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(SZTAKI), Eötvös Loránd Research Network (ELKH), Budapest, Hungary;
cDepartment of Operations Research and Actuarial Sciences, Corvinus University of
Budapest, Budapest, Hungary

ARTICLE HISTORY

Journal of Control and Decision, https://doi.org/10.1080/23307706.2023.2179551

ABSTRACT
Relative pairwise comparisons represent the cornerstone for several decision-making
methods. Such approaches aim to support complex decision-making situations with
multiple alternatives and are essential in order to provide an overall absolute eval-
uation of the alternatives despite the presence of experts and/or decision-makers
with conflicting opinions. Moreover, when decision-maker’s opinions are affected by
uncertainty, there is the need to analyze the effect of such uncertain measures on
the result of the decision-making process. We propose an approach based on a multi
objective optimization problem, able to identify the presence of rank reversal issues
in order to evaluate the stability of the final outcome of the decision-making process
and a metric able to support experts in evaluating the effects of their uncertainty. We
characterize the robustness of the ranking with respect to rank reversal by identify-
ing a perturbation that is as small as possible, while causing the maximum number
of ordinal swaps.

KEYWORDS
Decision-Making; Pairwise comparison matrix; Rank reversal

1. Introduction

Pairwise comparisons and relative judgements are frequently adopted in Multi-Criteria
decision-making (MCDM) methods, such as the Analytic Hierarchy Process (AHP),
with the aim to reduce the complexity of evaluating several alternatives according to
multiple criteria or in identifying the best alternative among multiple and often hardly
comparable ones. The Eigenvector Method (EM) proposed by T. L. Saaty (1977), and
the Logarithmic Least Squares approach (LLS, Rabinowitz (1976)) are two of the main
approaches used in order to define an absolute ranking on the basis of multiple rela-
tive comparisons about several alternatives, provided by multiple experts or decision-
makers according to a number of criteria. Such approaches are successfully adopted in a
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wide variety of application fields, such as energy optimization (Ali, Rasheed, Muham-
mad, and Yousaf (2018)), infrastructures protection (Faramondi, Oliva, and Setola
(2020)), and plant construction (Ali, Butt, Sabir, Mumtaz, and Salman (2018)).

Usually, relative judgements are defined according to the well known Saaty’s scale
(T. L. Saaty (1988)) and are organized in comparison matrices Y ∈ Rn×n where the
entry Yij represents the relative score (or utility) of the i-th alternative with respect
to the j-th alternative. In the literature, two key issues related to the comparison
matrices are the inconsistency of the judgements and the presence of rank reversal.
The consistency of data, provided by a decision-maker or an expert, is a classical
issue in AHP, and several approaches have been proposed in order to ensure that the
decision-maker’s relative judgements are not incoherent or at least have a negligible
level of incoherence.

Rank reversal, which means that the ordinal positions of two or more decision alter-
natives in the final ranking could be reversed, has been widely studied in the literature.
Such phenomenon can occur due to multiple factors, for example when a relative score
is changed or a new alternative is added or deleted. Recent studies highlight that such
phenomenon should be considered also when the relative judgements provided by the
decision-makers are uncertain. In this context, relative scores are usually defined as
fuzzy numbers (Wang, Luo, and Hua (2008)), uncertainty intervals (T. L. Saaty and
Vargas (1987)), or associated to a confidence level (Durbach, Lahdelma, and Salminen
(2014)). When relative judgements are affected by uncertainty, alternative methods
may be used in order to identify the absolute ranking. As highlighted by T. L. Saaty
and Vargas (1987) and Faramondi, Oliva, Setola, and Bozóki (2022b), in the presence
of uncertainty, such comparison matrices can lead to multiple rankings. The first pio-
neering study about such phenomenon is presented in T. L. Saaty and Vargas (1987),
where the probability of rank reversal is estimated. A similar approach, the Stochastic
Multicriteria Acceptability Analysis (SMAA-AHP), based on the Monte Carlo simu-
lation, is defined by Durbach et al. (2014) and proposes the definition of indices able
to measure the probability of rank reversal. Such approach analyzes how the consis-
tency of judgements and the ability of the AHP model to discern the best alternative
deteriorates as uncertainty increases. Cavallo and Brunelli (2018) provide a general
unified framework for dealing with comparison matrices whose entries are intervals on
real continuous Abelian linearly ordered groups. Such work is useful to unify several
approaches proposed in the literature, such as multiplicative, additive and fuzzy com-
parison matrices. Faramondi et al. (2022b) propose an optimization approach able to
identify multiplicative perturbations of the comparison matrices able to compromise
the stability of the ordinal ranking and cause a rank reversal phenomenon. The au-
thors extend their work by integrating their results with the SMAA-AHP approach
(Faramondi, Oliva, Setola, and Bozóki (2022a)). The stability of the final outcome
with respect to the perturbation of a single uncertain relative judgement is studied by
Mazurek, Perzina, Ramı́k, and Bartl (2021).

As mentioned above, the definition of matrices of intervals is one of the possible ap-
proaches for the definition of comparison matrices affected by uncertainty (see Cavallo
and Brunelli (2018)). Hence, in this case, one of the most popular approaches for the
identification of an ordinal ranking is to consider the average values of such intervals
and apply EM or LLS. In this work, we propose an optimization approach, derived
from a multiobjective optimization problem, able to identify the presence of rank re-
versal phenomenon in interval pairwise comparison matrices compatible with the given
uncertainty intervals. In more detail, we consider a scenario where the utilities of a
set of alternatives must be estimated based on the relative preferences of multiple
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decision-makers. In this view, we aim to identify a perturbation of the nominal pair-
wise comparisons which is as small as possible in a logarithmic least squares sense,
while causing the maximum possible number of ordinal swaps among the alternatives.
Notably, the number of swaps (rank reversals) is an intuitive and well understandable
index, while this is not necessarily true for cardinal (continuous) measures especially
when thresholds of acceptability should be determined.

