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Abstract: The SUBNET neural network architecture has been developed to identify nonlinear
state-space models from input-output data. To achieve this, it combines the rolled-out nonlinear
state-space equations and a state encoder function, both parameterised as neural networks The
encoder function is introduced to reconstruct the current state from past input-output data.
Hence, it enables the forward simulation of the rolled-out state-space model. While this approach
has shown to provide high-accuracy and consistent model estimation, its convergence can be
significantly improved by efficient initialization of the training process. This paper focuses on
such an initialisation of the subspace encoder approach using the Best Linear Approximation
(BLA). Using the BLA provided state-space matrices and its associated reconstructability map,
both the state-transition part of the network and the encoder are initialized. The performance
of the improved initialisation scheme is evaluated on a Wiener-Hammerstein simulation example
and a benchmark dataset. The results show that for a weakly nonlinear system, the proposed
initialisation based on the linear reconstructability map results in a faster convergence and a
better model quality.
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1. INTRODUCTION

Mathematical models are essential to understand the dy-
namical behaviours of engineering systems. These models
are utilised for control design, fault diagnosis, or the pre-
diction or simulation of systems. Linear system identifi-
cation techniques (Ljung, 1999; Pintelon and Schoukens,
2012) have been successfully employed to obtain black-
box linear models of systems starting from input-output
data. However, technological advances to meet industrial
and consumer demands are driving system designs towards
nonlinear operational regimes. However, the nonlinear sys-
tem identification field is less mature compared to its LTI
counterpart (Schoukens and Ljung, 2019).

While there is a wide range of nonlinear model classes, this
paper focuses on nonlinear state-space (NLSS) identifica-
tion (Suykens et al., 1995; Paduart et al., 2010; Schoukens,
2021). NLSS identification requires a potentially non-
convex nonlinear optimization problem to be solved. A
good initialisation of the parameter estimates could lead
to faster convergence of the optimization algorithm and a
higher likelihood of converging to the global minimum.

The SUBNET artificial neural network (ANN) architec-
ture proposed in (Beintema et al., 2021a) and studied
in detail in (Beintema et al., 2022) has proven to offer
a versatile and robust (nonlinear) system identification

approach over a wide range of model classes and ap-
plications from nonlinear state-space, to Koopman and
linear parameter-varying identification (Beintema et al.,
2021a,b; Iacob et al., 2021; Verhoek et al., 2022). It com-
bines an improved computational efficiency, increased cost
smoothness and utilizes effective nonlinear optimization
approaches. Nevertheless, as the parameters of the SUB-
NET network in the corresponding estimation scheme are
currently initialized randomly, a reliable parameter initial-
ization could further improve the model quality and/or
time required for the optimization approach to converge.
This is illustrated in a wide range of earlier approaches, one
of the most common approaches of initialisation of black-
box nonlinear models is by using a linear approximation of
the system. This approach has proven to be effective over
a wide range of model structures including block oriented
nonlinear models (Schoukens and Tiels, 2017), linear frac-
tional representation-based nonlinear models (Schoukens
and Tóth, 2020), Polynomial NLSS models (Paduart et al.,
2010) and state space models parameterised as ANNs
(Suykens et al., 1995; Schoukens, 2021).

This paper investigates the initialisation of the parameters
present in the SUBNET architecture when used for non-
linear state-space neural identification. Three initialization
schemes are compared. The state and output equations are
initialized randomly or based on the BLA state-space ma-
trices similar to (Schoukens, 2021). The encoder network
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Maarten Schoukens ∗

∗ Control System group, Eindhoven University of Technology,
Eindhoven, the Netherlands

∗∗ Systems and Control Laboratory, Institute for Computer Science and
Control, Budapest, Hungary

Abstract: The SUBNET neural network architecture has been developed to identify nonlinear
state-space models from input-output data. To achieve this, it combines the rolled-out nonlinear
state-space equations and a state encoder function, both parameterised as neural networks The
encoder function is introduced to reconstruct the current state from past input-output data.
Hence, it enables the forward simulation of the rolled-out state-space model. While this approach
has shown to provide high-accuracy and consistent model estimation, its convergence can be
significantly improved by efficient initialization of the training process. This paper focuses on
such an initialisation of the subspace encoder approach using the Best Linear Approximation
(BLA). Using the BLA provided state-space matrices and its associated reconstructability map,
both the state-transition part of the network and the encoder are initialized. The performance
of the improved initialisation scheme is evaluated on a Wiener-Hammerstein simulation example
and a benchmark dataset. The results show that for a weakly nonlinear system, the proposed
initialisation based on the linear reconstructability map results in a faster convergence and a
better model quality.

