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Abstract: The paper proposes a system representation formed by a minimal collection of
sufficiently long restricted trajectories generated by an observable discrete time LTI system.
Conditions are given under which such a collection is a system representation and also an
exhaustive parametrization of these representations is provided. These can be also interpreted
as a generalized persistency condition which complements the results encountered for the control-
lable case. In terms of the proposed representation some system properties are investigated and
a controllable–autonomous decomposition is given. Finally it is shown how the representation
associated to the inverse system, to the parallel and cascade connection, respectively, can be
derived.
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1. INTRODUCTION

Starting from Persis and Tesi (2019) there is a revival of
the research concerning data-driven modeling and control
which is based on the idea that the whole set of trajectories
that an LTI system can generate can be represented by
a finite set of system trajectories provided that such
trajectories come from sufficiently excited dynamics. In
particular, the so called Fundamental Lemma, Willems
et al. (2005), guarantees that for a controllable system
using a sufficiently long data obtained by using an input
fulfilling a suitable persistent excitation condition encodes
the system’s behavior as an image of a Hankel matrix
formed from the data.

Most of the results concern the input-state case only. In
order to enlarge the potential of the data-driven control a
more deep understanding of the modelling issues which
link data, more precisely a set of (in some sense) in-
formative data, to a so-called data-based representation
and later on to the solution of some analysis or design
task is necessary. As a first step in this direction in this
paper a candidate representation is fixed by proposing a
more compact (e.g., compared to the Hankel matrix based
approaches) data based system representation formed by
a minimal collection of restricted trajectories, for the gen-
eral, (possibly) uncontrollable case. At this point it should
be emphasised that this is a pure modelling question,
related to representation theory. Accordingly, in these in-
vestigations data is supposed to be given and fixed a priory
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and, in contrast to questions connected to identification
theory, no data acquisition issues are concerned

We provide conditions under which such a matrix is a
representation of an observable LTI system and also a
parametrization of these representations. This characteri-
zation can be also interpreted as a generalized persistency
condition which complements the results for the control-
lable case. Finally we show how the representation associ-
ated to the inverse system, to the parallel and cascade con-
nection can be derived. Also it is shown how a controllable–
autonomous decomposition can be performed.

The success of a given system representation (parametriza-
tion) highly depends on the possibility to integrate it in
a numerical toolchain with reasonable complexity that is
able to provide answers to practically interesting ques-
tions. It is an interesting question from both theoretical
and practical point of view whether data-based approaches
could replace the traditional state-space based algorithms
in a wide variety of analysis and design problems. Appli-
cability of the proposed representation for the solution of
these problems, especially in output feedback problems, is
the subject of future research.

2. BASIC FACTS

In the so called data driven context it is convenient to
adopt a behavioral perspective which allows for system
theory independent of an a priori fixed parametric system
representations, see, e.g., Willems (1991); Willems and
Polderman (1997) for details. In that approach a dynam-
ical system postulates which signals w, called trajectories
of the system, are possible to observe. The set of all
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trajectories, denoted by B, is called the behavior of the
system and we identify the system with its behavior.

Accordingly, we consider the discrete time axis N, the
signal space Rnw , and the associated space of all possible
trajectories (Rnw)N consisting of all nw-variate sequences
(w(0), w(1), . . . ). Then, the behavior B is defined as a
subset of the space of trajectories, B ⊂ (Rnw)N, and
a system as the triple (N,Rnw ,B). In what follows, we
denote a system merely by its behavior B. In contrast to
the general behavioral approach, this paper assumes that

w(i) =


u(i)
y(i)


, u(i) ∈ Rnu , y(i) ∈ Rny , ny = nw − nu,

where u and y are free and dependent variables that will
later serve as inputs and outputs.

A system is linear if B is a subspace of (Rnw)N, and
(time) shift-invariant if σB = B, where σ denotes the shift
operator with action σw(t) = w(t+ 1). The restriction of
the behavior B to the time interval [t1, t2], where t1 < t2,

is denoted byB|[t1,t2] =

w ∈ (Rnw)

t2−t1+1 | there are w−

and w+ such that col (w−, w, w+) ∈ B}.
Due to time-invariance, we may take the interval [0, L]
for simplicity, i.e., the corresponding restriction BL. We
consider w|L as the stacked vector

w|L =




w(0)
...

w(L− 1)


 ∈ RnwL .

A system B is complete if

w|[t0,t1] ∈ B|[t0,t1]
for all t0, t1 ∈ T, t0 ≤ t1 implies that w ∈ B.
One typically works with explicit parametric representa-
tions (models) of LTI systems. A kernel representation
with lag ℓ specifies an LTI behavior as

B = kernel(R(σ)) =

w ∈ (Rnw)N : R(σ)w = 0


,

where R(σ) = R0+R1σ+· · ·+Rℓσ
ℓ is a polynomial matrix

of degree ℓ, and the matrices R0, R1, . . . , Rℓ take values in
R(ny)×nw .

Theorem 1. (Willems (1986)). The following statements
are equivalent:

(i) B is linear, time-invariant, and complete.
(ii) B is linear, shift-invariant, and closed in the topology

of pointwise convergence, i.e., if wi ∈ B and wi(t) →
w(t), for all t ∈ N, implies w ∈ B.