As discussed above, in previous literature the research of rank reversal phenomenon
is usually addressed by randomly sampling the uncertainty intervals in order to identify
a set of matrices leading to different ordinal rankings. Notably, although multiobjec-
tive optimization has been used in the context of AHP (see, among others, the work by
Siraj, Mikhailov, and Keane (2012), where preferences are obtained by simultaneously
minimizing deviations from both direct and indirect judgments), to the best of our
knowledge, such a framework has not been adopted to assess robustness with respect
to rank reversal. In our approach we identify a nominal ranking by applying LLS on
the average values of the uncertainty intervals and solve an optimization problem able
to obtain a new ordinal ranking characterized by rank reversal. In other words, our
approach is able to provide the experts involved in the decision-making process with
an evaluation about their uncertainty and and the related possibility to obtain rank
reversal issues which involves two or more alternatives. A negative evaluation of the
experts’ uncertainty can push them towards revising their judgements, while a positive
evaluation is a guarantee of the absence, or low probability, of rank reversal issues.
Notice that our approach is applicable when multiple decision-makers are involved in
the decision-making process and when some alternative are not directly compared (i.e.,
the sparse setting). The outline of the paper is as follows: In Section 2 we provide some
preliminary definitions, while in Section 3 we review some fundamental result on pair-
wise comparison matrices. In Section 4 we describe our approach for the identification
of rank reversal phenomenon and propose a metric able to evaluate the probability
of rank reversal with respect to the expert’s uncertainty. Results and discussions are
collected in Section 5 with the aim to validate the proposed framework; finally some
conclusive remarks are collected in Section 6.

2. Preliminaries

2.1. Notation

We denote vectors by boldface lowercase letters and matrices with uppercase letters
and we refer to the (i, j)-th entry of a matrix A by Aij . We represent by 0n and 1n,
respectively the column vector with n components all equal to zero and all equal to
one. We denote by ∥A∥F the Frobenius norm of a matrix A.

2.2. Graph-theoretical preliminaries

Let G = {V,E} be a graph with |V | = n nodes, V = {v1, v2, . . . , vn}, and e = |E|
edges, E ⊆ V × V , where (vi, vj) ∈ E represents the existence of a link from node vi
to node vj . A graph G is undirected if (vi, vj) ∈ E whenever (vj , vi) ∈ E. Let G be
an undirected graph, the neighborhood Ni of a node vi is the set of nodes vj , such
that (vi, vj) ∈ E. For a given node vi, the degree di of the node is the number of edges
incident on it; i.e., di = |Ni|. Given a simple graph G = {V,E} with n nodes, we define
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the Laplacian matrix L as the n× n matrix such that

Lij =


di, if i = j

−1, if (vi, vj) ∈ E

0, otherwise

2.3. Ordinal relations and rankings distance measures

We denote by ai ≻ aj the ordinal relation between two alternatives from an ordinal
perspective. Let r be a vector in Rn which represents the utilities of a set of alternatives,
the relation ai ≻ aj is verified if and only if ri > rj .

Definition 2.1. Let r be a vector in Rn which represents the utilities of a set of
alternatives. A matrix ordinal representation of a ranking r, is an upper triangular
matrix X ∈ Rn×n, defined as follows:

Xij =

{
1 if ri > rj and i < j,

0 otherwise.

Definition 2.2. Let r, t be vectors in Rn, each representing the utilities of a set of
alternatives. Let r and t be two rankings in Rn. An ordinal swap, or more simply a
swap, between two alternatives ai and aj occurs whenever the ordinal relation between
the two alternatives in r is reverted in t.

The Kendall distancemetric τ(r, t) is a popular rank-based coefficient for comparing
two vectors, r and t, representing rankings of n elements (see Abdi (2007)). It is based
on the number of consecutive pairwise ordinal swaps required to transform one ordinal
ranking vector into the other. The metric is defined as:

τ(r, t) =
2

n(n− 1)

∑
∀(i,j)s.t.,i<j

Kij(r, t)

where Kij(r, t) = 1 in presence of an ordinal swap (i.e., the i-th and j-th alternatives
are in the opposite order (from the ordinal point of view) in r and t), whileKij(r, t) = 0
otherwise (i.e., if the two alternatives are in the same order in the two rankings). In
this work, we normalize such metric with respect to the maximum value in order to
obtain values in the range [0, 1]. Considering two rankings r and t, the lower bound of
their distance is τ(r, t) = 0, when the two rankings exhibit the same ordinal relations
among their entries, while the upper bound is τ(r, t) = 1 (when the two rankings
are completely reverted). Moreover, such distance can attain only a finite number of
values in the range [0, . . . , 1]. More precisely, given a ranking r it is possible to obtain n!
reverted rankings, the distance of each reverted ranking from r, computed via Kendall

distance, can attain n(n−1)
2 + 1 values in the range.

For the sake of clarity consider the following absolute ranking r =
[
0.5 0.3 0.2

]
,

which corresponds to an ordinal ranking where a1 ≻ a2 ≻ a3. In Table 1 we summa-
rize the Kendall distances between r and a set of six rankings (s(1), . . . , s(6)) which
encompass three alternatives.

Notice that τ(s, r(1)) = 0 in fact, despite the numerical differences about the en-
tries of such rankings, the two utility vector reflect the same ordinal rankings where
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s(
1) = [0.7

0.2
0.1]

s(
2) = [0.7

0.1
0.2]

s(
3) = [0.2

0.1
0.7]

s(
4) = [0.2

0.7
0.1]

s(
5) = [0.1

0.7
0.2]

s(
6) = [0.1

0.2
0.7]

r = [0.5 0.3 0.2] 0 (0) 0.33 (1) 0.66 (2) 0.33 (1) 0.66 (2) 1 (3)
Table 1. Kendall distances among rankings. The associated numbers of ordinal swap are given in brackets.

a1 ≻ a2 ≻ a3. According to Table 1, τ(r, s(2)) = τ(r, s(4)) = 0.33, in fact, both s(2) and
s(4) differs from r for one ordinal swap. With respect to the ordinal relations in s, in
r(2) the swap is related to the alternatives a2 and a3, while in r(4) the swap involves
alternatives a1 and a2. Concerning r(3) and r(5), both the ranking differ from s for two
ordinal swaps, while r(6) is completely reverted with respect to s (i.e., three ordinal
swaps occur). Hence, in the presence of s ordinal swaps between two rankings r and
t ∈ Rn, the corresponding Kendall distance is 2s

n(n−1) .