Keywords: Nonlinear system Identification, Machine Learning, Neural Networks, State-Space,
Best Linear Approximation

1. INTRODUCTION

Mathematical models are essential to understand the dy-
namical behaviours of engineering systems. These models
are utilised for control design, fault diagnosis, or the pre-
diction or simulation of systems. Linear system identifi-
cation techniques (Ljung, 1999; Pintelon and Schoukens,
2012) have been successfully employed to obtain black-
box linear models of systems starting from input-output
data. However, technological advances to meet industrial
and consumer demands are driving system designs towards
nonlinear operational regimes. However, the nonlinear sys-
tem identification field is less mature compared to its LTI
counterpart (Schoukens and Ljung, 2019).

While there is a wide range of nonlinear model classes, this
paper focuses on nonlinear state-space (NLSS) identifica-
tion (Suykens et al., 1995; Paduart et al., 2010; Schoukens,
2021). NLSS identification requires a potentially non-
convex nonlinear optimization problem to be solved. A
good initialisation of the parameter estimates could lead
to faster convergence of the optimization algorithm and a
higher likelihood of converging to the global minimum.

The SUBNET artificial neural network (ANN) architec-
ture proposed in (Beintema et al., 2021a) and studied
in detail in (Beintema et al., 2022) has proven to offer
a versatile and robust (nonlinear) system identification

approach over a wide range of model classes and ap-
plications from nonlinear state-space, to Koopman and
linear parameter-varying identification (Beintema et al.,
2021a,b; Iacob et al., 2021; Verhoek et al., 2022). It com-
bines an improved computational efficiency, increased cost
smoothness and utilizes effective nonlinear optimization
approaches. Nevertheless, as the parameters of the SUB-
NET network in the corresponding estimation scheme are
currently initialized randomly, a reliable parameter initial-
ization could further improve the model quality and/or
time required for the optimization approach to converge.
This is illustrated in a wide range of earlier approaches, one
of the most common approaches of initialisation of black-
box nonlinear models is by using a linear approximation of
the system. This approach has proven to be effective over
a wide range of model structures including block oriented
nonlinear models (Schoukens and Tiels, 2017), linear frac-
tional representation-based nonlinear models (Schoukens
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and Tóth, 2020), Polynomial NLSS models (Paduart et al.,
2010) and state space models parameterised as ANNs
(Suykens et al., 1995; Schoukens, 2021).

This paper investigates the initialisation of the parameters
present in the SUBNET architecture when used for non-
linear state-space neural identification. Three initialization
schemes are compared. The state and output equations are
initialized randomly or based on the BLA state-space ma-
trices similar to (Schoukens, 2021). The encoder network

Initialization Approach for Nonlinear
State-Space Identification via the Subspace

Encoder Approach

Rishi Ramkannan ∗ Gerben I. Beintema ∗ Roland Tóth ∗,∗∗
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Maarten Schoukens ∗

∗ Control System group, Eindhoven University of Technology,
Eindhoven, the Netherlands

∗∗ Systems and Control Laboratory, Institute for Computer Science and
Control, Budapest, Hungary

Abstract: The SUBNET neural network architecture has been developed to identify nonlinear
state-space models from input-output data. To achieve this, it combines the rolled-out nonlinear
state-space equations and a state encoder function, both parameterised as neural networks The
encoder function is introduced to reconstruct the current state from past input-output data.
Hence, it enables the forward simulation of the rolled-out state-space model. While this approach
has shown to provide high-accuracy and consistent model estimation, its convergence can be
significantly improved by efficient initialization of the training process. This paper focuses on
such an initialisation of the subspace encoder approach using the Best Linear Approximation
(BLA). Using the BLA provided state-space matrices and its associated reconstructability map,
both the state-transition part of the network and the encoder are initialized. The performance
of the improved initialisation scheme is evaluated on a Wiener-Hammerstein simulation example
and a benchmark dataset. The results show that for a weakly nonlinear system, the proposed
initialisation based on the linear reconstructability map results in a faster convergence and a
better model quality.

Keywords: Nonlinear system Identification, Machine Learning, Neural Networks, State-Space,
Best Linear Approximation

1. INTRODUCTION

Mathematical models are essential to understand the dy-
namical behaviours of engineering systems. These models
are utilised for control design, fault diagnosis, or the pre-
diction or simulation of systems. Linear system identifi-
cation techniques (Ljung, 1999; Pintelon and Schoukens,
2012) have been successfully employed to obtain black-
box linear models of systems starting from input-output
data. However, technological advances to meet industrial
and consumer demands are driving system designs towards
nonlinear operational regimes. However, the nonlinear sys-
tem identification field is less mature compared to its LTI
counterpart (Schoukens and Ljung, 2019).

While there is a wide range of nonlinear model classes, this
paper focuses on nonlinear state-space (NLSS) identifica-
tion (Suykens et al., 1995; Paduart et al., 2010; Schoukens,
2021). NLSS identification requires a potentially non-
convex nonlinear optimization problem to be solved. A
good initialisation of the parameter estimates could lead
to faster convergence of the optimization algorithm and a
higher likelihood of converging to the global minimum.