(iii) There is a polynomial matrix R ∈ R•×nw [z], such that
B = ker(R(σ)).

Thus, for LTI systems, the completeness property is equiv-
alent to finite dimensionality. For continuous time systems
also see, Lomadze (2012).

A behavior is called autonomous if it is a finite dimensional
subspace of C∞ (R,Rnw), i.e., if B = kerR then R has
full column rank. Any behavior admits a direct sum
decomposition as B = Bcont ⊕ Baut , where Bcont is
the largest controllable subbehavior of B and Baut is an
autonomous subbehavior of B. The controllable part is
uniquely determined by B.

There exists a minimal kernel representation B =
ker(R(σ)), in which the number of equations p =
rowdim(R), the maximum lag ℓ = maxi=1,...,p li, and the
total lag n =

p
i=1 li are simultaneously all minimal over

all possible kernel representations, called shortest lag rep-

resentation, where R = [r1 · · · rp]
T

and deg (ri) = li.
It can be shown that the li’s are the observability indices of
the system. The minimal and shortest lag kernel represen-
tations correspond to special properties of the R matrix:
in a minimal representation, R is full row rank, and in a
shortest lag representation, R is row proper.

Alternatively, one can unfold the kernel representation
by revealing a latent variable. State variables are spe-
cial latent variables that specify the memory of the sys-
tem. Any LTI system admits a representation by an in-
put/state/output representation Bi/s/o(A,B,C,D)

σx = Ax+Bu, y = Cx+Du

in which both the input/output and the state structure of
the system are explicitly displayed. The minimal state di-
mension n(B) =

q−m
i=1 ℓi among all i/s/o representations

is an invariant of B.

Due to space constraints, in what follows we will in-
vestigate in more details the relation of the proposed
data-driven system representation to an observable in-
put/state/output representation. The connections to other
representations, e.g., kernel based representation, will be
presented in a forthcoming paper.

2.1 Parametrisation of all length-L trajectories

Instead of the stacked vector w|L it is convenient to
consider its rearranged counterpart

w̃L = Πu,yw|L =


u[0,L−1]

y[0,L−1]


,

i.e., by a slight abuse of the notation, instead of B|L the
subspace Πu,y B|L is considered.

The following is a standard result, which is a starting
point for the investigations concerning data-based system
representations:

Theorem 2. Let us consider an observable i/s/o represen-
tation of a finite dimensional LTI system B:

x(t+ 1) = Ax(t) +Bu(t), x(0) = xini ∈ Rnx ,

y(t) = Cx(t) +Du(t),

and assume that L ≥ ℓ. Then, for any trajectory w ∈ B|L,
there is a unique initial state xini such that

w = BL(A,B,C,D)


u
xini


, (1)

with

BL(A,B,C,D) =


InuL 0nuL×nx

TL(B) OL(A,C)


∈ RnwL×(nx+nuL),

where

TL(B) =




M0 0 · · · 0

M1 M0
. . .

...
...

. . .
. . . 0

ML−1 · · · M1 M0


 ∈ RnyL×nuL
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is the Toeplitz (convolution) matrix with L block rows con-
structed from the impulse response (Markov) parameters
M0 = D, Mk = CAk−1B of the system and

OL(A,C) =




C
CA
...

CAL−1


 ∈ RnyL×nx

is the extended observability matrix.

Note, that

TL+1 =


D 0

OLB TL


, OL+1 =


C

OLA


. (2)

Recall, that the lag ℓ is equal to the observability index of
the state-space representation, i.e., the smallest integer i,
for which the extended observability matrix with i block
rows becomes full column rank.

At this point it is important to stress that an i/s/o
realization of B is minimal if and only if it is observable,
see Willems (1983). Thus, the following assertion, which
appears, e.g., in Willems (2009), and whose representation-
free version can be found in Markovsky and Dörfler (2023),
is not completely trivial:

Lemma 3. (Characterization of B|L ). For L ≥ ℓ the di-
mension of the subspace B|L is equal to nuL+ n.

Note, that in contrast to the image representation of the
entire behavior B, which exists only if the behavior is
controllable, a representation of the type (1) exists regard-
less to controllability for the finite dimensional restricted
behaviors B|L provided that the window length L is suf-
ficiently long.

Given a trajectory w of a system B with length Td, by
the shift-invariance property, multiple short L-samples-
long trajectories (L < Td) can be created and organised in
a Hankel matrix

HL(w) =




w(1) w(2) · · · w(Td − L+ 1)
w(2) w(3) · · · w(Td − L+ 2)
...

...
...

w(L) w(L+ 1) · · · w(Td)


 .

For any w ∈ B|Td
and L ∈ [1, Td], we have that

image HL (w) ⊆ B|L .

For controllable systems, under the condition called per-
sistency of excitation,

B|L = image HL (w) , i.e., rankHL (w) = mL+ n,

for L > ℓ, see Willems et al. (2005).