2.4. Multiobjective optimization preliminaries

A multiobjective optimization problem can be expressed as:

min f(x) = {f1(x), . . . , fk(x)}, subject to x ∈ F ,

where k ≥ 2 and the i-th objective is given by

fi(x) : Rn → R, for i = 1, . . . , k,

while f(x) is the multiobjective function. The set F represents the set of admissible
solutions for the problem at hand. In multiobjective problems, the aim is to iden-
tify multiple admissible solutions x(1), . . . ,x(p) that represent trade-offs among the
minimization of the different objectives, as discussed next.

Definition 2.3. The objective-space is defined as: S = {s ∈ Rk : ∃x ∈ F , s = f(x)}.

Definition 2.4. Let s(1) and s(2) ∈ F , s(2) is Pareto-dominated by s(1) (s(1) ≤P s(2))

if s
(1)
i ≤ s

(2)
i for each i = 1, . . . , k, and s

(1)
j < s

(2)
j at least for a value of j = 1, . . . , k.

Definition 2.5. A solution x∗ ∈ F is a Pareto optimal solution if there is no other
solution x ∈ F such that f(x) ≤P f(x∗).

Definition 2.6. The Pareto front P is the set of all possible Pareto optimal solutions
x∗ for the problem at hand.

3. Comparison matrices and ranking identification

In this section we briefly summarize the main aspects of decision-making process based
on relative judgements. The aim is the identification of an absolute ranking y ∈ Rn

whose components yi represent the relevance or the utility of the alternative ai. Such
process is based on relative judgements usually collected in pairwise comparison ma-
trices (PCMs). A PCM Y ∈ Rn×n is a matrix whose elements Yij are usually defined
according to the well known Saaty’s scale (see Table 2). Each entry Yij describes
the relative relevance of the alternative ai with respect to the alternative aj (e.g. if
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Y12 = 3, hence the alternative a1 is three times better than the alternative a2). The
PCM is locally consistent if Yij =

1
Yji

for each i, j = 1, . . . , n. A PCM Y is consistent

if Yik = YijYjk for each i, j, k = 1, . . . , n. A sparse (or incomplete) comparison matrix
(SPCM) is a particular PCM where Yij is unknown for some i, j. In the sequel, this
will be technically denoted by Yij = 0. The evaluation of the inconsistency degree of
the given comparison matrices represents a fundamental preliminary step in decision-
making process. In particular, in the complete information context (i.e., when Yij is

known ∀i, j), according to Ágoston and Csató (2022), highly inconsistent PCM re-
sults in unreliable rankings and should not be considered. The Consistency Index is
the most frequently used approach for the evaluation of consistency degree of a given
instance, it is based on the dominant eigenvalue of the comparison matrix Y ∈ Rn×n:

CI(Y ) =
λn{Y } − n

n− 1
, (1)

where n represents the number of considered alternatives. Moreover, Saaty proposed to
normalize such index with respect to the so-called Random Index RIn which is the av-
erage CI(Y ) computed by considering a large number of random pairwise comparison
matrices of degree n, thus obtaining the Consistency Ratio as in Equation (2).

CR(Y ) =
CI(Y )

RIn
(2)

If CR is smaller or equal to 10%, the inconsistency is considered acceptable and the
absolute utilities can be computed (e.g. via EM or LLS), if instead CR is greater than
such threshold, it is suggested to revise the subjective relative judgment in order to
reduce such inconsistency (R. W. Saaty (1987)). A similar approach is applied also in

the sparse setting. The Sparse Consistency Index (Ágoston and Csató (2022)) directly
derives from the consistency index proposed by Saaty in Equation (1). In the sparse
setting it is defined as:

C̃I(Y ) =
λn{M} − n

n− 1
, (3)

where M is an auxiliary matrix obtained from the sparse comparison matrix Y ac-
cording to one of the procedures described in Ágoston and Csató (2022) and Bozóki,
Fülöp, and Rónyai (2010). Similarly to the complete information setting, the proposed

index requires a normalization. In fact, in Ágoston and Csató (2022) the authors de-

fine an alternative Random Index R̃In,m also for the sparse setting which is a function
of matrix size n and the number of missing relative comparisons m. As a result, the

Consistency Ratio for sparse comparison matrices C̃R is defined as:

C̃R(Y ) =
C̃I(Y )

R̃In,m
. (4)

Without any changes, as in the complete information setting, the rule about the 10%

threshold for the ratio C̃I/C̃Rn,m can be adopted.
The aim of MCDM methods is the identification of the absolute utilities yi on the

basis of the given relative judgements Yij . In the literature, two main classes of ap-
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Yij Definition

1 Equal importance

3 Moderate importance of one over another

5 Essential or strong importance
7 Very strong importance

9 Extreme importance

2, 4, 6, 8 Intermediate values between the two adjacent judgements

Table 2. Saaty’s scale for comparing the importance of criteria in AHP (for comparing alternatives, impor-
tance is replaced by preference).

proaches for the estimation of absolute utilities have been defined: extremal methods
and eigenvector methods. The class of extremal methods amounts to a set of optimiza-
tion problems aiming to minimize a distance function between the relative judgements
given by the experts Yij and the unknown absolute utilities yi (Chu, Kalaba, and
Spingarn (1979); Cook and Kress (1988); Crawford and Williams (1985)). Concerning
the class of eigenvector methods, in T. L. Saaty and Hu (1998), Saaty proposes the
Eigenvector Method (EM), i.e., the adoption of the dominant eigenvector of the PCM
as the desired vector of utilities. As mentioned above, in the literature, there is no
universal consent on how to estimate the utilities yi, see for instance the debate in
Dyer (1990); Menci, Oliva, Papi, Setola, and Scala (2018); T. L. Saaty (1990).