The SUBNET artificial neural network (ANN) architec-
ture proposed in (Beintema et al., 2021a) and studied
in detail in (Beintema et al., 2022) has proven to offer
a versatile and robust (nonlinear) system identification

approach over a wide range of model classes and ap-
plications from nonlinear state-space, to Koopman and
linear parameter-varying identification (Beintema et al.,
2021a,b; Iacob et al., 2021; Verhoek et al., 2022). It com-
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smoothness and utilizes effective nonlinear optimization
approaches. Nevertheless, as the parameters of the SUB-
NET network in the corresponding estimation scheme are
currently initialized randomly, a reliable parameter initial-
ization could further improve the model quality and/or
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of the most common approaches of initialisation of black-
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the system. This approach has proven to be effective over
a wide range of model structures including block oriented
nonlinear models (Schoukens and Tiels, 2017), linear frac-
tional representation-based nonlinear models (Schoukens
and Tóth, 2020), Polynomial NLSS models (Paduart et al.,
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(Suykens et al., 1995; Schoukens, 2021).

This paper investigates the initialisation of the parameters
present in the SUBNET architecture when used for non-
linear state-space neural identification. Three initialization
schemes are compared. The state and output equations are
initialized randomly or based on the BLA state-space ma-
trices similar to (Schoukens, 2021). The encoder network

present in the SUBNET architecture is either randomly
initialized or initialized using the reconstructability map
obtained from the BLA model of the system under test.
The performance of the proposed initialisation approach is
analysed on a Wiener-Hammerstein simulation system and
the well-established Wiener-Hammerstein benchmark sys-
tem (Schoukens and Ljung, 2009). The results show that
for a weakly nonlinear system, the proposed initialisation
scheme results in a faster convergence and a better model
quality.

The remainder of the paper starts with the introduction
of the considered system and the model class in Section 2.
An overview of the subspace encoder method is given in
Section 3. Section 4 describes the proposed initialisation
based upon the BLA estimate. The proposed initialisation
schemes are tested using a simulation study and the
conclusions are drawn in Sections 5 and 6 respectively.

2. SYSTEM AND MODEL CLASS

The fading memory nonlinear discrete-time systems class
that can be represented in the state-space form is consid-
ered:

xt+1 = f(xt, ut) (1a)

yt = h(xt, ut) + vt, (1b)

where (1a) is the nonlinear state equation and (1b) is
the nonlinear output equation, ut ∈ Rnu is the system
input, yt ∈ Rny is the noisy system output, xt ∈ Rnx

is the internal states, and vt ∈ Ry represents an external,
possibly colored, additive noise source with finite variance.

The objective of this paper is to estimate a nonlinear
discrete-time state space model of (1) starting from data
generated by (1). The considered nonlinear state-space
model structure for this task is described below,

x̂t+1 = Ax̂t +But + fθNL(x̂t, ut), (2a)

ŷt = Cx̂t +Dut + hθNL
(x̂t, ut), (2b)

where A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx and
D ∈ Rny×nu are matrices describing the linear model
terms. The functions fθNL

and hθNL
are static nonlin-

ear functions parameterised as fully connected multi-layer
ANNs. Furthermore, x̂t is the modelled state, ŷt is the
model output and, θ = vec(A,B,C,D, θNL) represents the
model parameters collected in a vector. In (Schoukens,
2021), it has been shown that having an explicit linear
part in parallel to the nonlinear part for state-space ANN
model structure results in improved training behaviour.
However, note that introducing such an explicit linear
part does not alter the class of systems represented by
(2). Indeed, the linear parts can easily be absorbed in the
nonlinear functions fθNL

and hθNL
which are parameterized

by ANNs. In the remainder of the paper, for notational
simplicity, the direct feed-through term from the input to
the output is dropped. Finally, note that the considered
model representation is not unique. There could be multi-
ple values of θ for which the same input-output behaviour
is obtained, this is a common issue in black-box nonlinear
state-space identification.

3. SUBSPACE ENCODER-BASED IDENTIFICATION

The subspace encoder identification approach introduced
in (Beintema et al., 2021a) combines the use of multiple

shooting with an encoder function that estimates the
initial state from past inputs and outputs. It is shown that
multiple shooting smoothens the loss landscape, improving
the parameter estimation (Ribeiro et al., 2020). This
method involves splitting the data set into multiple (short)
sections and computing the loss independently over these
sections. This results in the following loss (identification
cost function) evaluated along the given data-set:

V (θ) =
1

M

N−T+1∑
t=n+1

T−1∑
k=0

||ŷt+k|t − yt+k||22, (3a)

ŷt+k|t = Cx̂t+k|t + hθNL(x̂t+k|t, ut+k), (3b)

x̂t+k+1|t = Ax̂t+k|t +But+k + fθNL
(x̂t+k|t, ut+k), (3c)

x̂t|t = Wuut−nb:t−1 +Wyyt−na:t−1 (3d)

