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Abstract: The objective evaluation of an infant’s activity and sleep pattern is critical in improving the
comfort of the babies and ensuring the proper amount of quality sleep. The predefined behavioral
states of an infant describe their consciousness and arousal level. The different states are characterized
by different movements, body tone, eye movements and breath patterns. To recognize and adapt
to these states is an essential part of development-friendly caring. It affects the neonate’s sleep,
influencing their brain development, while improving the bonding between mother and baby, and
feeding is more successful during the state of quiet awakened. It can be a more difficult task to
determine the level of arousal in premature neonates. In preterm clinics, the general practice is
continuous observation, requiring the attention of the hospital staff. To create an automated, more
objective system, helping the hospital staff and the parents, we developed a multi-RNN (multi-
recurrent neural network) network-based solution to solve this classification problem, which works
on a time-series-like feature set, extracted from cameras’ video feeds. The set is composed of video
actigraphy features, video-based respiration signal and additional descriptors. We separate infant
caring from undisturbed presence based on our previous ensemble network solution. The network
was trained and evaluated using our database of 402 h of footage, collected at the Neonatal Intensive
Care Unit, Dept. of Neonatology of Pediatrics, Dept. of Obstetrics and Gynecology, Semmelweis
University, Budapest, Hungary, with all-day recordings of 10 babies.

Keywords: actigraphy; sleep patter; motion estimation; breath rate; respiration rate; LSTM;
non-contact; premature infant; neonatal

1. Introduction

The objective diagnosis of sleep patterns is essential to improve sleep comfort and to
measure the effectiveness of interventions. Continuous observation and adjusting a caring
schedule is important in development-friendly caring, but direct observations result in a
burden on medical staff.

Polysomnography (PSG)—considered to be the “gold standard”—is complicated,
needs hospital resources and causes discomfort for the infants. On the other hand, actig-
raphy is a cheap easy long-term measurement technique. Though its equivalency is up
to debate, it is found to be an effective tool. Its video-based version is also an intensively
investigated alternative [1]. This is a contact-free method, providing actigraphy using a
camera, which quantifies body movements during long-term awake and sleep assessments,
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even in difficult situations, and, at the same time, it does not require wiring or attached
sensors [2]. The classification of sleep–wake and intermediate stages, based on video
observation with different solutions, are presented in [1,3,4].

Our aim is to quantitatively evaluate sleep–wake–caring states of infants, based on
video cameras and recurrent neural networks (RNNs). In order to separate infant caring
and presence we used our previous ensemble network solution [5]. This mentioned care
state analyzer solution is also an integral part of the behavioral state classification algorithm
presented here, and we refer to it as “Top-Level-Classification-Block” in [5]. This network is
important because the determination of a behavioral state is only possible—or worthwhile—
if there is a baby in the picture and there is no feeding, caring or other intervention
happening. In these cases, the baby’s behavioral state is trivial and cannot be classified, as
described in [6].

It is important to note that, in this work, the output classes of the applied model are not
the same as the sleep stages (e.g., NREM, REM) that you can read about in the mainstream
literature. Instead, the output classes used here are based on the manual observations made
by doctors and nurses, and they represent the activity phases of the observed infant [7]. This
is a routinely employed classification in hospitals that doctors and nurses are trained for
(e.g., in “Family and Infant Nerve Development Education” [6]). It also includes the state of
sleep, but it is more about activity phases; henceforth we shall call them that. The literature
defines five or six phases: quiet sleep, active sleep, intermediate, quiet alert, and active
alert. In our case, medical advisors were most interested in how much the babies sleep,
therefore, we merged some classes and simplified the classifications into the following three
categories: sleep, intermediate, and alert. These three classes were satisfactory to estimate
how much the babies sleep and to help move towards development-friendly caring.

2. Experimental Setup

The dataset used in the project was collected in cooperation with Semmelweis Medical
University. We built a complete data collection system that monitored the infant with a
conventional color camera (Basler acA2040-55uc, Basler AG, Ahrensburg, Germany) at
20 FPS, with a resolution of 500 × 500, that was able to record the physiological data of the
babies in parallel and in sync. The recordings were made from several angles with zoom
optics.

Later, it became necessary to observe the infants in closed incubators, even at night.
We made a 3D printed capsule, which included both the camera and an infrared illuminator
(Figure 1). Infrared illumination was only used for the night recordings. This solution
always recorded the baby from the same fixed position on top of the incubator.
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Figure 1. The data acquisition system that can be attached to the top of the incubator with suction
cups. It includes a camera and an infrared illuminator.