3.1. Logarithmic Least Squares

The Logarithmic Least Squares (LLS) method (Crawford and Williams (1985); Rabi-
nowitz (1976)) represents a valid approach for the identification of the absolute utilities
yi on the basis of the given relative judgements Yij provided by the experts. Such ap-
proach is just one of the many procedures that belong the class of extremal methods:
the Weighted Least Squares (Blankmeyer (1987)), the Direct Least Squares, (Barzilai
and Golany (1990); Chu et al. (1979)), and the Logarithmic Least Absolute Values
(Cook and Kress (1988)), just to name a few. The LLS problem is defined as follows:

y∗ = argmin
x∈Rn

+

{
1

2

n∑
i=1

n∑
j=1

(
ln(Yij)− ln

(xi
xj

))2}
.

In this work we rely on the Incomplete Logarithmic Least Squares (ILLS,
(Kwiesielewicz, 1996)) approach, which extends the Logarithmic Least Squares (LLS)
approach including also the case of sparse comparison matrices.

Specifically, the aim of ILLS is to find a vector y∗, such that

y∗ = argmin
x∈Rn

+

{
1

2

n∑
i=1

∑
vj∈Ni

(
ln(Yij)− ln

(xi
xj

))2}
. (5)

Notice that, the notation vj ∈ Ni is based on the graph representation of the sparse
comparison matrix. The graph G = {V,E} represents the graph underlying Y , the
nodes V = v1, . . . , vn correspond to the alternatives a1, . . . , an, while the edges in E
are associated to the given relative judgements (outside the diagonal), hence (vi, vj) ∈
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E ⇐⇒ Yij is known and i ̸= j. Differently from the complete LLS method, the
notation vj ∈ Ni allows us to consider only the defined ratios in the sparse pairwise
comparison matrix.

An effective strategy to solve ILLS is to operate the substitution z = ln(x), where
ln(·), is the component-wise logarithm, so that Equation (5) can be rearranged as:

y∗ = exp

(
argmin
z∈Rn

{
1

2

n∑
i=1

∑
vj∈Ni

(
ln(Yij)− zi + zj

)2})
,

where exp(·) is the component-wise exponential. This allows to handle an equivalent
problem which is convex, thus greatly simplifying the solution.

3.1.1. Multiple experts evaluations

With the notation Y
(k)
ij we indicate the relative importance of the alternative ai with

respect to the alternative aj expressed by the expert k. As mentioned above, in this
work we want to characterize the stability of the priority vector y when m multiple ex-
perts provide their uncertain relative judgements by defining SPCMs (Y (1), . . . , Y (m))
about the same n alternatives.

Usually, when multiple experts are involved in the decision-making process and
preferences are devoid of uncertainty, ILLS is extended as follows1:

y∗ = exp

(
argmin
z∈Rn

{
1

2

m∑
k=1

n∑
i=1

∑
vj∈Ni

(
ln(Y

(k)
ij )− zi + zj

)2})
.

where we denote by Y (i) the SPCM defined by the i-th expert. We now define

κ(z) =
1

2

m∑
k=1

n∑
i=1

∑
j∈Ni

(
ln(Y

(k)
ij )− zi + zj

)2
. (6)

Thanks to the substitution z = ln(x), the problem is now convex2 and uncon-
strained, hence its global minimum is in the form y∗ = exp(z∗), where z∗ satisfies for
each entry zi:

∂κ(z)

∂zi

∣∣∣∣∣
z=z∗

=

m∑
k=1

∑
j∈Ni

(
ln(Y

(k)
ij )− z∗i + z∗j

)
= 0. (7)

We now define the n × n matrix P (k) such that P
(k)
ij = ln(Y

(k)
ij ) if Y

(k)
ij > 0 and

P
(k)
ij =0 otherwise; we can express Equation (7) as

1Also in this case, we operate the substitution z = ln(x); we only report the equivalent problem formulation
with respect to the variable z for the sake of brevity.
2It can be easily shown that the Hessian matrix of κ(·) is the Laplacian matrix L, which is positive semidefinite,

thus implying convexity of κ(·).
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m∑
k=1

(
P (k)1n − L(k)z∗

)
= 0n (8)

where L(k) is the Laplacian matrix of the graph G = {V,E} underlying the PCM
Y (k).

3.2. Handling uncertainty in pairwise comparisons

As highlighted in T. L. Saaty and Vargas (1987), it is essential to extend classical
approaches based on pairwise comparisons by including the concept of expert’s uncer-
tainty or indecision. In this view, T. L. Saaty and Vargas (1987) introduce the interval
pairwise comparison matrix (IPCM). An IPCM is defined as a matrix of uncertainty
intervals:

Ỹ =


1 [l12, u12] . . . [l1n, u1n]

[l21, u21] 1 . . . [l2n, u2n]
...

...
. . .

...
[ln1, un1] [ln2, un2] . . . 1

 ,

where lij ≤ uij , lij = 1/uji, and uij = 1/lji for each i, j = 1, . . . , n. In this way, this
formalism allows to account for the indecision of the decision-maker. Notice that, due
to consistency issues, it is required that either (lij , uij) ⊆ [1, 9], or (lij , uij) ⊆ [1/9, 1].
In other words, the entire interval must either be above or equal to one or below or
equal to one. Such requirement is essential to avoid intervals where lij < 1 and uij > 1.
This case would include conflicting evaluations for which ai is better than aj , and at
the same time aj is better than ai (Cavallo and Brunelli (2018)).

Notice that, in the presence of uncertainty, approaches such as ILLS are not di-
rectly applicable. In this case, according to T. L. Saaty and Vargas (1987), suggested
approaches randomly define traditional PCMs by choosing entries within the bounds
[lij , uij ]. Alternative approaches amount to the definition of a PCM Y based on the av-
erage values of the uncertainty intervals and the formulation of ILLS on such instance.
More precisely, in this work we define such matrix as:

Y ij =

{
(lij+uij)

2 if lij ≥ 1
1

Y ji
otherwise.

