of convergence curves. Furthermore, it can be stated,
that by obtaining superior sampling strategy, absolute training
time and, expectedly, computational resource requirements
can be significantly reduced, leading to a cut down in costs
of Reinforcement Learning trainings.

In our forthcoming pursuits, the primary objective is to
apply the proposed experience prioritization method to much

more complex tasks, in order to showcase its potential
in leveraging information of state transitions with higher
efficiency. Since our Upper Confidence Bound approach
being a general methodology improvement, one only has
to find suitable environments for further validation of the
empirical findings. In this case, we have considered the task
of lane keeping in the field of autonomous vehicle control,
and the traffic signal control problem for multi-intersection
transportation networks. Secondly, we aim to investigate
further refinement of the trade-off components on attempt of
finding an even more sophisticated abstraction of exploration
or exploitation in the Reinforcement Learning framework.
Eventually, we believe, that utilization of such trade-off
could be intriguing in the context of Supervised Learning as
well, since the problem of non-equivalent importance among
training data is also relevant for this branch of Machine
Learning, which can be resolved by establishing a proper
balance using our proposed approach. In general, integration
of the presented experience prioritization method into
existing PER-based implementations consists only of two
parts. Firstly, the utilized fit count metric of each experience,
responsible for exploration, needs to be monitored for the
whole duration of the training, and secondly, Eq. 14 has to be
applied during the priority value assignment process, instead
of the simple TD-error being used in PER.

REFERENCES
[1] B. Kővári, F. Hegedüs, and T. Bécsi, ‘‘Design of a reinforcement

learning-based lane keeping planning agent for automated vehicles,’’ Appl.
Sci., vol. 10, no. 20, p. 7171, Oct. 2020.

[2] D. Kim, S.-H. Kim, T. Kim, B. B. Kang, M. Lee, W. Park, S. Ku, D. Kim,
J. Kwon, H. Lee, J. Bae, Y.-L. Park, K.-J. Cho, and S. Jo, ‘‘Review of
machine learning methods in soft robotics,’’ PLoS ONE, vol. 16, no. 2,
Feb. 2021, Art. no. e0246102.

[3] B.-H. Li, B.-C. Hou, W.-T. Yu, X.-B. Lu, and C.-W. Yang, ‘‘Applications
of artificial intelligence in intelligent manufacturing: A review,’’ Frontiers
Inf. Technol. Electron. Eng., vol. 18, no. 1, pp. 86–96, 2017.

[4] P. Gorzelanczyk, ‘‘Forecasting the number of road accidents in Poland
depending on the day of the week using neural networks,’’ Periodica
Polytechnica Transp. Eng., vol. 51, no. 4, pp. 431–435, 2023.

[5] S. Garg, S. Sinha, A. K. Kar, and M. Mani, ‘‘A review of machine learning
applications in human resource management,’’ Int. J. Productiv. Perform.
Manage., vol. 71, no. 5, pp. 1590–1610, May 2022.

[6] J. Sevilla, L. Heim, A. Ho, T. Besiroglu, M. Hobbhahn, and P. Villalobos,
‘‘Compute trends across three eras of machine learning,’’ in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2022, pp. 1–8.

[7] B. Cottier. (2023). Trends in the Dollar Training Cost of Machine
Learning Systems. Accessed: Jun. 14, 2023. [Online]. Available:
https://epochai.org/blog/trends-in-the-dollar-training-cost-of-machine-
learning-systems

[8] T. L. Hayes, G. P. Krishnan, M. Bazhenov, H. T. Siegelmann,
T. J. Sejnowski, and C. Kanan, ‘‘Replay in deep learning: Current
approaches and missing biological elements,’’ Neural Comput., vol. 33,
no. 11, pp. 2908–2950, 2021.

[9] M. Moradi, Y. Weng, and Y.-C. Lai, ‘‘Defending smart electrical power
grids against cyberattacks with deep Q-learning,’’ PRX Energy, vol. 1,
no. 3, Nov. 2022, Art. no. 033005.

[10] S. E. Razavi, M. A.Moradi, S. Shamaghdari, andM. B.Menhaj, ‘‘Adaptive
optimal control of unknown discrete-time linear systems with guaranteed
prescribed degree of stability using reinforcement learning,’’ Int. J. Dyn.
Control, vol. 10, no. 3, pp. 870–878, Jun. 2022.

[11] D. Tompos and B. Németh, ‘‘Safe trajectory design for indoor drones using
reinforcement-learning-based methods,’’ in Proc. IEEE 17th Int. Symp.
Appl. Comput. Intell. Informat. (SACI), May 2023, pp. 27–32.