Maupong and Rapisarda (2017) have used the formula-
tion that w ∈ B is sufficiently informative about B if
colspan (HL(w̃)) = BL. In the controllable case persis-
tency provides a practical sufficient condition to generate
(simulate) such data. However, instead of a single trajec-
tory one can use multiple trajectories w1, . . . , wN and the
mosaic-Hankel matrix

HL

�
w1, . . . , wN


=


HL

�
w1


· · · HL

�
wN

 
to obtain the same result under the generalized persistency
of excitation condition, van Waarde et al. (2020). Along
the same chain of ideas, other data structures, like the
page matrix and the trajectory matrix which are special

cases of the mosaic-Hankel matrix, can also be used. In van
Waarde et al. (2020) the notion, i.e., informativity of the
data, is extended to a whole branch of standard analysis
and design problems.

In what follows we relax the desire to use a single trajec-
tory. Accordingly, in this context the term informativity
refers to a given data-set, regardless to the provenience of
that particular data. The sole requirement is that the dif-
ferent pieces should be trajectories of a given LTI system,
justifying the use of the term ”data-driven”.

3. A DATA DRIVEN REPRESENTATION

If otherwise not stated, in what follows we silently identify
the restricted behavior with the later one, i.e., w|L → w̃|L.
It will also be assumed, that L ≥ ℓ. After selecting a basis
V in B|L we can obtain a matrix BL(V ) ∈ RnuL+nx . Note
that the elements (columns) vi of the basis corresponds to
certain trajectories of the system.

3.1 A canonical representation

First let us consider the special case when the basis V
is directly related to an impulse response approach. In
order to be able to exploit Theorem 2 for data generation
condition L > ℓ is needed. Then data is partitioned in the
past and future part according to L = Lp + Lf , Lp ≥ ℓ,
Lf ≥ 1 and

Up

Uf

Yp

Yf


 =




InuLp
0nuLp×nuLf

0nuLp×nx

0nuLf×nuLp
InuLf

0nuLf×nx

TLp(B) 0nyLp×nuLf
OLp(A,C)

HLf
(B) TLf

(B) SLf
(A,C)




Up

Uf

xini


,

(3)

with the obvious meaning of HLf
and SLf

. Since (Up, Yp)
is a trajectory by assumption, it follows that

Yf = (HLf
− SLf

Ol
Lp

TLp
)Up + SLf

Ol
Lp

Yp + TLf
Uf , (4)

where O(l)
Lp

= (OT
Lp

OLp
)−1OT

Lp
is the left inverse of OLp

.

Note that in contrast to TL which does not depend on
the choice of the i/s/o representation, OL depends solely
on the actual choice of the basis in the state space.
The behavior is completely determined by ML × OL the
set ML = {M0,M1, . . .ML} of Markov parameters and
the extended observability matrix OL. It is a matter of
convenience to write

B|L ∼ BL(A,B,C,D) ∼ ML ×OL ∼ TL ×OL (5)

in order to emphasise that the first part is related to
the ”transfer function” or convolutional kernel (zero state
response) while the second to the autonomous part (zero
input response).

In contrast to other representations, e.g., kernel or state
space, in this case it is not granted that arbitrarily given
parameters, i.e., ML×OL represent any system. The state
of the autonomous part should also be the (possibly non
minimal) state which corresponds to the given Markov
parameter sequence.The following Lemma provides a con-
structive test for this condition.

Lemma 4. The data ML × OL with L < ℓ is a represen-
tation of a system if and only if ML and the extended
observability matrix OL is compatible, i.e.,
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is the Toeplitz (convolution) matrix with L block rows con-
structed from the impulse response (Markov) parameters
M0 = D, Mk = CAk−1B of the system and

OL(A,C) =




C
CA
...

CAL−1


 ∈ RnyL×nx

is the extended observability matrix.

Note, that

TL+1 =


D 0

OLB TL


, OL+1 =


C

OLA


. (2)

Recall, that the lag ℓ is equal to the observability index of
the state-space representation, i.e., the smallest integer i,
for which the extended observability matrix with i block
rows becomes full column rank.

At this point it is important to stress that an i/s/o
realization of B is minimal if and only if it is observable,
see Willems (1983). Thus, the following assertion, which
appears, e.g., in Willems (2009), and whose representation-
free version can be found in Markovsky and Dörfler (2023),
is not completely trivial:

Lemma 3. (Characterization of B|L ). For L ≥ ℓ the di-
mension of the subspace B|L is equal to nuL+ n.

Note, that in contrast to the image representation of the
entire behavior B, which exists only if the behavior is
controllable, a representation of the type (1) exists regard-
less to controllability for the finite dimensional restricted
behaviors B|L provided that the window length L is suf-
ficiently long.

Given a trajectory w of a system B with length Td, by
the shift-invariance property, multiple short L-samples-
long trajectories (L < Td) can be created and organised in
a Hankel matrix

HL(w) =




w(1) w(2) · · · w(Td − L+ 1)
w(2) w(3) · · · w(Td − L+ 2)
...

...
...

w(L) w(L+ 1) · · · w(Td)


 .

For any w ∈ B|Td
and L ∈ [1, Td], we have that

image HL (w) ⊆ B|L .