(9)

As highlighted by T. L. Saaty and Vargas (1987), when absolute utilities, computed
via eigenvector methods, are obtained on the basis of uncertain relative judgements
it is essential verify the stability of such solution and the presence of rank reversal
phenomena.
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4. Ranking robustness identification

In this section we propose a multiobjective optimization problem with the aim to iden-
tify the presence of rank reversal phenomena in ranking estimation based on interval
pairwise comparison matrices (Ỹ (1), . . . , Ỹ (m)) provided by m experts. Let y be the
nominal ranking obtained via ILLS on the basis of the average values of each inter-

val [l
(k)
ij , u

(k)
ij ] for each expert k, according to Equation (9). The aim of the proposed

problem is the identification of m PCMs (Ŷ1, . . . , Ŷm) compatible with the indecision
intervals, which correspond to an absolute ranking ŷ different from y from the ordinal
point of view, hence characterized by rank reversal.

Such problem represents the cornerstone for the definition of an index able to
measure the robustness of the given instances with respect to the rank reversal phe-
nomenon.

We point out that instances characterized by a high degree of uncertainty (i.e.,

large indecision intervals [l
(k)
ij , u

(k)
ij ]) are more prone to rank reversal with respect to

instances characterized by a small uncertainty. Based on this intuition, our formulation
is characterized by two (usually conflicting) objective functions:

• Comparison matrices distance: we want to minimize the distance between the
identified perturbed matrices (Ŷ (1), . . . , Ŷ (m)) and the corresponding comparison

matrices (Y
(1)

, . . . , Y
(m)

) defined according to the average value of each interval

[l
(k)
ij , u

(k)
ij ] (see Equation (9)). More precisely, we rely on the Frobenius norm as a

measure of the distances between the matrices. Hence, we minimize the following
function:

f1(Ŷ
(1), . . . , Ŷ (m)) =

1

2

m∑
k=1

∥ ln (Y (k)
)− ln (Ŷ (k))∥2F .

• Ranking distance: the second objective function is related to the maximization
of the distance between the nominal ranking y, obtained considering the average

values of the intervals [l
(k)
ij , u

(k)
ij ], and the ranking ŷ obtained via ILLS on the basis

of the identified perturbed matrices Ŷ (1), . . . , Ŷ (m). In this objective function we
rely on the Kendall Distance.

Let us now formulate the problem at hand.

Problem 1. Let an interval comparison matrix Ỹ (k) be given for each decision-maker

k, and let Y
(k)

be the comparison matrix which entries are defined as the average value

of each uncertainty interval of Ỹ (k) as in Equation (9). Finally, let y be the nominal

absolute ranking based on such average ratio matrices. Find the matrices Ŷ (k) ∈ Rn×n
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and the vector ŷ ∈ Rn that solve:

minimize
Ŷ (1), . . . , Ŷ (m), ŷ

{
f1(·) =

1

2

m∑
k=1

∥ ln (Y (k)
)− ln (Ŷ (k))∥2F , f2(·) = −τ(ŷ,y)

}
(10a)

subject to

ŷ= min
x∈Rn

+

{
1

2

m∑
k=1

n∑
i=1

∑
j∈Ni

(
ln(Ŷ

(k)
ij )− ln

(xi

xj

))2}
, (10b)

Ŷ
(k)
ij

1

Ŷ
(k)
ji

= 1 ∀ (k, i, j) s.t. Y
(k)

ij ̸= 0, (10c)

l
(k)
ij ≤ Ŷ

(k)
ij ≤ u

(k)
ij ∀ (k, i, j) s.t. Y

(k)

ij ̸= 0, (10d)

Ŷ (1), . . . , Ŷ (m) ∈ Rn×n, (10e)

ŷ ∈ Rn. (10f)

The proposed formulation is a multi-objective problem characterized by three set
of constraints. The constraint (10b) is necessary in order to define the new absolute

ranking ŷ with respect to the identified comparison matrices Ŷ (1), . . . , Ŷ (m). Such
identified matrices are locally consistent as required by (10c) and, moreover, the ma-
trices are compatible with respect to the intervals defined by the expert in the IPCMs
Ỹ (1), . . . , Ỹ (m) as required by the constraints (10d). Notice that, the solution of Prob-
lem 1 consists of a set of non-dominated solutions {s1, . . . , sl} where each solution
is characterized by a couple of values, i.e., the values attained for the two objective
functions f1(·) and f2(·). Notice further that, as mentioned above, f2(·) represents the
normalized Kendall distance between the nominal ranking y and the obtained altered
ranking ŷ and, as suggested in Section 2.3, such function can attain only a finite and
discrete number of values. On the basis of such characteristic about the values that
f2(·) can attain, we propose a new formulation of Problem 1. In the following new
formulation, the distance between the nominal ranking y and the new altered ranking
ŷ is now considered as a constraint in Constraint (11e). On the basis of such trans-
formation and similarly to the approach proposed by Bérubé, Gendreau, and Potvin
(2007), we can obtain the Pareto front of Problem 1, by iteratively solving Problem 2
for multiple values of the parameter d, where d ∈ [−1, . . . , 0].

Problem 2. Let an interval comparison matrix Ỹ (k) be given for each decision-maker

k, and let Y
(k)

be the comparison matrix which entries are defined as the average value

of each uncertainty interval of Ỹ (k) as in Equation (9). Finally, let y be the nominal

absolute ranking based on such average ratio matrices. Find the matrices Ŷ (k) and the
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vector ŷ that solve:

minimize
Ŷ (1), . . . , Ŷ (m), ŷ

f1(·) =
1

2

m∑
k=1

∥ ln (Y (k)
)− ln (Ŷ (k))∥2F (11a)

subject to

ŷ= min
x∈Rn

+

{
1

2

m∑
k=1

n∑
i=1

∑
j∈Ni

(
ln(Ŷ

(k)
ij )− ln

(xi

xj

))2}
, (11b)

Ŷ
(k)
ij

1

Ŷ
(k)
ji

= 1 ∀ (k, i, j) s.t. Y
(k)

ij ̸= 0, (11c)

l
(k)
ij ≤ Ŷ

(k)
ij ≤ u

(k)
ij ∀ (k, i, j) s.t. Y

(k)

ij ̸= 0, (11d)

− τ(ŷ,y) = d, (11e)

Ŷ (1), . . . , Ŷ (m) ∈ Rn×n, (11f)

ŷ ∈ Rn. (11g)

With the aim to propose a linear formulation of the proposed problem, we now
operate the following substitutions:

ẑi = ln(ŷi), zi = ln(yi) (12)

and

P
(k)
ij =

{
ln(Y

(k)
ij ) if Y

(k)
ij > 0

0 otherwise
, P̂

(k)
ij =

{
ln(Ŷ

(k)
ij ) if Ŷ

(k)
ij > 0

0 otherwise
.