+ ψθNL(yt−na:t−1, ut−nb:t−1),

where (3b) and (3c) provide the forward simulation of
the model and (3d) determines, or encodes, the ini-
tial state from past input output data. Furthermore,
M = (N − T − n + 1)T , T denotes the number of
steps in the future for which the simulation is per-
formed given the initial time index t and the pipe (|)
notation is used to distinguish between different sub-
sections as (current index|start index), while ut−nb:t−1 ≜
[u⊤

t−nb
, ..., u⊤

t−1]
⊤, yt−na:t−1 ≜ [y⊤t−na

, ..., y⊤t−1]
⊤. The loss

for each subsection can be calculated in parallel, which
allows for the use of mini-batching during optimization.
Note that, even though at each optimization step only
short subsections of the complete dataset are considered,
during the optimization the full dataset is used as at each
optimization step new random subsections are selected to
compute the gradient.

Fig. 1. Structure of the subspace encoder network (SUB-
NET).

Estimating the initial states at the start of each section
plays a crucial role in subspace encoder-based identifica-
tion. The encoder function ψθNL

given in (3d), parame-
terised as an artificial neural network, is utilised to obtain
the initial states x̂t|t during training. It acts as a recon-
structability map, since, it obtains the initial state from
the past inputs ut−nb:t−1, and outputs yt−na:t−1 where
na and nb denote the maximum past time lags of the
outputs and inputs used by the encoder.Wu,Wy and ψθNL

are jointly estimated with the state-transition and output
functions using the loss (3a). The resulting unrolled state-
space neural network combined with the encoder network
is visualized in Figure 1.

We refer the reader to (Beintema et al., 2021a) for a more
detailed description of the subspace encoder approach.
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4. IMPROVED SUBSPACE ENCODER
INITIALIZATION

The subspace encoder approach in (Beintema et al., 2021a)
utilises random parameter initialization using the uniform
distributions given by the Xavier initialization (Glorot
and Bengio, 2010) for the state, output and encoder
functions. Although, Xavier initialization is commonly
used within ANN training, the nonlinear optimization
problem remains prone to local minima or possibly long
optimization times. Providing a better initial estimate,
can reduce the required optimization time and/or improve
the quality of the resulting models. The subsections below
describe how the BLA and its associated reconstructability
map can be utilized to provide an improved initialization
for the subspace encoder approach.

4.1 Best Linear Approximation

The Best Linear Approximation (BLA) provides a linear
time invariant (LTI) approximation of a nonlinear system.
The BLA is best in a mean square sense for the class of
chosen input signals (Pintelon and Schoukens, 2012):

GBLA(q) = arg min
G(q)

Eu,v{∥ỹt −G(q)ũt∥22}, (4a)

ũt = ut − Eu{ut}, (4b)

ỹt = yt − Eu,v{yt}, (4c)

where Eu,v denotes the expectation operator taken w.r.t
the random variations due to the input realizations of
ut and the output noise vt and G(q) belongs to the set
of all possible discrete-time LTI systems. Practically, a
BLA estimate can be obtained by classical prediction-error
LTI state-space identification approaches (Ljung, 1999;
Pintelon and Schoukens, 2012). Without loss of generality,
in the remainder of the paper we assume that the input
and output signals are zero-mean and normalized during
data preprocessing.

The BLA can be estimated as a linear state-space model
resulting in the state-space matrices (Ã, B̃, C̃):

x̂BLA
t+1 = Ãx̂BLA

t + B̃ũt, (5a)

ŷBLA
t = C̃x̂BLA

t . (5b)

These matrices will later be used to initialize the subspace
encoder model estimate. It is recommended, if possible,
to use the same data to obtain the BLA estimate as
for the identification of the nonlinear state space model.
This ensures that the linear approximation is valid in the
data range of interest that is considered for the nonlinear
identification.

4.2 Reconstructability Map

By time-inverting of the BLA linear SS equations Eq. (5),
with no direct feedthrough (D = 0), the past outputs
described as (see (Callier and Desoer, 2012));

ŷBLA
t−n:t−1 = [C̃Ã−]mapx̂

BLA
t − [C̃Ã−B̃]mapũt−n:t−1, (6)

where Ã− is used to indicate that inverses of the state
matrix are involved in constructing the map. The maps
are given by

[C̃Ã−]map =



C̃Ã−n

...

C̃Ã−1


 , (7a)

[C̃Ã−B̃]map =




C̃Ã−nB̃ C̃Ã1−nB̃ . . . C̃Ã−1B̃
...

...
. . .

...

C̃Ã−2B̃ C̃Ã−1B̃ . . . 0

C̃Ã−1B̃ 0 . . . 0


 . (7b)

The reconstructability map is obtained by solving the pos-
sibly over-determined system of equations (6) for x̂t using

the left pseudo inverse of [C̃Ã−]map given by [C̃Ã−]†map.
Hence, the initial state of the simulation model can be
recovered as

x̂BLA
t = [C̃Ã−]†map


ŷBLA
t−n:t−1 + [C̃Ã−B̃]mapũt−n:t−1


.

