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Abstract: We demonstrate that direct data-driven control of nonlinear systems can be
successfully accomplished via a behavioral approach that builds on a Linear Parameter- Varying
(LPV) system concept. An LPV data-driven representation is used as a surrogate LPV form of
the data-driven representation of the original nonlinear system. The LPV data-driven control
design that builds on this representation form uses only measurement data from the nonlinear
system and a priori information on a scheduling map that can lead to an LPV embedding of the
nonlinear system behavior. Efficiency of the proposed approach is demonstrated experimentally
on a nonlinear unbalanced disc system showing for the first time in the literature that behavioral
data-driven methods are capable to stabilize arbitrary forced equilibria of a real-world nonlinear

system by the use of only 7 data points.
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1. INTRODUCTION

Data-driven analysis and control methods for Linear
Time-Invariant (LTT) systems that are based on Willems’
Fundamental Lemma (Willems et al., 2005) have become
increasingly popular in recent years, as these methods can
give guarantees in terms of stability and performance of
the closed-loop operation, even if the controller is synthe-
sized from data without any information on the underlying
LTT system. Results for LTI systems include, but are
not limited to, e.g., data-driven simulation (Markovsky
and Rapisarda, 2008), dissipativity analysis (Romer et al.,
2019), and (predictive) control (De Persis and Tesi, 2019;
Coulson et al., 2019), and many of these methods have seen
extensions of their guarantees under the presence of noise.
Some extensions of these data-driven methods have been
made towards the nonlinear system domain, e.g., (Alsalti
et al., 2021). However, these results often impose heavy
restrictions on the systems in terms of model transfor-
mations or linearizations. A promising direction towards
data-driven analysis and control of nonlinear systems with
guarantees, is the extension of the Fundamental Lemma
for Linear Parameter-Varying (LPV) systems in Verhoek
et al. (2021b). From this result, extensions on dissipativity
analysis (Verhoek et al., 2023), predictive control (Verhoek
et al., 2021a) and state-feedback control (Verhoek et al.,
2022) have been developed.
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The class of LPV systems consists of systems with a linear
input-(state)-output relationship, while this relationship
itself is varying along a measurable time-varying signal —
the scheduling variable. The scheduling variable is used
to express nonlinearities, time variation, or exogenous
effects. This makes the LPV framework highly suitable for
nonlinear system analysis and control, by means of using
LPV models as surrogate representations of nonlinear
systems. The LPV framework has shown to be able to
capture a relatively large subset of nonlinear systems,
by embedding the nonlinear system dynamics in an LPV
description (Téth, 2010). Therefore, we show in this work
that the data-driven methods for LPV systems are in fact
applicable for nonlinear systems, based on the concept of
LPV embedding of the underlying nonlinear system.

In the literature, so far data-based control methods of
the behavioral kind have been successfully applied in
practice on systems that behave fairly linear (Markovsky
and Dorfler, 2021). However, successful application of the
aforementioned data-driven methods on systems with sig-
nificant nonlinear behavior has not been accomplished yet,
besides in a form of online adaption of an LTI scheme.
Therefore, as our primary contribution, we demonstrate in
this paper that direct data-driven LPV state-feedback con-
trol can achieve tracking of an arbitrary forced equilibria of
a real-world nonlinear system. More specifically, we apply
the methods in Verhoek et al. (2022) on experimentally
obtained measurement data from a nonlinear unbalanced
disc system and show that the obtained LPV controller
can successfully achieve any angular setpoints and reject
disturbances, such as manual tapping of the disk.

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2023.10.1191



2264

In the remainder, we briefly discuss direct data-driven
state-feedback controller synthesis for LPV systems in
Section 2, followed by a description of the experimental
results on the unbalanced disc setup in Section 3. The
conclusions on the obtained results and recommendations
for future research are given in Section 4.