According to such substitutions we propose the following formulation.

Problem 3. On the basis of the uncertain expert’s evaluations Ỹ (1), . . . , Ỹ (m), let

Y
(1)

, . . . , Y
(m)

be the PCMs obtained according to Equation (9). Let P
(1)

, . . . , P
(m)

be the n×n matrices computed as in Equation (12). Let X and X̂ be respectively the

ordinal representation of the absolute rankings y and ŷ. Find the matrices P̂ (k) and

12



the vector ẑ that solve:

minimize
P̂ (1), . . . , P̂ (m), ẑ

f1(·) =
1

2

m∑
k=1

∥P (k) − P̂ (k)∥2F (13a)

subject to
m∑

k=1

L(k) ẑ =

m∑
k=1

P̂ (k)1n, (13b)

P̂
(k)
ij = −P̂

(k)
ji ∀ (k, i, j) s.t. P

(k)

ij ̸= 0, (13c)

ln (l
(k)
ij ) ≤ P̂

(k)
ij ≤ ln (u

(k)
ij ) ∀ (k, i, j) s.t. P

(k)

ij ̸= 0, (13d)

ẑi − ẑj ≤ MX̂ij ∀ i < j, (13e)

M(X̂ij − 1) ≤ ẑi − ẑj − ϵ ∀ i < j, (13f)

Rij ≥ Xij − X̂ij ∀ i < j, (13g)

Rij ≥ X̂ij −Xij ∀ i < j, (13h)

Rij ≤ X̂ij +Xij ∀ i < j, (13i)

2−Rij ≥ X̂ij +Xij ∀ i < j, (13j)

− 2

n(n− 1)

n∑
i=1

n∑
j=2
i<j

Rij = d, (13k)

P̂ (1), . . . , P̂ (m) ∈ Rn×n, (13l)

ẑ ∈ Rn., (13m)

X,R ∈ {0, 1}n×n (13n)

The formulation of Problem 3 directly comes from Problem 2, hence, also in this
case the objective is the minimization of the distance among the identified matrices

P̂ (k) and the matrices P
(k)

, derived by Y
(u)

according to Equation (12). On the basis
of Equation (8) we can write the constraint (11b) as

m∑
k=1

L(k) ẑ =

m∑
k=1

P̂ (k)1n.

The local consistency for each couple of alternatives (ai, aj) and each expert k is re-
quired by Constraint (13c) which directly come from Constraint (11c). The limits

about the entries of the perturbed matrices P̂ (k), compatible with the expert uncer-
tainty, are defined by Constraint (13d) similarly to Constraint (11d) in Problem 2. Let
M be a large positive constant and let ϵ be a small constant close to 0, Constraints (13e)

and (13f) are necessary in order to define the matrix ordinal representation X̂ of ẑ.
The set of constraints from (13g) to (13j) corresponds to the definition of the n × n

matrix R which entries Rij depends on the values of X̂ and X as follows:

Rij =

{
1 if X̂ij ̸= Xij and i < j

0 otherwise.
(14)

Finally, Constraint (13k) corresponds to the definition of the Kendall distance be-
tween z and ẑ. In this constraint it is required to consider feasible solution where

13



the Kendall distance is equal to an arbitrary value d. We reiterate that for two given

rankings with n components, the Kendall distance can attain only n(n−1)
2 +1 different

values.
To conclude the section, let us now discuss a useful approach to normalize the

objective function values in order to provide to the decision-makers information about
rank reversal issues due to their uncertainty. As discussed above, since the set of
possible values attained by f2(·) is finite, our problem can be equivalently formulated
as a family of single-objective problems (one for every possible choice of the number
of swaps, or a particular choice of the parameter d) is solved in lieu of a single multi-
objective problem. By construction, the largest value attained by f1(·) corresponds to
the case where the maximum number of feasible swaps is identified. Notice that, there
is not guarantee about the presence of feasible solutions in Problem 3 for each value
of d, hence for each number of ordinal swaps.

We now refer to the optimal value for f1(·) when a Kendall distance d is considered
as f∗

1 [d]. We observe that the maximum possible value attained by f1(·) is obtained

when all terms Ŷ
(k)
ij correspond to the lower limits l

(k)
ij for each (i, j) such that l

(k)
ij ≥ 1.

On the basis of such assumption

fUB = 2

m∑
k=1

∑
∀(i,j) s.t.

l
(k)
ij ≥1

(
ln(l

(k)
ij )− ln(Y

(k)
ij )
)2

(15)

represents an upper bound (which may or may not be attained by one of the non-
dominated solutions) on f∗

1 [d] for all d. Therefore, a possible normalization is given
by

f †
1 [d] =

f∗
1 [d]

fUB
∈ [0, 1].

Notably, the larger is f †
1 [d], the closer a non-dominated solution is to a case where,

to be able to obtain d rank reversals, we need to apply the maximum admissible
perturbation according to the expert uncertainty. In this case, the obtained ranking
is robust to rank reversal with respect to the given uncertainty intervals. On the

contrary, a small value of f †
1 [d] implies that the perturbations required in order to

obtain a new altered ranking (such that the Kendall distance from the nominal ranking
is equal to −d) are small with respect to the given uncertainty intervals, hence the
ranking exhibits no robustness to rank reversal. It is possible to exclude a rank reversal,
characterized by a Kendall distance equal to −d, only if for such specific choice of d,
Problem 3 is not feasible, hence perturbation matrices able to provide a new perturbed
ranking (such that the Kendall distance from the nominal ranking is equal to −d) does
not exist.