Data storage, managing and annotation were carried out by custom software that we
wrote. You can read more about this data collection and data managing system in [5]. A
total of 402 h of data were collected in the neonatal intensive care unit from infants aged
between 32 and 44 weeks. More details regarding the population of the recorded babies
and their characteristics can be found in Table 1.
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Table 1. Characteristics of the participants.

Subject 1 2 3 4 5 6 7 8

Recording time (hours) 96.7 5.5 39.4 27.4 51 105.5 50.1 36.4

Gender F M M F F M F F

Gestational age (weeks) 32 32 + 3 31 + 4 35 + 4 39 32 33 38 + 6

Birth weight (g) 2020 1840 1850 1870 3150 2120 2080 2840

Postnatal age (days) 4 4 10 8 4 7 2 7

Actual weight (g) 1900 1850 1680 1820 2905 2040 1960 3150

Length (cm) 46 44 - 45 57 45 44 48

Head circumference (cm) 32 29.5 - 32 34 30 32 33

Respiratory support no no no no no no no yes

Any drugs no no no no yes no no yes

Fitzpatrick scale 2 3 2 2 2 2 2 2

3. Methodology

We assumed that, if we extracted features from appropriate locations, in the absence
of interventions or other disturbances, an RNN stack, which is designed for processing
dynamic data, could solve the previously defined problem of activity phase classification.

Our solution for the activity phase classification algorithm can be divided into two
main modules: feature extraction and classification (Figure 2). In addition, we extended
the algorithm with a scene analysis module, which runs before the behavioral stage
analysis and determines whether the current scene is suitable for the analysis. In the
following subsections we introduce all modules separately.
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Figure 2. Summary of the presented behavioral state classification algorithm. The colors showing the
different regions of interests: the head, the torso and the area around the torso.

3.1. Scene Analysis

First, we needed to determine that there was a baby in the picture, i.e., they had not
been taken out of the incubator and there was no feeding or other care occurring. For this,
we used the LSTM-based (long short-term memory) procedure that we introduced in [5] as
“Top-Level-Classification-Block”. This algorithm works very similarly to the behavioral
state classification, that we explain in detail later, and it uses similar features calculated on
the entire images. The vectors, constructed from extracted features, were processed by an
RNN, which had a sequential input and a classification output. The network contained
two fully connected (FC) layers with a Rectified Linear Unit (ReLU) activation function
and a stateful LSTM cell. The final layer is a SoftMax one, which provides the classification
probability-type output with the following classes:

• Baby is present and a respiration-like signal is detected.
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• Baby is present and is showing intensive motion, interpreted as random and frequent
self-motion.

• Caring or other intervention happens.
• No motion or minimal motion can be found in the incubator, but the baby is detected.
• The baby is not detected in the scene; empty incubator.
• Multiple subcategories incorporating unacceptable camera image quality and possible

errors: low light conditions, blurry view, camera image is saturated, or consecutive
frames do not differ from each other.

The top-level classification achieved 97.9% sensitivity and 97.5% specificity on the
data set introduced in [5].

3.2. Feature Extraction

The feature extraction module started with the detection of different regions of interest
(ROI). We started from the assumption that there were regions in the image that carried
special information, separate from the other areas that could be useful to us in classifying
activity phases (Figure 3). The examples are as follows:

• The whole picture;
• The baby’s whole body;
• The area around the abdomen and torso;
• A ring around the baby’s abdomen including the limbs;
• The infant’s face.
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Figure 3. Regions that may be of key importance in determining activity phases. These are used as
different ROIs in feature extraction.

Finding pixels for these regions was a segmentation task. Except for the baby’s entire
body, we segmented each area and collected movement, color and intensity information
from them separately.

It was easy to conclude that these regions listed above carried specific information. The
need to use the full picture was trivial. The abdominal region is the area where respiration
can be observed, which is an important descriptor for determining activity phases [8–10].
The “ring around the baby’s abdomen” was also important: this area was likely to include
the majority of the limbs on the image, if the parameters were chosen correctly, and so we
can extract information about the limb movements of the baby. The last region was the
baby’s face, giving us information about whether the baby’s eyes are open or not, which is
also an important descriptor.