(8)

In general, for systems of order nx, at least n ≥ nx past
input-output samples are necessary for the existence of
a unique pseudo inverse of [C̃Ã−]map. Thus this is also
necessary for the uniqueness of the reconstructability map.
Furthermore, observability of the obtained BLA model is
also a necessary condition (Callier and Desoer, 2012).

4.3 Proposed BLA Parameter Initialisation

The initialisation of the state, output and encoder net-
work using the BLA and the reconstructability map is
performed by initialising the weights and biases under the
assumption that the inputs to the network are normalised
to have a zero mean and a unit standard deviation. To
initialise the state-space and encoder function with the
BLA, we rewrite the nonlinear functions fθNL , hθNL , ψθNL

in the form

fθNL
(x̂t+k|t, ut+k) = W f

lastϕ
f
θNL

([x̂⊤
t+k|tu

⊤
t+k]

⊤) + bflast

hθNL(x̂t+k|t) = Wh
lastϕ

h
θNL

(x̂t+k|t) + bhlast

ψθNL
(yt−na:t−1, ut−nb:t−1) = Wψ

lastϕ
ψ
θNL

(., .) + bψlast
where ϕ indicates the output of the last hidden layer after
activation. Writing these functions in this form allows us to
“turn off” their influence by setting the parameters Wlast

and blast to zero. Setting these terms to zero will ensure
that the initial model behaves like the BLA estimate. All
other ANN layer weights are randomly initialized.

Considering the subspace encoder approach, the initial-
isation scheme using the BLA of the system obtained
based on the dataset can be utilised for the state and the
output networks by setting A = Ã, B = B̃, C = C̃, and

W f
last = Wh

last = 0, bflast = bhlast = 0, similar to (Paduart
et al., 2010; Schoukens and Tóth, 2020; Schoukens, 2021).

However, the encoder network also plays a crucial role
by estimating the initial state for each subsection. The
encoder can be initialized using the BLA estimate by
setting Wu = [C̃Ã−]†map[C̃Ã−B̃]map, Wy = [C̃Ã−B̃]†map

and Wψ
last = 0, bψlast = 0. Again, setting the last layer terms

to zero ensures that the encoder behaves like the BLA
reconstructability map after initialization. This ensures
that the encoder approximately reconstructs the state of
the BLA estimate. However, this will not be exact as
the measured system output is used when evaluating the
encoder instead of simulated BLA output as is done in (8).
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4. IMPROVED SUBSPACE ENCODER
INITIALIZATION

The subspace encoder approach in (Beintema et al., 2021a)
utilises random parameter initialization using the uniform
distributions given by the Xavier initialization (Glorot
and Bengio, 2010) for the state, output and encoder
functions. Although, Xavier initialization is commonly
used within ANN training, the nonlinear optimization
problem remains prone to local minima or possibly long
optimization times. Providing a better initial estimate,
can reduce the required optimization time and/or improve
the quality of the resulting models. The subsections below
describe how the BLA and its associated reconstructability
map can be utilized to provide an improved initialization
for the subspace encoder approach.

4.1 Best Linear Approximation

The Best Linear Approximation (BLA) provides a linear
time invariant (LTI) approximation of a nonlinear system.
The BLA is best in a mean square sense for the class of
chosen input signals (Pintelon and Schoukens, 2012):

GBLA(q) = arg min
G(q)

Eu,v{∥ỹt −G(q)ũt∥22}, (4a)

ũt = ut − Eu{ut}, (4b)

ỹt = yt − Eu,v{yt}, (4c)

where Eu,v denotes the expectation operator taken w.r.t
the random variations due to the input realizations of
ut and the output noise vt and G(q) belongs to the set
of all possible discrete-time LTI systems. Practically, a
BLA estimate can be obtained by classical prediction-error
LTI state-space identification approaches (Ljung, 1999;
Pintelon and Schoukens, 2012). Without loss of generality,
in the remainder of the paper we assume that the input
and output signals are zero-mean and normalized during
data preprocessing.

The BLA can be estimated as a linear state-space model
resulting in the state-space matrices (Ã, B̃, C̃):

x̂BLA
t+1 = Ãx̂BLA

t + B̃ũt, (5a)

ŷBLA
t = C̃x̂BLA

t . (5b)

These matrices will later be used to initialize the subspace
encoder model estimate. It is recommended, if possible,
to use the same data to obtain the BLA estimate as
for the identification of the nonlinear state space model.
This ensures that the linear approximation is valid in the
data range of interest that is considered for the nonlinear
identification.

4.2 Reconstructability Map

By time-inverting of the BLA linear SS equations Eq. (5),
with no direct feedthrough (D = 0), the past outputs
described as (see (Callier and Desoer, 2012));

ŷBLA
t−n:t−1 = [C̃Ã−]mapx̂

BLA
t − [C̃Ã−B̃]mapũt−n:t−1, (6)

where Ã− is used to indicate that inverses of the state
matrix are involved in constructing the map. The maps
are given by

[C̃Ã−]map =



C̃Ã−n

...