2. DATA-DRIVEN LPV STATE-FEEDBACK
CONTROLLER SYNTHESIS

2.1 From nonlinear systems to LPV representations

Analysis and control of nonlinear systems using convex ap-
proaches can be accomplished by embedding the nonlinear
system into an LPV representation. Consider a Discrete-
Time (DT) nonlinear system in state-space (SS) form

qzk = f(zk, uk), (1a)

Yk = h(wk, ur), (1b)

with state variable x; € R™ input variable u; € R"»,

output variable y, € R™, k € Z indicating the discrete

time-steps with q representing the forward shift-operator,

i.e., qry = xk41, and continuously differentiable functions

fsh. There exist various methods to embed (1) into an
LPV-SS representation of the form

azk, = A(pk)zk + B(pk)uk, (2a)

yr = C(pr)rr + D(pr)ur, (2b)

where the scheduling variable p;, € P C R" is constructed
using a so-called scheduling map 1, such that

pr = (g, uk). (2¢)
By assuming that the scheduling p is (i) measurable,
i.e., it can be calculated from measurable signals via
1, and (ii) allowed to vary independently of the other
signals, such as (x,ux) inside a compact, convex set
P that defines the range of p, then we can call (2) an
embedding of (1). This means that the solution set of (1)
is embedded in the solution set of (2). While linearity is
gained by taking these assumptions on p, the price to
be paid is conservatism of the resulting representation,
as the solution set of (2) will inevitably contain more
solution trajectories than the solution set of (1), due to
the assumed independence of p. The LPV embedding
procedure is schematically depicted in Fig. 1. With this
embedding strategy, numerous successful applications of
LPV control for nonlinear systems have been presented
in literature (Téth, 2010; Mohammadpour and Scherer,
2012).

In the sequel, we consider that the scheduling map ¥ and
the set P are known, and with the choice of ¥, (1) can
be embedded in the form of (2) with the matrix functions
A:P— R™* " and B: P — R™*™ and C =I,D =0,
such that A and B have affine dependence on p:

Alp) = Ao+ > _pp A B(pr) = Bo+ Y _pp Bi, (3)
=1

i=1
where the coefficients {A4;};2,

ces with appropriate dimensions and p%] denotes the i*®
element of the vector px. Suppose we obtain the data set
Dn, = {ug,p%,x%}gifl from (2). Based on the results of
Verhoek et al. (2022), we now show that we can construct
a fully data-driven representation of (2),(3) using a Dy,
that satisfies a persistence of excitation condition.

and {B;}.*, are real matri-
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Fig. 1. LPV embedding of a nonlinear system, where w
represents the collection of input and output signals.

2.2 Data-driven representations

Considering (2a), (3), we can separate the coefficients
A;, B; from the signals as

Tk Uk
= [Ag - A, Bo -+ Bp .
AR u [Pk ® -Tk] +u L?k: ® UIJ )
A B

With Dy, we construct the following matrices that are
associated with (4):
U= [ufll uNd] UP = [pl ®u1
X=[af 2y ], XP=[pl@af - py, @25,], (5b)
where U € R>Na [P ¢ RmpaxNa X ¢ R™*Na and
XP ¢ Rm™*Na_ respectively. Moreover, define XZ as
X = [of - 2t
As (2) is linear along p, we have
YZA{))((I,}JFB[(%]. (6)
Based on this relationship, the LPV system represented

by (2a), (3) can be fully characterized in terms of the data
matrices in (5) as follows

deVd ® U(Ii\fd] ’ (5&)

G RnxXNd

(5¢)

X f Tl
XP X x
qu:Y U pkuk 1. (7)
Ur k& U
g

The data-based representation (7) is well-posed under the
condition that the data set Dy, is persistently exciting
(PE). The PE condition for Dy, given the representation
(2),(3), is defined in Verhoek et al. (2022) as follows:

Condition 1. If G has full row rank, i.e., rank {G} = (1 +
np)(nx + ny), then Dy, is persistently exciting w.r.t. (2),
(3) and (7) is well-defined.

Remark 2. To satisfy Condition 1, we have that Ng > (1+
np)(nx +ny) and, as ny, np, ny, are known it is possible to
explicitly verify the condition.