For controllable systems, under the condition called per-
sistency of excitation,

B|L = image HL (w) , i.e., rankHL (w) = mL+ n,

for L > ℓ, see Willems et al. (2005).

Maupong and Rapisarda (2017) have used the formula-
tion that w ∈ B is sufficiently informative about B if
colspan (HL(w̃)) = BL. In the controllable case persis-
tency provides a practical sufficient condition to generate
(simulate) such data. However, instead of a single trajec-
tory one can use multiple trajectories w1, . . . , wN and the
mosaic-Hankel matrix

HL

�
w1, . . . , wN


=


HL

�
w1


· · · HL

�
wN

 
to obtain the same result under the generalized persistency
of excitation condition, van Waarde et al. (2020). Along
the same chain of ideas, other data structures, like the
page matrix and the trajectory matrix which are special

cases of the mosaic-Hankel matrix, can also be used. In van
Waarde et al. (2020) the notion, i.e., informativity of the
data, is extended to a whole branch of standard analysis
and design problems.

In what follows we relax the desire to use a single trajec-
tory. Accordingly, in this context the term informativity
refers to a given data-set, regardless to the provenience of
that particular data. The sole requirement is that the dif-
ferent pieces should be trajectories of a given LTI system,
justifying the use of the term ”data-driven”.

3. A DATA DRIVEN REPRESENTATION

If otherwise not stated, in what follows we silently identify
the restricted behavior with the later one, i.e., w|L → w̃|L.
It will also be assumed, that L ≥ ℓ. After selecting a basis
V in B|L we can obtain a matrix BL(V ) ∈ RnuL+nx . Note
that the elements (columns) vi of the basis corresponds to
certain trajectories of the system.

3.1 A canonical representation

First let us consider the special case when the basis V
is directly related to an impulse response approach. In
order to be able to exploit Theorem 2 for data generation
condition L > ℓ is needed. Then data is partitioned in the
past and future part according to L = Lp + Lf , Lp ≥ ℓ,
Lf ≥ 1 and

Up

Uf

Yp

Yf


 =




InuLp
0nuLp×nuLf

0nuLp×nx

0nuLf×nuLp
InuLf

0nuLf×nx

TLp(B) 0nyLp×nuLf
OLp(A,C)

HLf
(B) TLf

(B) SLf
(A,C)




Up

Uf

xini


,

(3)

with the obvious meaning of HLf
and SLf

. Since (Up, Yp)
is a trajectory by assumption, it follows that

Yf = (HLf
− SLf

Ol
Lp

TLp
)Up + SLf

Ol
Lp

Yp + TLf
Uf , (4)

where O(l)
Lp

= (OT
Lp

OLp
)−1OT

Lp
is the left inverse of OLp

.

Note that in contrast to TL which does not depend on
the choice of the i/s/o representation, OL depends solely
on the actual choice of the basis in the state space.
The behavior is completely determined by ML × OL the
set ML = {M0,M1, . . .ML} of Markov parameters and
the extended observability matrix OL. It is a matter of
convenience to write

B|L ∼ BL(A,B,C,D) ∼ ML ×OL ∼ TL ×OL (5)

in order to emphasise that the first part is related to
the ”transfer function” or convolutional kernel (zero state
response) while the second to the autonomous part (zero
input response).

In contrast to other representations, e.g., kernel or state
space, in this case it is not granted that arbitrarily given
parameters, i.e., ML×OL represent any system. The state
of the autonomous part should also be the (possibly non
minimal) state which corresponds to the given Markov
parameter sequence.The following Lemma provides a con-
structive test for this condition.

Lemma 4. The data ML × OL with L < ℓ is a represen-
tation of a system if and only if ML and the extended
observability matrix OL is compatible, i.e.,

VL−1 =




M1

...
ML−1


 = OL−1B (6)

for some B.

Thus, if L > ℓ and the compatibility condition holds then
there is a one to one map from BL(A,B,C,D) to the
observable realization (A,B,C,D).

In what follows, we will show how the representation can
be extended to have arbitrary length. For the sake of
simplicity consider the case with Lf = 1. To make the
shift L → L + 1, i.e., to Lf = 2, we first compute the

prolongation of the available trajectories, i.e., compute Ỹf

for the shifted block columns (padded with zero for the

inputs), which for the first column reads as Ũp = 0, Ũf = 0

and Ỹp = [0 IL−1]


TLp

(:, 1 : nu)
HLf

(:, 1 : nu)


. This results in

Xini = B = O(l)
Lp




CB
...

CALp−1B


 ,

and from (4), in the output Ỹf = SLf
B = CALB, as

expected. Analogously, considering the same inputs but
taking as ỸP the shifted extended observability matrixO+,
which corresponds to OLp , we first get Xini = A = Ol

Lp
O+

and then the corresponding output S̃f = CAL+1. This
procedure can be also repeated for the rest of the block
columns: in those case we always get Xini = 0 giving
Ỹf = HLf

Ũp + SLf
Ũf . Finally, the above procedure will

end in Ũp = 0 and Ũf =


0
Inu


, and observe that arriving

at this point we need a new trajectory. This fact introduces
some freedom in the extension procedure. A natural choice
is to obtain an extension of the same ”kind”, that we
already have, i.e., one that starts from xini = 0 and keeps
the initial structure intact. This makes us to choose the
shifted old trajectory, which finally ends in the new row
data


Ỹf HLf

TLf
S̃f


. (7)

Then, we are in the position to form the augmented
representation matrix as

BL+1(A,B,C,D) =


Inu(L+1) 0nu(L+1)×nx

TL+1 OL+1


. (8)

The process can be iterated, obtaining representations of
arbitrary length. It is also obvious, that the partition L =
Lp+Lf is a matter of choice, till the standing assumption
on Lp holds. While in this case the extension process
sketched above is quite obvious, it gives the opportunity
for data driven interpretation of the entire procedure.