C̃Ã−1


 , (7a)

[C̃Ã−B̃]map =




C̃Ã−nB̃ C̃Ã1−nB̃ . . . C̃Ã−1B̃
...

...
. . .

...

C̃Ã−2B̃ C̃Ã−1B̃ . . . 0

C̃Ã−1B̃ 0 . . . 0


 . (7b)

The reconstructability map is obtained by solving the pos-
sibly over-determined system of equations (6) for x̂t using

the left pseudo inverse of [C̃Ã−]map given by [C̃Ã−]†map.
Hence, the initial state of the simulation model can be
recovered as

x̂BLA
t = [C̃Ã−]†map


ŷBLA
t−n:t−1 + [C̃Ã−B̃]mapũt−n:t−1


.

(8)

In general, for systems of order nx, at least n ≥ nx past
input-output samples are necessary for the existence of
a unique pseudo inverse of [C̃Ã−]map. Thus this is also
necessary for the uniqueness of the reconstructability map.
Furthermore, observability of the obtained BLA model is
also a necessary condition (Callier and Desoer, 2012).

4.3 Proposed BLA Parameter Initialisation

The initialisation of the state, output and encoder net-
work using the BLA and the reconstructability map is
performed by initialising the weights and biases under the
assumption that the inputs to the network are normalised
to have a zero mean and a unit standard deviation. To
initialise the state-space and encoder function with the
BLA, we rewrite the nonlinear functions fθNL , hθNL , ψθNL

in the form

fθNL
(x̂t+k|t, ut+k) = W f

lastϕ
f
θNL

([x̂⊤
t+k|tu

⊤
t+k]

⊤) + bflast

hθNL(x̂t+k|t) = Wh
lastϕ

h
θNL

(x̂t+k|t) + bhlast

ψθNL
(yt−na:t−1, ut−nb:t−1) = Wψ

lastϕ
ψ
θNL

(., .) + bψlast
where ϕ indicates the output of the last hidden layer after
activation. Writing these functions in this form allows us to
“turn off” their influence by setting the parameters Wlast

and blast to zero. Setting these terms to zero will ensure
that the initial model behaves like the BLA estimate. All
other ANN layer weights are randomly initialized.

Considering the subspace encoder approach, the initial-
isation scheme using the BLA of the system obtained
based on the dataset can be utilised for the state and the
output networks by setting A = Ã, B = B̃, C = C̃, and

W f
last = Wh

last = 0, bflast = bhlast = 0, similar to (Paduart
et al., 2010; Schoukens and Tóth, 2020; Schoukens, 2021).

However, the encoder network also plays a crucial role
by estimating the initial state for each subsection. The
encoder can be initialized using the BLA estimate by
setting Wu = [C̃Ã−]†map[C̃Ã−B̃]map, Wy = [C̃Ã−B̃]†map

and Wψ
last = 0, bψlast = 0. Again, setting the last layer terms

to zero ensures that the encoder behaves like the BLA
reconstructability map after initialization. This ensures
that the encoder approximately reconstructs the state of
the BLA estimate. However, this will not be exact as
the measured system output is used when evaluating the
encoder instead of simulated BLA output as is done in (8).

By combining the different initialization options three
different initialization schemes are obtained: 1) a fully
random initialization of the system dynamics and the
encoder (RanDY + RanENC), 2) a BLA initialization of
the system dynamics and a random initialization of the
encoder (LinDY + RanENC), and 3) a BLA initialization
of both the system dynamics and of the encoder (LinDY
+ LinENC). Table 1 provides an overview of these initial-
ization schemes.

Table 1. Parameter initialization scheme com-
parison. ‘Random’ indicates that the values are
drawn from the distribution U(−1, 1)/

√
nin

where nin denotes the number of function in-
puts.

RanDY +
RanENC

LinDY +
RanENC

LinDY + LinENC

A Random Ã Ã

B Random B̃ B̃

C Random C̃ C̃

Wu Random Random [C̃Ã−]†map[C̃Ã−B̃]map

Wy Random Random [C̃Ã−B̃]†map

W f,h
last

Random 0 0

Wψ
last

Random Random 0

bf,h,ψ
last

0 0 0

5. EXPERIMENTS

The three initialization strategies outlined in Table 1 are
evaluated on a Wiener-Hammerstein (WH) simulation ex-
ample, as well as on the Wiener-Hammerstein benchmark
dataset (Schoukens and Ljung, 2009).