Closed-loop data-driven representations: Connecting the
LPV system with the feedback law uy = K (pg)zx, where
K (pi) has affine dependence on py, i.e.,

[é] Tk
up = (Ko + Y2 p Ki)wg = [Ko =+ K, | {pk ®xk} , (8)
yields the closed-loop system,

k QPr @ Tk
where M = [Ao+BoKo A+BoK+B(In,8Ko) B(I,,®K)], with
A =[Ar . An, ], similarly for B, K. With (9), we can now
introduce the following result that provides data-based
parametrization of the closed-loop.

Theorem 3. Given a Dy, generated by (2) that satisfies
Condition 1. Let X and G be constructed as in (5¢) and
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(7) based on Dy,. Then, the closed-loop system (9) is
represented equivalently as

T
qry = sz L Pr @ Ty

k QDL Tk

, (10)

2
where V € RNaxnx(14mp415) jg any matrix that satisfies

I, 0 0 X
0 In, ®In, 0 | XP
Ko K o |“lou|Y 0
0 I, ® Ko In, ® K U®
——
MCL g
which we will refer to as the consistency condition. O

Proof. See Verhoek et al. (2022).

This result allows to provide direct synthesis methods for
the design of data-driven LPV state-feedback controllers
that stabilize (2), and hence inherently stabilize the un-
derlying nonlinear system with guaranteed performance.

2.8 Data-driven controller synthesis

With the data-driven representation of the closed-loop
LPV system in Theorem. 3, LPV state-feedback controller
synthesis algorithms can be formulated, which generate
controllers using only the information in Dy, while guar-
anteeing stability and performance of the closed-loop. We
consider two controller synthesis algorithms, developed in
Verhoek et al. (2022), that yield guarantees in terms of
quadratic stability and performance, e.g., Lo-gain.

Before we can discuss the synthesis methods, we need to
introduce a few variables that are necessary to formulate
the results. For a Z = ZT € R™*" define

Zy = blkdiag(Z, On n,xneny ) (12a)
and for X in (5) define
X = blkdiag(X, I,, ® X). (12b)

Furthermore, for a V satisfying (11), define the matrices
Fg, F as

I’ﬂx
V|: Pr®Iny :|Z =
PrOPE®In,
—[15n,) Fol ] =7 méh. | a2
Pe®INy Q Pr®@In, pk@Pk@fnx '
With these variables, we can formulate the synthesis
method that provides an LPV state-feedback controller
that guarantees stability and quadratic performance of the
closed-loop system defined by @ > 0, R > 0, in terms of
the following theorem.

Theorem 4. Given a Dy, from (2) that satisfies Con-
dition 1. There exists an LPV state-feedback controller
K(p) in the form of (8) that stabilizes (2) and for a given
Q@ *= 0, R > 0 minimizes the supremum of

J(z,u) = 3522 2 Qg + up Ruy,
along all solutions of (9), if there exist Z = Z T, E, Fg as
in (12c), and Y, such that
T - T Lll L12
SR G e

<0
oW —_— ’
* Loy Lo

(13a)
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«17 = I
—11 =12 —_
SISl D L), Eay - 0, 13b
H EElE]=e e om
=
7 0 0
0 Loz 0 |
Y, v 0o |~ GF, (13c)
0 I, @Y I, @V
for all p € P, where
Y=[Y Y], (14a)
A, = blkdiag(p Iy, , ..., pI™/ Iy, ), (14b)
Lll - 02nxnp><2nxnp7 (14C)
Lip = [1np Y I2nx O2nxnp><(nx+nu)} ; (14d)
[ Onx><2nxnp
Inp®F1 Fl—[ N O],
L21 = Onx><2nxnp 5 (146)
Inp®r2 FQ:[O Inx]v
_O(nx-i-nu)><2nxnp
[ Iy 0
]-np & 0nx><2nx O
Loy = Ty 0o |, (14f)
]-np ® 0nx><2nx 0
L 0 I(nernu)
r 1
Zy Fgé_\’)T [2822} VTR?
%
w=| XFy 2 0 o |, (14g)
[Qzz 0] 0 I, 0
R%y 0 0 Inu

with 1, = [1 - 1]T € R", and ZO,?C),]-" as in (12). Then,
the state-feedback controller K (p) is constructed as
Koy=YyZ"', K=Y, ®2)"", (15)
where Z is minimizing sup,cp trace(Z) among all possible
choices of Z that satisfy (13). O

Proof. See Verhoek et al. (2022).