Finally, note that since having the one to one map from
BL(A,B,C,D) and the observable realization (A,B,C,D),
all the system properties, like controllability, stability, sta-
bilizability can be tested by using the classical methods
like Kalman rank condition, PHB test, LMI based Lya-
punov or stabilizability checks, etc.

3.2 A general representation

In the general case observe, that for any other choice of
the trajectory based basis V in B|L, there is a nonsingular
transformation matrix T such that

BL(A,B,C,D) = BL(V )T.

For convenience, let us consider the row partitioning

BL(V ) =



Vup

Vuf

Vyp

Vyf


 .

Then the following structural conditions must hold:

Vu =


Vup

Vuf


is of full row rank, (C1)

Vx =


Vup

Vuf

Vyp


is of full column rank. (C2)

Since the columns of V , hence, those of Vx are trajectories,
the prediction (simulation) formula is

Yf = VyfV
(l)
x


Up

Uf

Yp


, (9)

where V
(l)
x = (V T

x Vx)
−1V T

x is the left inverse of Vx.

As a first step it is convenient to consider a simplified rep-
resentation constructed as follows: with the right inverse

V
(r)
u = V T

u (VuV
T
u )−1 let us consider a nonsingular matrix

TV =

V (r)
u ΩT


,

where Ω is orthogonal to Vu and ΩΩT = Ix. Then,
applying this transformation, we can obtain the following
description:


Up

Uf

Yp

Yf


 = BL(V )TV


Up

Uf

ω


= BL(V̄ )


Up

Uf

ω


=

=



Iup 0 0
0 Iuf 0
V̄pp V̄pf V̄pω

V̄fp V̄ff V̄fω




Up

Uf

ω


. (10)

It turns out, that this BL(V̄ ) is a convenient candidate for
a closer study of the data based system representation.

It follows, that V̄pω is of full column rank, i.e.,

VypΩ
T is of full column rank. (C3)

Then, in the general case T should be of the form

T = TV


Iup 0 0
0 Iuf 0
Zp Zf Z


, Z nonsingular. (11)

Since Z is actually a state transformation matrix, we can
set it to identity without restricting the generality, i.e.,

OLp
= V̄pω and SLf

= V̄fω. (12)

With this choice and Z = [Zp Zf ] we have

T =

V (r)
u +ΩTZ ΩT


(13)

and
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V̄y =


V̄pp V̄pf

V̄fp V̄ff


=


Vyp

Vyf


(V (r)

u +ΩTZ), OL =


Vyp

Vyf


ΩT

(14)

TL =


TLp 0
HLf

TLf


=


V̄pp V̄pf

V̄fp V̄ff


+


OLp

SLf


[Zp Zf ] =

= V̄y +OLZ, (15)

BL(V ) = Im


Vu

V̄yVu +OLΩ


. (16)

Observe that Zp and Zf depend entirely on the past. We
also get

Yp = V̄ppUp + V̄pfUf + V̄pωω = V̄ppUp + V̄pω(ω − ZfUf ),

i.e., xini = ω−ZpUp−ZfUf = ω−ZpUp+ V̄
(l)
pω V̄pfUf . This

formula reveals the initial conditions that corresponds to
each column (trajectory).

Proposition 5. Starting from an observable i/s/o reprezen-
tation of B and assuming L > ℓ, the trajectory based
basis V for which the corresponding restricted behavior is
BL(V ), can be parametrized as

BL(V ) = Im


Vu

TLVu +OL(−ZVu +Ω)


, (17)

where Vu is of full row rank, VuΩ
T = 0, ΩΩT = I and Z

is arbitrary.

Conversely, for a given representation Z is provided by the
equation

TL − V̄y = OLZ. (18)

By definition persistency of the input does not depend on
the system and for controllable LTI behaviors guarantees
the required rank for the relevant Hankel matrices for
sufficiently long trajectories. For uncontrollable systems
we always need different trajectories in order to exhaust
the behavior and conditions of the Theorem provides
a selection criteria for the corresponding initial states.
Thus, they can be interpreted as generalized persistency
conditions, i.e., condition for the data to be informative,
and complement the results of Willems et al. (2005); van
Waarde et al. (2020) and Markovsky et al. (2022) to the
uncontrollable case.

If we are searching for conditions that ensure that a given
matrix is a representation of a system, we need to check
that there exists a set of parameters, bearing the required
structure imposed by shift invariance, such that (17) holds.
Assuming (12) we have C and A. Then we should check

that


V̄pω

V̄fω


is indeed an extended observability matrix. Let

us refer to this test as (Cobs).