The next step of this module was the feature extraction itself. To determine what
features to use, we evaluated the ones we used in [5], which was in a similar domain. The
selected features to extract were as follows:

• Image brightness;
• HSV (hue, saturation, value) image;



Eng. Proc. 2023, 55, 16 5 of 7

• Optical flow;
• Euclidean map;
• Respiration.

The listed features were calculated for all the ROIs that we defined as important
regions above. The ROIs were stored as binary images (masks) that contained ones and
zeros. The area designated by the ROI was obtained by multiplying the current image by
the given ROI, using elementwise matrix multiplication. After the different features were
calculated on the masked images, intra-frame statistics like the mean value and standard
deviation were calculated by:

Fmean = µ =
1
N∑N

i=1 It(i), (1)

Fstd =

√
1
N∑N

i=1(It(i)−µ)2 (2)

where N is the number of pixels, and It(i) is the intensity value of the i-th pixel of the
current frame. Inter-frame statistics like optical flow or the Euclidean map (Feuc) were also
calculated:

fxu + fyv + ft = 0; u =
dx
dt

; v =
dy
dt

; (3)

Feuc =
dx
dt

dx
dt

+
dy
dt

dy
dt

, (4)

where fx and fy are the image gradients and ft is the gradient along time, while u and v
represents the displacements in the x and y directions during time dt.

Our basic assumption was that these intra- and inter-frame statistics, calculated for
each of the regions, should be sufficient to classify the current activity state of infants. To
analyze the data from a dynamic perspective, we had to transform them to another form
which can be interpreted by RNNs. Since we did not need pixel-level interpretation, we
converted them to 1D waveforms. This was usually carried out by calculating the average
value for each feature.

3.3. Classification

As we classified using dynamic time-series data, it was evident to use recurrent neural
networks, which have already been used successfully in many applications to solve time–
domain classification problems like EEG classification [11–15]. LSTM and GRU (Gated
Recurrent Unit) are such recurrent models. For our experiments, we implemented an LSTM
stack and a GRU stack as well, extended with fully connected layers. Stacks constructed
from these recurrent architectures were suitable for working on the multivariate input
features. The expected outputs were the earlier mentioned activity phases, which were
annotated by doctors on our video recordings.

Considering the parameters of the used RNN stack, we examined using a 2-layer
LSTM, and a 2-layer GRU network with a cell state of 35 in both cases, and a hidden state
of 35 lengths, respectively.

During the 100-epoch long training, we used the “CrossEntropy” loss function and
“Adam-Optimizer”. The database was split into three different sets: the training set, the test
set and the validation set. We used Comet-ML (Comet.ml, NY, USA) for the visualization
of loss, epoch loss, and for hyperparameter tuning.

4. Discussion

Our approach combines the activity classification with predictions of expected activity
and with an observation of a broader view—of the incubators providing automatic statistics
regarding procedure time, empty view, parents presence, etc. over an extended period of
hospitalization.
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Our system starts with the scene analysis, where we apply an LSTM-based method.
This approach provided an impressive performance in the “scene-analyzing” step:

• Accuracy: 98.1%;
• Sensitivity: 97.5%;
• Specificity: 97.9%;
• Precision: 98.1%.

For the classification, two recurrent neural networks were tested. These were LSTM-
and GRU-based. Our experiments showed that we could achieve slightly higher accuracy
in this application by using GRU. These networks work on sequences of a certain fixed
length (L) that heavily affects their performance and necessary hyperparameters. We tested
a set of different input sequence lengths and found L = 200 to be the best.

The results with the better performing GRU stack and L = 200 are as follows:

• Accuracy: 82.60%;
• Sensitivity: 78.40%;
• Specificity: 87.67%;
• Precision: 88.46%.

The total number of trainable parameters of the GRU stack was 23,014.
This performance could be further increased by using additional features, for example

we can specifically detect the eye and add its condition (opened or closed) as an additional
feature. Besides adding eye detection, our ongoing work primarily focuses on increasing
our database as sleep and wake scoring depends heavily on variables that are susceptible
to the high heterogeneity of the subjects. We are also experimenting with measurements un-
dertaken with different devices. Tuning the network hyperparameters and using different
sensitivity thresholds is also still in progress.

5. Conclusions

We have shown that an RNN-based network may be suitable for classifying behavioral
states using video recordings. We have shown a feature extraction method that is one
possible way to create an input that can be used by these networks. We hypothesize that
the presented automated behavioral state classification architecture may later be suitable to
replace human observation to a certain level.
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