138500 VOLUME 11, 2023

B. Kővári et al.: Enhanced Experience Prioritization

[12] A. W. Moore and C. G. Atkeson, ‘‘Prioritized sweeping: Reinforcement
learning with less data and less time,’’ Mach. Learn., vol. 13, no. 1,
pp. 103–130, Oct. 1993.

[13] V. Mnih, ‘‘Human-level control through deep reinforcement learning,’’
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[14] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, ‘‘Prioritized experience
replay,’’ 2015, arXiv:1511.05952.

[15] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel, H. van
Hasselt, and D. Silver, ‘‘Distributed prioritized experience replay,’’ 2018,
arXiv:1803.00933.

[16] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, ‘‘A novel DDPG method with
prioritized experience replay,’’ inProc. IEEE Int. Conf. Syst., Man, Cybern.
(SMC), Oct. 2017, pp. 316–321.

[17] M. Brittain, J. Bertram, X. Yang, and P. Wei, ‘‘Prioritized sequence
experience replay,’’ 2019, arXiv:1905.12726.

[18] P.-H. Su, P. Budzianowski, S. Ultes, M. Gasic, and S. Young,
‘‘Sample-efficient actor-critic reinforcement learning with supervised data
for dialogue management,’’ 2017, arXiv:1707.00130.

[19] J. Buckman, D. Hafner, G. Tucker, E. Brevdo, and H. Lee,
‘‘Sample-efficient reinforcement learning with stochastic ensemble
value expansion,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 31, 2018,
pp. 8224–8234.

[20] Y. Yu, ‘‘Towards sample efficient reinforcement learning,’’ in Proc. 27th
Int. Joint Conf. Artif. Intell., Jul. 2018, pp. 5739–5743.

[21] R. Zhao and V. Tresp, ‘‘Energy-based hindsight experience prioritization,’’
in Proc. Conf. Robot Learn., 2018, pp. 113–122.

[22] R. Zhao and V. Tresp, ‘‘Curiosity-driven experience prioritization via
density estimation,’’ 2019, arXiv:1902.08039.

[23] Z.-W. Hong, T. Chen, Y.-C. Lin, J. Pajarinen, and P. Agrawal, ‘‘Topological
experience replay,’’ 2022, arXiv:2203.15845.

[24] S. Sujit, S. Nath, P. H. M. Braga, and S. E. Kahou, ‘‘Prioritizing samples
in reinforcement learning with reducible loss,’’ 2022, arXiv:2208.10483.

[25] S. Dankwa and W. Zheng, ‘‘Twin-delayed DDPG: A deep reinforcement
learning technique to model a continuous movement of an intelligent robot
agent,’’ in Proc. 3rd Int. Conf. Vis., Image Signal Process., Aug. 2019,
pp. 1–5.

[26] X. Chen, C. Wang, Z. Zhou, and K. Ross, ‘‘Randomized ensembled double
Q-learning: Learning fast without a model,’’ 2021, arXiv:2101.05982.

[27] S. Wen, Y. Zhao, X. Yuan, Z. Wang, D. Zhang, and L. Manfredi,
‘‘Path planning for active SLAM based on deep reinforcement learning
under unknown environments,’’ Intell. Service Robot., vol. 13, no. 2,
pp. 263–272, Apr. 2020.

[28] S. Sinha, H. Bharadhwaj, A. Srinivas, and A. Garg, ‘‘D2RL: Deep dense
architectures in reinforcement learning,’’ 2020, arXiv:2010.09163.

[29] R. Agarwal, M. C. Machado, P. S. Castro, and M. G. Bellemare,
‘‘Contrastive behavioral similarity embeddings for generalization in
reinforcement learning,’’ 2021, arXiv:2101.05265.

[30] K. Wang, K. Zhou, Q. Zhang, J. Shao, B. Hooi, and J. Feng, ‘‘Towards
better Laplacian representation in reinforcement learning with generalized
graph drawing,’’ in Proc. Int. Conf. Mach. Learn., 2021, pp. 11003–11012.

[31] L. P. Kaelbling, M. L. Littman, and A. W. Moore, ‘‘Reinforcement
learning: A survey,’’ J. Artif. Intell. Res., vol. 4, no. 1, pp. 237–285,
Jan. 1996.

[32] S. Koh, B. Zhou, H. Fang, P. Yang, Z. Yang, Q. Yang, L. Guan, and Z. Ji,
‘‘Real-time deep reinforcement learning based vehicle navigation,’’ Appl.
Soft Comput., vol. 96, Nov. 2020, Art. no. 106694.

[33] C. Yan, X. Xiang, and C. Wang, ‘‘Towards real-time path planning through
deep reinforcement learning for aUAV in dynamic environments,’’ J. Intell.
Robotic Syst., vol. 98, no. 2, pp. 297–309, May 2020.