Similarly, we can formulate a data-driven synthesis method
that yields an LPV state-feedback controller that guaran-
tees a bound on the Ls-gain, shaped by matrices Wg, Wgr
(see Verhoek et al. (2022)), of the closed-loop system.

Theorem 5. Given Wg, Wi and a Dy, generated by (2)
that satisfies Condition 1. There exists an LPV state-
feedback controller K (p) in the form of (8) that stabilizes
(2) and guarantees that the Lo-gain of the closed-loop
system is less than v > 0, if there exists a Z = ZT = 0,
a multiplier =, Fg as in (12c), and Y that satisfy the
conditions in (13) with

Lll = 02nxnp><2nxnp7 (16&)

Lip = [lnp ® Ian 02nxnp><(2nx+nu)] 5 (16b)
OnXXannp
Inp ® Fl

Loy = On x2nyn,, , (16¢)
Inp ® 1_‘2

O(an +ny) X2nxnp
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T 0
]-np®0nx><2nx 0
Loy — I, o |, (16d)
]-np®0nx><2nx 0
L 0 I(anJrnu)
Lz T )T (T 0
XFo Zy 0 0 (#)7
w=|lwizo| 0 L, 0 0|, (6
W2y 0 0 AL, 0
0 [L.0 0 0 ~L.

%
and with Y, A,,T'1,T's as in (14), and Zj, X', F as in (12).
Then, a realization of K (p) is obtained as in (15). O

Proof. See Verhoek et al. (2022).

We can add the minimization of v as an objective while
solving (13) in Theorem 5 to tighten the upper bound 7 on
the Lo-gain. In Section 3, we will compare and apply these
methods to synthesize an LPV state-feedback controller
for a nonlinear system.

2.4 Discussion

We want to again highlight that both these synthesis pro-
grams are only dependent on (i) the data set Dy, that is
measured from the system, and (ii) the assumed knowledge
of the scheduling map . Furthermore, when the input «
is sufficiently exciting, one needs only (1 + n,)(nx + ny)
data points to be able to synthesize an LPV state-feedback
controller for a nonlinear system. It is also important to
note that —contrary to well-established results in model-
based LPV state-feedback synthesis (Rugh and Shamma,
2000; Rotondo et al., 2014)— our synthesis methods allow
to have a scheduling dependent B matrix in the LPV
representation (2) of the true underlying system, although
such a representation/model is never computed in our
methodology. Finally, the data that is used in the synthesis
methods of Theorems 4 and 5 is assumed to be noise-free,
just as in the initial results for LTI systems (Markovsky
and Rapisarda, 2008). Extending our results to handle
noise-infected data is an important future research direc-
tion. The role of regularization, as discussed in the recent
paper Breschi et al. (2022), is expected to be a promising
approach to further generalize this method for noisy data.

3. EXPERIMENTAL SETUP

We will now apply the discussed data-driven LPV state-
feedback synthesis methods to design a controller for
an experimental nonlinear unbalanced disc setup and
implement the designed controller on it.