If we assume that the given data encode a system, starting

from xini = 0, i.e., Up = 0, Yp = 0 and Uf =


Inu

0


, by

a recursive application of (9) one can obtain a sequence
of Markov parameters of arbitrary length. Recall, that the
prediction formula (9) reads as

Yf = V̄yf V̄
(l)
x


Up

Uf

Yp


=

(V̄fp − V̄fωV̄
(l)
pω V̄pp)Up + V̄fωV̄

(l)
pω Yp + (V̄ff − V̄fωV̄

(l)
pω V̄pf )Uf .

(19)

Then, assuming Lf = 1, we get

M0 = (V̄ff − V̄fωV̄
(l)
pω V̄pf )


Inu

0



M1 = (V̄fp − V̄fωV̄
(l)
pω V̄pp)


0
Inu


+ V̄fωV̄

(l)
pω


0
M0



...

MLp
= (V̄fp − V̄fωV̄

(l)
pω V̄pp)


Inu

0


+ V̄fωV̄

(l)
pω




M0

...
MLp−1




MLp+k = V̄fωV̄
(l)
pω




Mk

...
Mk+Lp−1


 .

Thus, TLp
can be computed and Zp, hence Z can be

determined.

Putting these facts together, we can formulate the data
based representation result of the paper, i.e., the condition
for a subspace BL(V ) to be a restricted behavior:

Proposition 6. Let us assume that for given L > ℓ and nx

the matrix BL(V ) is of full column rank of nuL+nx. Then,

B|L = BL(V ) = imageBL(A,B,C,D)

for an observable realization, if and only if the conditions
(C1) – (C3), equation (17) and finally the tests (Cobs) and
(6) hold.

Finally, we would like to obtain an extension formula. At
this point we can repeat the argument to obtain the one
step augmented representation made previously. Starting
from (7) and (17) we obtain the following equations:

0 = V̄y,pn +OLZn
Ỹf HLf

TLf


= V̄y,fn + S̃f [Z Zn]

to obtain the extension
V̄y V̄y,pn


V̄y,fn


.

With an arbitrary Zn we get valid augmented matrices.
Thus, in increasing the prediction horizont Lf with fixed
Lp, there is a freedom in the choice of Zn. Concerning the
initial basis, there is another freedom in selecting a full
row rank extension of Vu, hence in the corresponding TV .

We conclude this section with the analogue of (5), formu-
lated as

BL(V̄ ) ∼ V̄y ×OL ∼ TL ×OL ×Z (20)

BL(V ) ∼ V̄y ×OL × Vu × Ω ∼ TL ×OL ×Z × Vu × Ω.
(21)

Clearly with Z = 0 we regain (5) in (20).

3.3 System properties

As a consequence, without restricting the generality, it can
be assumed that the data based representation of a finite
dimensional system is either of the form BL(A,B,C,D)
or BL(V̄ ), where L = 2Lp, Lp ≥ max{ℓo, ℓc}, with ℓo
the observability and ℓc the controllability index. For
convenience, if otherwise not stated, in what follows we
consider this setting.
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V̄y =


V̄pp V̄pf

V̄fp V̄ff


=


Vyp

Vyf


(V (r)

u +ΩTZ), OL =


Vyp

Vyf


ΩT

(14)

TL =


TLp 0
HLf

TLf


=


V̄pp V̄pf

V̄fp V̄ff


+


OLp

SLf


[Zp Zf ] =

= V̄y +OLZ, (15)

BL(V ) = Im


Vu

V̄yVu +OLΩ


. (16)

Observe that Zp and Zf depend entirely on the past. We
also get

Yp = V̄ppUp + V̄pfUf + V̄pωω = V̄ppUp + V̄pω(ω − ZfUf ),

i.e., xini = ω−ZpUp−ZfUf = ω−ZpUp+ V̄
(l)
pω V̄pfUf . This

formula reveals the initial conditions that corresponds to
each column (trajectory).

Proposition 5. Starting from an observable i/s/o reprezen-
tation of B and assuming L > ℓ, the trajectory based
basis V for which the corresponding restricted behavior is
BL(V ), can be parametrized as

BL(V ) = Im


Vu

TLVu +OL(−ZVu +Ω)


, (17)

where Vu is of full row rank, VuΩ
T = 0, ΩΩT = I and Z

is arbitrary.

Conversely, for a given representation Z is provided by the
equation

TL − V̄y = OLZ. (18)

By definition persistency of the input does not depend on
the system and for controllable LTI behaviors guarantees
the required rank for the relevant Hankel matrices for
sufficiently long trajectories. For uncontrollable systems
we always need different trajectories in order to exhaust
the behavior and conditions of the Theorem provides
a selection criteria for the corresponding initial states.
Thus, they can be interpreted as generalized persistency
conditions, i.e., condition for the data to be informative,
and complement the results of Willems et al. (2005); van
Waarde et al. (2020) and Markovsky et al. (2022) to the
uncontrollable case.