5. Illustrative Examples

In this section we provide experimental results able to prove the efficiency of our
framework for the estimation of the rank robustness in multi-expert decision-making
process. We now consider m = 3 decision-makers who express their preferences about
n = 3 alternatives (a1, a2, and a3) in terms of interval pairwise comparison matrices:
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Ỹ (1) =

 1 [1, 2] [1, 2]
[1/2, 1] 1 [1, 2]
[1/2, 1] [1/2, 1] 1

 Ỹ (2) =

 1 [1/3, 1/2] [1/8, 1/4]
[2, 3] 1 [1/3, 1/2]
[4, 8] [2, 3] 1

 (16)

Ỹ (3) =

 1 [1, 2] [2, 4]
[1/2, 1] 1 [3, 6]
[1/4, 1/2] [1/6, 1/3] 1

 .

Let Y
(1)

, Y
(2)

, and Y
(3) ∈ Rn×n be the comparison matrices, whose entries Y

(k)
ij

represent the average value of the interval [l
(k)
ij , u

(k)
ij ] according to Equation (9). Notice

that the priority vector of such instance, computed according to ILLS is

y =
[
0.3234 0.3750 0.3016

]T
which represents an ordinal ranking such that a2 ≻ a1 ≻ a3. Considering Problem 3,
our aim is the identification of a set of solutions which consist in three perturbed
comparison matrices Ŷ (1), Ŷ (2), and Ŷ (3) ∈ Rn×n, compatible with the experts un-
certainty. Such matrices lead to an altered ordinal ranking ŷ such that τ(ŷ,y) = −d.
The instance has been analyzed by solving Problem 3 for each possible value of d.

According to Section 2.3 we reiterate that the Kendall distance can attain n(n−1)
2 + 1

values, where n is the size of the ranking vector. Moreover, in the presence of s ordinal
swaps, the corresponding Kendall distance is 2s

n(n−1) .

Since n = 3 we iteratively solve Problem 3 for d ∈ {0,−1/3,−2/3,−1}, which
corresponds to the case of an increasing number of ordinal swaps from 0 to 3.

In Table 3 we collect the details of each solution (s(1), . . . , s(4)) of Problem 3 for
each possible value of the parameter d.

Notably, given the complexity of the problem at hand, we seek an approximated
solution resorting to an approximate solver, namely, Mosek in Python environment
(see Andersen and Andersen (2000) for additional detail about the solver).

The results of Problem 3 show that the experts’ uncertainty reflects in rank reversal
phenomena for any value of d, moreover such phenomena could severely compromise
the ordinal ranking by causing a complete rank inversion (i.e., in solution s(1), where
f1 = 0.2232 and d = −1). Hence, for each value of d, it is possible to identify three ma-
trices which lead to the altered ordinal ranking. For example when it is required to com-

pletely revert the ranking (i.e., when d = −1) we have ŷ =
[
0.3333 0.3332 0.3334

]T
where a3 ≻ a1 ≻ a2. Notice that, in the last column of Table 3 we provide the objective
function value of Problem 3, normalized with respect to the upper bound fUB = 2.5008
as defined by Equation (15). Notice that, for each value of the parameter d, the values

of f †
1 [d] are close to zero. Such values suggest that the expert uncertainty is extremely

large therefore the rank exhibits no robustness to rank reversal for any value of d,
in fact numerical results highlight that, given the experts’ uncertainty, it is possible
to completely revert the ordinal ranking considering small perturbations of the PCM

Y
(k)

. Moreover, notice that, for each expert k, the perturbed matrices, summarized

in Table 5, are compatible with the his/her uncertainty (i.e. Ŷ
(k)
ij ∈ [l

(k)
ij , u

(k)
ij ]).

We can conclude that the experts’ uncertainty is sufficiently large to identify a set
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Sol. d f1 Swaps f†
1 [d]

s(1) −1 0.2232 3 0.0893

s(2) −2/3 0.2140 2 0.0893

s(3) −1/3 0.0220 1 0.0088

s(4) 0 0 0 -

Table 3. Solutions of Problem 3 for each value of d.

of compatible matrices who completely revert the ranking (solution s(1)). Moreover,
for the sake of completeness, in Table 5, we collect the consistency ratios for all the
perturbed matrices obtained as solution of Problem 3. Notice that, all the consistency
ratios are less than the critical threshold of 0.1, hence such instances are considered
valid from the consistency perspective (Ágoston and Csató (2022)).

Expert 1 Expert 2 Expert 3

Sol Ŷ
(1)
12 Ŷ

(1)
13 Ŷ

(1)
23 Ŷ

(2)
12 Ŷ

(2)
13 Ŷ

(2)
23 Ŷ

(3)
12 Ŷ

(3)
13 Ŷ

(3)
23 ŷ

s(1) 1.7394 1.3986 1.2060 0.4831 0.1748 0.3350 1.7394 2.7972 3.6182
[
0.3333 0.3332 0.3334

]T
s(2) 1.6728 1.3450 1.2060 0.4646 0.1681 0.3350 1.6728 2.6900 3.6182

[
0.3248 0.3375 0.3376

]T
s(3) 1.4483 1.3986 1.4483 0.4023 0.1748 0.4023 1.4483 2.7973 4.3451

[
0.3123 0.3753 0.3124

]T
Table 4. Perturbed matrices and perturbed ordinal ranking for each solution of Problem 3. The trivial solution
s(4) is ignored. For space reasons, we report only the upper triangular entries of the matrices.