5.1 Simulation Example

System and Data: A SISO Wiener-Hammerstein system
with a sine nonlinearity g(x) = sin(x) sandwiched between
two linear low pass filters is considered. BothG1, described
by the state-space matrices (A1,B1,C1), and G2, repre-
sented by (A2,B2,C2), correspond to 2nd order low-pass
dynamics with a cut-off frequency at 200 Hz and 350 Hz re-
spectively. Hence, the overall system order is 4. The state-
space representation of this Wiener-Hammerstein system
can be written as:

xt+1 =

[
A1 0
0 A2

]
xt +

[
B1

0

]
ut +

[
0
B2

]
g([C1 0]xt) (10)

yt = [0 C2]xt (11)

To generate the data, a white Gaussian excitation for
ut is considered. No noise disturbance is added to the
outputs during this simulation example to emphasize the
difference in model quality over the different initialization
schemes. During the estimation of the BLA, the nonlinear
behaviour of the system acts as a noise source (Pintelon
and Schoukens, 2012) and introduces variance on the esti-
mate. The input and output signals are sampled at 1000
Hz. 150,000 data samples are obtained for the training
dataset and 25,000 data samples for the validation and
the test dataset.

Model Structure and Hyper-Parameters: The nonlinear
terms of the encoder (ψθNL), state (fθNL) and output
functions (hθNL) are parameterized as artificial neural

networks with 64 nodes, 2 hidden layers, Tanh activation
functions and the non-zero elements are initialized by
Xavier initialization (Glorot and Bengio, 2010). The order
of the model structure is set to 4. The T , associated with
the loss function (3a), is chosen to be 50 and n = na =
nb = 4. Adam optimization with a learning rate of 0.001
and batch size of 512 is considered for both the state-space
networks and encoder network. The model is trained for
500 epochs.

Performance Measure: The Normalised Root Mean
Square (NRMS) of the simulation error is used as a per-
formance measure:

NRMS =

√
1

N−n+1

∑N
t=n ||ŷt|n − yt||22
σy

, (12)

where ŷt|n is the simulated model output using the encoder
to provide an estimate of the initial state and yt is the
system output. σy is the standard deviation of the system
output in the test set.

Linear model and reconstructability map: The linear
discrete time state-space model is estimated using the
N4SID algorithm (Van Overschee and De Moor, 1994).
The order of the linear model is set to 4, no direct
feedthrough is considered. The data is preprocessed such
that the input and output signals are zero-mean and have
a standard deviation equal to 1.

Nonlinearity Level: The improved initialisation is tested
for various levels of nonlinearity of the system. The input
amplitude can be adjusted to vary the nonlinear behaviour
level which will be expressed using %nl defined as

%nl ≜ (1−NRMSBLA) · 100, (13)

where the NRMSBLA is the NRMS simulation error (12)
computed between the linear output (ŷBLA) and system
output (y). In this experiment, there is no noise considered
in the input-output dataset. Hence, the dynamics which
cannot be modelled by the BLA model (5) are due to the
nonlinear system behavior. The experiments are conducted
for nonlinearity percentages 1%, 5%, 10%, 20% and 40%.

Results: 4 independent simulation runs are performed
to account for the random initialisation (see Table 1) for
each of the %nl levels.

From the simulation results in Fig. 2 and Table 2, the
LinDY + LinENC initialization performs better than
LinDY + RanENC and RanDY + RanENC initialization
for 10%nl and below. Whereas, for 20%nl and 40%nl,
the LinDY + RanENC performs better than the other
2 initialisation approaches. Hence, the LinDY + LinENC
initialization is especially well suited for a weakly nonlinear
system.

Furthermore, we can observe that using the BLA initializa-
tion of the state-space equations is always beneficial com-
pared to a purely random initialization. This is especially
observed in Figure 3, where we observe that the LinDy +
RanEnc validation loss is always lower or equal than the
fully random initialization scheme.

Fig 3 denote the evolution of the validation loss dur-
ing training. The moving average line indicates that for
10%nl and below, the LinDY + LinENC initialization
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Fig. 2. NRMS error of the simulated model responses computed on the training and test data sets for the WH simulation
example (10). The results are displayed for the estimated models using all three initialization strategies, and 4 runs
to create the box diagrams. Furthermore, the degree of non-linearity of the system is scaled from 5%nl (Left),
10%nl (Middle) to 40%nl (Right) as defined in (13).

Table 2. Median of the NRMS of the simulation
error of the estimated models computed on
the test data set for all three initialization
strategies on the WH simulation example.

nl% RanDY +
RanENC

LinDY +
RanENC

LinDY +
LinENC

1% 0.21% 0.09% 0.06%

5% 0.26% 0.2%0 0.15%

10% 0.38% 0.38% 0.29%

20% 0.94% 0.29% 0.34%

40% 1.29% 1.03% 1.63%

provides faster convergence than the other 2 initialisation
approaches. The stars (⋆) in Fig 3 denote the best obtained
model on the validation dataset. It can be noticed that
in most cases, the best model is obtained towards the
end of the optimization run. This suggests that better
model might have obtained for more epochs. Nevertheless,
the LinDY + LinENC initialization, on average, provides
models of equal quality in less time for a weakly nonlinear
system (%nl ≤ 10) compared to the other 2 initialisation
approaches.