If we are searching for conditions that ensure that a given
matrix is a representation of a system, we need to check
that there exists a set of parameters, bearing the required
structure imposed by shift invariance, such that (17) holds.
Assuming (12) we have C and A. Then we should check

that


V̄pω

V̄fω


is indeed an extended observability matrix. Let

us refer to this test as (Cobs).

If we assume that the given data encode a system, starting

from xini = 0, i.e., Up = 0, Yp = 0 and Uf =


Inu

0


, by

a recursive application of (9) one can obtain a sequence
of Markov parameters of arbitrary length. Recall, that the
prediction formula (9) reads as

Yf = V̄yf V̄
(l)
x


Up

Uf

Yp


=

(V̄fp − V̄fωV̄
(l)
pω V̄pp)Up + V̄fωV̄

(l)
pω Yp + (V̄ff − V̄fωV̄

(l)
pω V̄pf )Uf .

(19)

Then, assuming Lf = 1, we get

M0 = (V̄ff − V̄fωV̄
(l)
pω V̄pf )


Inu

0



M1 = (V̄fp − V̄fωV̄
(l)
pω V̄pp)


0
Inu


+ V̄fωV̄

(l)
pω


0
M0



...

MLp
= (V̄fp − V̄fωV̄

(l)
pω V̄pp)


Inu

0


+ V̄fωV̄

(l)
pω




M0

...
MLp−1




MLp+k = V̄fωV̄
(l)
pω




Mk

...
Mk+Lp−1


 .

Thus, TLp
can be computed and Zp, hence Z can be

determined.

Putting these facts together, we can formulate the data
based representation result of the paper, i.e., the condition
for a subspace BL(V ) to be a restricted behavior:

Proposition 6. Let us assume that for given L > ℓ and nx

the matrix BL(V ) is of full column rank of nuL+nx. Then,

B|L = BL(V ) = imageBL(A,B,C,D)

for an observable realization, if and only if the conditions
(C1) – (C3), equation (17) and finally the tests (Cobs) and
(6) hold.

Finally, we would like to obtain an extension formula. At
this point we can repeat the argument to obtain the one
step augmented representation made previously. Starting
from (7) and (17) we obtain the following equations:

0 = V̄y,pn +OLZn
Ỹf HLf

TLf


= V̄y,fn + S̃f [Z Zn]

to obtain the extension
V̄y V̄y,pn


V̄y,fn


.

With an arbitrary Zn we get valid augmented matrices.
Thus, in increasing the prediction horizont Lf with fixed
Lp, there is a freedom in the choice of Zn. Concerning the
initial basis, there is another freedom in selecting a full
row rank extension of Vu, hence in the corresponding TV .

We conclude this section with the analogue of (5), formu-
lated as

BL(V̄ ) ∼ V̄y ×OL ∼ TL ×OL ×Z (20)

BL(V ) ∼ V̄y ×OL × Vu × Ω ∼ TL ×OL ×Z × Vu × Ω.
(21)

Clearly with Z = 0 we regain (5) in (20).

3.3 System properties

As a consequence, without restricting the generality, it can
be assumed that the data based representation of a finite
dimensional system is either of the form BL(A,B,C,D)
or BL(V̄ ), where L = 2Lp, Lp ≥ max{ℓo, ℓc}, with ℓo
the observability and ℓc the controllability index. For
convenience, if otherwise not stated, in what follows we
consider this setting.

There are a lot of possibilities to test controllability,
starting from the classical conditions, like Kalman rank
condition, and ending in the data driven (re)formulations
of the PHB test, e.g., Mishra et al. (2021); Yu et al. (2021).

In case of uncontrollability there is a representation
BL(A,B,C,D) or even of type (10) in which all the block
elements of the extended observability matrix splits ac-
cording the controllable–uncontrollable mode, according
to

[Cc Cuc]


Ac Acu

0 Auc

l
=


CcA

l
c ⋆+ CucA

l
uc


.

On the data based representation this corresponds to the
controllable – uncontrollable (autonomous) decomposition
met in the behavioral framework and also to the corre-
sponding Kalman decomposition of the observable i/s/o
representation. Since it is a standard knowledge how to
compute this decomposition, the details are left out for
brevity.

Recall that the controllable part is completely determined
by M2L according to the full rank factorization


M1 · · · ML

...
. . .

...
ML · · · M2L−1


 = Oc

LCc
L, (22)

i.e., the information content of M2L and that of the
representation ML ×Oc

L is the same.

Recall, that

TL = V̄y +OL [Zp Zf ] ,

and consider the controllable – uncontrollable partitioning

[Oc
L Ouc

L ]


Zc
p Zc

f

Zuc
p Zuc

f


= Oc

L


Zc
p Zc

f


+Ouc

L


Zuc
p Zuc

f


.

Then, we have

V̄ c
y = TL −Oc

L


Zc
p Zc

f


, (23)

V̄ uc
y = V̄y − V̄ c

y = −Ouc
L


Zuc
p Zuc

f


, (24)

Proposition 7. Using the notations as above we have the
following controllable–autonomous decomposition:

Bcont
L (V̄ c) ∼ V̄ c

y ×Oc
L ∼ TL ×Oc

L ×Zc, (25)

Baut
L (V̄ uc) ∼ V̄ uc

y ×Ouc
L ∼ TL ×Ouc

L ×Zuc. (26)

Stability, stabilizability, detectability can be verified by
using the standard Lyapunov equations obtaining LMIs
in the vein of De Persis and Tesi (2020). However, more
interesting results can be formulated along dissipativity
arguments, e.g., van Waarde and Camlibel (2021) for
stabilizability. Due to lack of space this topic will be
treated elsewhere.