3.1 Setup description

The experimental setup that we consider is an unbalanced
disc system, depicted in Fig. 2. The unbalanced disc setup
consists of a DC motor connected to a disc with an off-
centered mass, and hence it mimics the behavior of a
rotational pendulum. The angular position of the disc is
measured using an incremental encoder. The continuous-
time nonlinear dynamics of the unbalanced disc system are
represented by the following ordinary differential equation,

gl

ity = =" sino(e)) — ~0(6) + “2un), ()
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Fig. 2. The unbalanced disc experimental setup.

where 6 is the angular position of the disc, u is the input
voltage to the system, which is its control input, and
m,g,l, J, 7, K, are the physical parameters of the system.
In this setup, v is applied with a zero-order-hold actuation
and is saturated at £10 [V]. In Kulcsar et al. (2009);
Koelewijn and Téth (2019), the physical parameters for
this setup are estimated using LPV identification methods,
and model-based LPV controllers have been successfully
applied to it using the estimated parameters (Abbas et al.,
2021). We actuate and measure the system with synchro-
nized sampling at a sampling time of 73 = 0.01 seconds.
Embedding (17) into an LPV representation can be estab-
lished by defining the scheduling as p(t) = sinc(0(t)) =
Smo((i()t)), where () = sinc(0(t)) is the scheduling map.
Hence, P is considered as the range of the sinc function,

i.e., P=[-0.22, 1]. By choosing = = [ 6], we can write
(17) as a continuous-time LPV-SS representation:
0 1 0
z(t) = m z(t) + u(t), 18a
0~ ot S [ o
y(t) = a(). (18b)

It is clear that (18) is affinely dependent on p(t). Moreover,
p can be obtained through the aforementioned scheduling
map by measuring # with the encoder. Therefore, we
can use our data-driven synthesis methods, discussed in
Section 2, for the design of a DT controller for this system
without knowing at all the DT equivalent of (17) under
the considered Ty, the parameter values, or (18). We only
assume that v, i.e., the calculated sequence of pg, is
available.

3.2 Data generation

The system is controlled using a real-time MATLAB envi-
ronment on a MacBook Pro (2020), which communicates
with the setup through an USB port. More details on
the MATLAB environment can be found in Kulcsar et al.
(2009). The MATLAB environment ensures synchronous
actuation and measurement of the setup. We obtain the
output of the incremental encoder (f) and an estimate of

the angular speed 0, as measurements.

We obtain our data-dictionary Dy, by exciting the system
with a randomly generated input in the range [—10, 10],
filtered through a low-pass filter to restrict the frequency
range of the excitation to the normal operation range
of the setup. Condition 1 provides that Ngq > 6, i.e.,
Texp > 60 [ms]. To account for noise induced by the en-

coder and the estimation error of 6, we gathered 1 second
worth of data from which we selected our data-dictionary
that is used in the synthesis algorithms.

8.8 Controller synthesis

For this experimental demonstration, we considered the
design of two controllers:
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Fig. 3. Data-dictionary used for controller synthesis with
Ngq=T.

Controller 1: LPV state-feedback controller guaranteeing
stability and optimal quadratic performance (Th. 4).

Controller 2: LPV state-feedback controller guaranteeing
stability and a minimal Ls-gain of the closed-loop
system given Wg, Wg according to Th. 5.

From the obtained measurement data, we randomly select
a window of Ng = 7 samples, which satisfies Condition 1
to create our data-dictionary Dp,. Our data-dictionary
is depicted in Fig. 3. As Dy, satisfies Condition 1, we
will use it to represent the behavior of the nonlinear
unbalanced disc system. Note that the scheduling signal
pir is calculated by propagating the measurement of 6
through the scheduling map. From the data-dictionary, we

construct the matrices X, U, XP, UP, X according to (5),
and the data-driven representation G, which are used in
the synthesis procedures of Theorems 4 and 5.

We are now ready to synthesize Controller 1 and Con-
troller 2. In order to improve numerical conditioning,
we re-scale and re-center the scheduling in the synthesis
problems such that P = [—1, 1]. Solving the synthesis
problem for Controller 1 with @ = diag(4, 0.1), R = 3.5
in MATLAB, using YALMIP with solver MOSEK, yields

Kqpo = [-8.7239 —1.0733]
Kqp = [-0.4894 0.0021].

For numerical conditioning, we add a regularization in the
cost function for the synthesis of Controller 2 in terms
of min ~ + Atrace(Z). Synthesizing Controller 2 with
Ws = diag(1.5- 1072, 2-107°), Wr = 3.06 - 1073 and
A = 1076 yields v = 3.3 with

Kr,o = [~15.1412 —1.8074]
K, 1 =[8.9793 1.0102] .