[34] J. Z. Leibo, E. A. Dueñez-Guzman, A. Vezhnevets, J. P. Agapiou,
P. Sunehag, R. Koster, J. Matyas, C. Beattie, I. Mordatch, and T. Graepel,
‘‘Scalable evaluation of multi-agent reinforcement learning with melting
pot,’’ in Proc. Int. Conf. Mach. Learn., 2021, pp. 6187–6199.

[35] M. Zhou, ‘‘SMARTS: Scalablemulti-agent reinforcement learning training
school for autonomous driving,’’ 2020, arXiv:2010.09776.

[36] T. Chu, J. Wang, L. Codecà, and Z. Li, ‘‘Multi-agent deep reinforcement
learning for large-scale traffic signal control,’’ IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 3, pp. 1086–1095, Mar. 2020.

[37] Z. Zhu, K. Lin, A. K. Jain, and J. Zhou, ‘‘Transfer learning in
deep reinforcement learning: A survey,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 11, pp. 13344–13362, Nov. 2023, doi:
10.1109/TPAMI.2023.3292075.

[38] M. Van Otterlo and M. Wiering, ‘‘Reinforcement learning and Markov
decision processes,’’ in Reinforcement learning: State-of-the-Art. Cham,
Switzerland: Springer, 2012, pp. 3–42.

[39] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[40] P. Zhai, Y. Zhang, and W. Shaobo, ‘‘Intelligent ship collision avoidance
algorithm based on DDQN with prioritized experience replay under
COLREGs,’’ J. Mar. Sci. Eng., vol. 10, no. 5, p. 585, Apr. 2022.

[41] D. Fährmann, N. Jorek, N. Damer, F. Kirchbuchner, and A. Kuijper,
‘‘Double deep Q-learning with prioritized experience replay for
anomaly detection in smart environments,’’ IEEE Access, vol. 10,
pp. 60836–60848, 2022.

[42] R. McFarlane, A Survey of Exploration Strategies in Reinforcement
Learning, vol. 3. Montreal, QC, Canada: McGill Univ., 2018, pp. 17–18.

[43] P. Auer, ‘‘Using confidence bounds for exploitation-exploration
trade-offs,’’ J. Mach. Learn. Res., vol. 3, pp. 397–422, Nov. 2002.

[44] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang,
and W. Zaremba, ‘‘OpenAI gym,’’ Tech. Rep., 2016. [Online]. Available:
http://arxiv.org/abs/1606.01540

[45] A. G. Barto, R. S. Sutton, and C. W. Anderson, ‘‘Neuronlike adaptive
elements that can solve difficult learning control problems,’’ IEEE Trans.
Syst., Man, Cybern., vol. SMC-13, no. 5, pp. 834–846, Sep. 1983.

[46] R. S. Sutton, ‘‘Generalization in reinforcement learning: Successful
examples using sparse coarse coding,’’ in Proc. Adv. Neural Inf. Process.
Syst., vol. 8, 1995, pp. 1038–1044.

[47] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[48] T. G. Dietterich, ‘‘Hierarchical reinforcement learning with the MAXQ
value function decomposition,’’ J. Artif. Intell. Res., vol. 13, pp. 227–303,
Nov. 2000.

BÁLINT KŐVÁRI received the B.Sc. and
M.Sc. degrees in vehicle engineering from
the Faculty of Autonomous Vehicle Control
Engineering, Budapest University of Technology
and Economics, Budapest, Hungary, in 2018 and
2020, respectively. He is currently pursuing the
Ph.D. degree with the Budapest University of
Technology and Economics. His research interests
include artificial intelligence, reinforcement
learning, vehicle dynamics, and mechatronics.

BÁLINT PELENCZEI is currently pursuing
the B.Sc. degree in vehicle engineering with
the Budapest University of Technology and
Economics, Budapest, Hungary. He is a Developer
with the Systems Control Laboratory, Institute
for Computer Science and Control. His research
interests include artificial intelligence,
mechatronics, machine learning, and intelligent
transportation systems.

TAMÁS BÉCSI (Member, IEEE) received the
M.Sc. and Ph.D. degrees from the Budapest
University of Technology and Economics,
Budapest, Hungary, in 2002 and 2008, respectively.

Since 2005, he has been an Assistant Lecturer
with the Department of Control for Transportation
and Vehicle Systems, Budapest University of
Technology and Economics, where he has been
an Associate Professor, since 2014. His research

interests include machine learning, embedded systems, traffic modeling, and
vehicle control.

VOLUME 11, 2023 138501

http://dx.doi.org/10.1109/TPAMI.2023.3292075