4. SYSTEM ALGEBRA

In the i/s/o representation it is trivial to obtain the (pos-
sibly non-minimal) representation for the sum, product
and inverse (if exists) systems in terms of the original
parameters. In the data driven case this is not necessarily
trivial, due to the observability property imposed by the
i/o data.

Let us consider first the inverse of the system (A,B,C,D),
i.e., (A−BD−1C,BD−1,−D−1C,D−1). Since on the level

of the behavior only the order of the i/o signals changes,

i.e., we should consider


Vy

Vu


with nu = ny, the set of

output data should be of full row rank, where

Vy =


Vyp

Vyf


.

In the impulse response based representation this condi-
tion automatically holds and we have

TL OL

I 0


=


I 0

T −1
L −T −1

L OL

 
TL OL

0 I


.

It is a matter of easy computations to verify that T −1
L is

the Toeplitz matrix and −T −1
L OL is indeed the extended

observability matrix of the inverse system. In the general
case, with the notation and parameters of Proposition 5
we have 

Vy

Vu


=


Vy

T −1
L Vy − T −1

L OL(−ZVu +Ω)


(27)

as the candidate parametrization of the representation for
the inverse. Note, that from this equation we have

TL = VyV
(r)
u +OLZ.

and Vy = TLVu + OL(−ZVu + Ω) should be of full row
rank. Thus, for generalized persisyency in this case input
selection and the proper choice of the initial conditions
interfere. Observe, that while nonsingularity of TL −OLZ
is a sufficient condition, Z = 0 being obviously a good
choice, it remains an interesting research question how to
guarantee this condition, in general.

For parallel and cascade interconnections even the impulse
response case is nontrivial. As a starting point observe,
that having representations of length L1 and L2, respec-
tively, the length L = L1 + L2 suffice for the resulting
representation. It is also immediate, that TL = T 1

L + T 2
L

and TL = T 2
LT 1

L provides the required Toeplitz part. The
nontrivial issue occurs for the computation of the extended
observability matrix, whose dimension nx ≤ nx1

+ nx2

is not known, in general. A possible shortcut is to com-
pute only the controllable part of the representation from
the Markov parameters, as it was shown in the previous
section. This corresponds to the case when the ”transfer
function” approach is used, i.e., we are dealing with con-
trollable behaviors only.

For parallel connections we have
I 0 0
TL OL,1 OL,2



and recall that we can compute the corresponding (possi-
bly) unobservable pair (C,A). Applying classical ideas, by
computing the QR factorization we can select an orthog-
onal basis To of the observable subspace according to

OT
L,1

OT
L,2


= [To Tuo]


R
0


.

Then, the observable pair is (CTo, T
T
o ATo) while the

desired extended observability matrix OL = RT . Finally,
the representation of the parallel composition is

I 0
T 1
L + T 2

L [OL,1 OL,2]To


=


I 0
TL OL


. (28)
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For the general case, the corresponding formula to (17)
reads as

BL(V ) = Im

[
Vu

TLVu +OL(−TT
o ZVu + TT

o Ω)

]
, (29)

where

Z =

[
Z1

Z2

]
, Ω =

[
Ω1

Ω2

]

are formed using the parameters which corresponds to each
of the component system.

For cascade connections we have[
I 0 0

T 2
LT 1

L T 2
LOL,1 OL,2

]
.

Analogously, as above, we can obtain a representation for
the cascade connection as[

I 0
T 2
LT 1

L

[
T 2
LOL,1 OL,2

]
To

]
=

[
I 0
TL OL

]
, (30)

where [
OT

L,1T T
L,2

OT
L,2

]
= [To Tuo]

[
R
0

]
.

Accordingly, for the general case we have the formula

BL(V ) = Im

[
Vu

TLVu +OL(−TT
o ZVu + TT

o Ω)

]
, (31)

where

Z =

[
Z1

Z2(T 1
L −OL,1Z1)

]
, Ω =

[
Ω1

Ω2 −Z2Ω1

]

are formed using the parameters which corresponds to each
of the component system.

5. CONCLUSION

A new system representation has been proposed formed by
a minimal collection of sufficiently long restricted trajecto-
ries generated by an observable discrete time LTI system.
We give conditions under which such a collection is a sys-
tem representation and also an exhaustive parametrization
of these representations was provided.

This characterization can be also interpreted as a general-
ized persistency condition (informativity) which comple-
ments the results for the controllable case.

In terms of the proposed representation some system prop-
erties were investigated and a controllable–autonomous
decomposition was given. Finally it was provided the
reprezenation associated to the inverse system, to the
parallel and cascade connection.

Applicability of the proposed representation in analysis
and design problems, especially in output feedback prob-
lems, is the subject of future research.
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