Just like in model-based design, we have chosen the values
for Q, R,Wg and Wg by iterative tuning. We want to
emphasize that we have been able to synthesize these LPV
state-feedback controllers using only the 7 data points
shown in Fig. 3. We will now implement these controllers
on the experimental setup.
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Fig. 4. Experimental results with Controller 1 in a dis-
turbance rejection scenario. The gray areas indicate
when we disturbed the experimental setup by hand.

3.4 FExperiments

For the experimental verification of our synthesized con-
trollers, we consider two scenarios; a disturbance rejection
scenario and a reference tracking scenario.

Disturbance rejection:  In this scenario, the controller will
regulate the states of the unbalanced disc at the origin,
while we disturb the system by displacing the disc by
hand. We define the origin of the unbalanced disc system
as the upright position. For this scenario, we only present
results with Controller 1, as it was not possible to apply
exactly the same disturbance for both experiments. We
ran the controller online for 20 seconds, and manually
disturbed the system 5 times by pulling the mass away
from the upright position. Fig. 4 shows the obtained mea-
surement results during the experiments. The gray-shaded
areas in the plots indicate the instances where we have
manually disturbed the system. A video of the experiment
is available at https://youtu.be/m91611R1Fw4. From the
figure, we can conclude that the designed LPV state-
feedback controller, which is synthesized using only 7 time
measurements, can robustly regulate the nonlinear system
at the setpoint of 0 [rad] for the full operating range.

Reference tracking:  In this scenario, we asses if the
designed controllers can realize arbitrary setpoints for the
nonlinear system. We select the sequence of setpoints as
brer = {0, , 0, 2,0, 32,0, m, 0} that 6(¢) should track in
the experiment. In order to ensure reference tracking, we
deploy the controllers in terms of

up = (Ko + K1pr) ([z;j - [eki)refD ‘

Note that we do not apply a feedforward term here,

i.e., the controller considers (z,u) = ([0ret O]T ,0) to be
equilibrium points. Running the experiment for 20 sec-
onds with either Controller 1 or Controller 2 intercon-
nected with the setup yields the measurements plotted
in Fig. 5. A video of the experiments is available at
https://youtu.be/SyyUVylsPsc. The results show that
the closed-loop system achieves reference tracking along
the full operating range of the nonlinear system with an
LPV controller that is designed using only 7 data-points

(19)
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Fig. 5. Experimental results with changing setpoint.

recorded from the system. Note however that due to the
lack of integral action or a feedforward term, there is a
small steady-state error for some reference points, which
is in accordance with the theory of standard state-feedback
design.

8.5 Discussion

We have shown that the designed LPV controllers can
achieve the stability and performance objectives on the
nonlinear system. This is accomplished by measuring a
data-dictionary of input-scheduling-state data, where the
scheduling is constructed using a given scheduling map.
Although, the current results assume the data is noise
free, as was the case in the initial results on LTI sys-
tem, our experimental results show that there is a certain
level of robustness of the data-driven control laws that
are obtained via this design procedure. However, proper
guarantees of performance and stability of the closed-loop
are not available in case of noise-infected data. We want
to note that the synthesis algorithms gave numerical prob-
lems for some of the selected windows from the original
1-second-long data set. Hence, even though persistency
of excitation holds in terms of a rank condition, it does
matter that what the conditioning number is associated
with ‘G’; i.e., the amount of relative information present
in the chosen window. A more quantitative measure of
information content in the data could certainly be useful
to avoid such numerical difficulties.

4. CONCLUSIONS AND OUTLOOK

The experimental results presented in this work demon-
strate that direct data-driven control of nonlinear sys-
tems can be established via LPV data-driven methods.
Furthermore, for the deployed LPV data-driven control
design for the unbalanced disc system, only 7 data-points
are required to ensure stability and performance on the
setup. A next step for further improvement of the proposed
methodology is to make it robust to noisy data.
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