5.2 Wiener-Hammerstein Benchmark

System and Data: The Wiener-Hammerstein (WH)
benchmark (Schoukens and Ljung, 2009) consist of a diode
circuit as static nonlinearity, sandwiched between a third
order Chebyshev filter and a third order inverse Chebyshev
filter. The system is excited with a filtered Gaussian noise
signal with a cut-off frequency of 10 kHz. In total, 80000
data-samples are used for training, 20000 for validation
and 78800 for testing.

Model Structure and Hyperparameters: The encoder
(ψθNL), state (fθNL) and output functions (hθNL) are pa-
rameterised similarly to the previous experiment. The or-
der of the model structure is set to 6. The T associated
with the loss function (3a) is set to 80 and n = na =
nb = 6. Adam optimization with a learning rate of 0.001
is considered for both the state-space networks and the
encoder network. The model is trained for 3000 epochs
with a batch size of 1024.

Performance Measure: The NRMS simulation error is
used to assess the model performance (see (12)).

Fig. 3. Evolution of validation loss during the training
phase for the WH simulation example. The star (⋆)
denotes the lowest validation loss for which the final
model is obtained. The dashed line indicates the
moving average and the shaded region denotes the
variation of the validation loss over the different runs.

Linear Model and Reconstructability Map: The linear
model is estimated similarly to the previous experiment.
The order of the estimated linear model is set to 6. The
system has a nonlinearity level of about 18%nl. Using the
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10%nl (Middle) to 40%nl (Right) as defined in (13).
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nl% RanDY +
RanENC

LinDY +
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40% 1.29% 1.03% 1.63%

provides faster convergence than the other 2 initialisation
approaches. The stars (⋆) in Fig 3 denote the best obtained
model on the validation dataset. It can be noticed that
in most cases, the best model is obtained towards the
end of the optimization run. This suggests that better
model might have obtained for more epochs. Nevertheless,
the LinDY + LinENC initialization, on average, provides
models of equal quality in less time for a weakly nonlinear
system (%nl ≤ 10) compared to the other 2 initialisation
approaches.

5.2 Wiener-Hammerstein Benchmark

System and Data: The Wiener-Hammerstein (WH)
benchmark (Schoukens and Ljung, 2009) consist of a diode
circuit as static nonlinearity, sandwiched between a third
order Chebyshev filter and a third order inverse Chebyshev
filter. The system is excited with a filtered Gaussian noise
signal with a cut-off frequency of 10 kHz. In total, 80000
data-samples are used for training, 20000 for validation
and 78800 for testing.

Model Structure and Hyperparameters: The encoder
(ψθNL), state (fθNL) and output functions (hθNL) are pa-
rameterised similarly to the previous experiment. The or-
der of the model structure is set to 6. The T associated
with the loss function (3a) is set to 80 and n = na =
nb = 6. Adam optimization with a learning rate of 0.001
is considered for both the state-space networks and the
encoder network. The model is trained for 3000 epochs
with a batch size of 1024.

Performance Measure: The NRMS simulation error is
used to assess the model performance (see (12)).

Fig. 3. Evolution of validation loss during the training
phase for the WH simulation example. The star (⋆)
denotes the lowest validation loss for which the final
model is obtained. The dashed line indicates the
moving average and the shaded region denotes the
variation of the validation loss over the different runs.

Linear Model and Reconstructability Map: The linear
model is estimated similarly to the previous experiment.
The order of the estimated linear model is set to 6. The
system has a nonlinearity level of about 18%nl. Using the

obtained 6th order LTI model, the reconstructability map
(8) is obtained with n = na = nb = 6.

Benchmark Results: It can be noticed that the lowest
simulation NRMS error on the test dataset is obtained
for LinDY + LinENC (see Table 3). Moreover, the LinDY
+ LinENC obtains its best validation result around 300
epochs before the other 2 approaches (indicated by the ⋆
in Fig 4), even though the moving average is very close
to the LinDY + RanENC results. This is to be expected
based on the previous simulation study, if we consider the
20% nonlinearity level results obtained there.

Table 3. NRMS of the simulation error on
the test set of the Wiener-Hammerstein bench-

mark.

Initialisation method NRMS

RanDY + RanENC 0.29%

LinDY + RanENC 0.29%

LinDY + LinENC 0.25%

Fig. 4. Validation loss during training for the Wiener-
Hammerstein benchmark.

6. CONCLUSION

This paper has shown that the parameter initialization of
the identification problem of nonlinear state-space models
using the SUBNET architecture can be efficiently accom-
plished by the Best Linear Approximation. The state-space
matrices of the linear approximate model are used as a
linear bypass in the neural networks that represent the
state and output equations. However, the SUBNET ar-
chitecture also utilizes an encoder network that estimates
the initial state of each subsection used during the network
training. This encoder network acts as a reconstructability
map. Hence the reconstructability map of the linear ap-
proximate model is used to initialize the encoder network.
The simulation results illustrate that this is beneficial for
mildly nonlinear systems.
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