Sol. Ŷ (1) Ŷ (2) Ŷ (3)

s(1) 0.0158 0.0005 0.0634

s(2) 0.0158 0.0005 0.0634

s(3) 0.0158 0.0005 0.0634

Table 5. Consistency ratios for each perturbed matrix identified as a solution of Problem 3

5.1. Evaluating experts’ uncertainty

In this section we analyze the expert uncertainty on the basis of the proposed nor-
malization of the objective function of Problem 3. More precisely, we consider a well
known case study in the literature proposed by Liu (2009), featuring a single decision-
maker, with the aim to validate our approach by comparing the results of Problem 3
with the results identified in Liu (2009). We consider the IPCM Ỹ as follows:

Ỹ =


1 [2, 5] [2, 4] [1, 3]

[1/5, 1/2] 1 [1, 3] [1, 2]
[1/4, 1/2] [1/3, 1] 1 [1/2, 1]
[1/3, 1] [1/2, 1] [1, 2] 1

 .
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Let Y be the 4× 4 comparison matrix, whose entries Y ij represent the average value
of the interval [lij , uij ] according to Equation (9). Notice that the nominal ranking,
computed according to ILLS, is

y =
[
0.4735 0.2128 0.1277 0.1860

]T
which represents an ordinal ranking such that a1 ≻ a2 ≻ a4 ≻ a3. According to the
literature (Liu (2009)), such instance is affected by rank reversal phenomenon. In fact,
the author identifies two matrices A and B, compatible with the uncertainty intervals
and locally consistent:

A =


1 5 4 3
1/5 1 3 2
1/4 1/3 1 1
1/3 1/2 1 1

 B =


1 2 2 1
1/2 1 1 1
1/2 1 1 1/2
1 1 2 1


which lead to two different absolute rankings from the ordinal point of view:

a =
[
0.5560 0.2091 0.1073 0.1276

]T
, b =

[
0.3407 0.2026 0.1703 0.2865

]T
.

Notice that, from the ordinal point of view, a exhibits the same ordinal ranking of y,
while a is characterized by an ordinal swap which involves the alternatives a2 and a4.
On the basis of such results, we now consider our approach in order to validate its
outcome. Since the instance considers n = 4 alternatives, we can consider 7 different
values for the parameter d in the following set {0,−1/6,−1/3,−1/2,−2/3,−5/6,−1}. As
summarized in Table 6, we iteratively solve Problem 3 for each value of d obtaining
seven solutions s1, . . . , s7. Notice that, as confirmed by Liu (2009), the instance is af-
fected by rank reversal issues due to the expert’s uncertainty. The results show that
when d ∈ {0,−1/6,−1/3,−1/2}, i.e., when we consider from 0 to 3 ordinal swaps, we
obtain the feasible solutions from s1 to s4, while the given uncertainty is not large
enough to obtain more than 3 swaps, in fact, solutions s5, s6, and s7 are infeasible
solutions. Moreover, with the aim to analyze the expert uncertainty, we normalize the
objective function with respect to fUB = 3.5346. We reiterate that, on the basis of the

nominal ranking y, f †
1 [d] ∈ [0, 1] is a measure about the existence of altered ranking

ŷ characterized by τ(y, ŷ) = −d. Moreover, values of f †
1 [d] close to 1 correspond to

a robust instance, while values of f †
1 [d] close to zero imply that the uncertainty is

excessively large and there are many matrices that correspond to a different ordinal
ranking. With the aim to further investigate about the presence of rank reversal and
validate our approach, we randomly generate comparison matrices by sampling the
indecision intervals [lij , uij ]. In the Monte Carlo analysis we define 10 Million of matri-
ces, for each matrix we compute the ordinal ranking via ILLS. Notice that the 73.91%
of such matrices lead to the same ordinal ranking y, the 25.75% of the matrices lead to
an ordinal ranking characterized by 1 swap (i.e., d = −1/6), the 0.31% of the matrices
lead to an ordinal ranking characterized by 2 swaps (i.e., d = −1/3), the 0.03% of the
matrices leads to an ordinal ranking characterized by 3 swaps (i.e., d = −1/2), while
the uncertainty is not sufficiently large to obtain a random matrix who lead to an
altered ranking ŷ characterized by a higher number of swaps. Hence, we conclude that
by randomly sampling the intervals there is a high probability (25.75%) to identify a
matrix who lead to an altered ranking with one ordinal swap. While the probability to
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obtain 2 or 3 swap is significantly reduced. Such information about the rank reversal
probability can be obtained without the computational effort required to analyze such

a large number of random instances. Notice that the values of f †
1 [d = −1/6] confirm

that the probability to obtain a comparison matrix who lead to an altered ranking
characterized by one swap is higher with respect to the case characterized by 2 o 3
ordinal swaps. Hence, the normalized value of the objective function of Problem 3 can
be considered as a valid alternative to the Monte Carlo approach for the identification
of rank reversal issues characterized by a precise number of ordinal swaps.

Sol. d f1 Swaps f†
1 [d] Randomly gen. Ordinal Ranking

s(1) 0 0 0 - 73.91% a1 ≻ a2 ≻ a4 ≻ a3

s(2) −1/6 0.0363 1 0.0103 25.75% a1 ≻ a4 ≻ a2 ≻ a3

s(3) −1/3 0.5217 2 0.1476 0.31% a1 ≻ a4 ≻ a3 ≻ a2

s(4) −1/2 0.5629 3 0.1593 0.03% a1 ≻ a3 ≻ a4 ≻ a2

s(5) −2/3 infeasible 4 - 0% -

s(6) −5/6 infeasible 5 - 0% -

s(7) −1 infeasible 6 - 0% -

Table 6. Comparison between the solutions of Problem 3 and a Monte Carlo approach for the research of

rank reversal issues.

6. Conclusion

In this work, consider a scenario where the utility of a set of alternatives must be
assessed based on the relative preferences of multiple decision-makers, each affected
by uncertainty. In this context, we develop a methodology to quantify robustness
to rank reversal by identifying a perturbation of the nominal pairwise comparisons
which is as small as possible in a logarithmic least squares sense, while causing the
maximum possible number of ordinal swaps among the alternatives. Our framework
can support decision-makers in evaluating the reliability of the decision-making process
outcome. In fact, a negative evaluation of the experts’ uncertainty can push them
revise their judgements, while a positive evaluation is a guarantee of the absence, or
low probability, of rank reversal issues. Future work includes the possibly different
voting powers of the decision makers. Moreover, we will investigate the possibility to
apply this methodology to decision-making problems over social networks (e.g., see Gai
et al. (2022); Zhang and Li (2021) and references therein).
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