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Abstract: In order to make data-driven models of physical systems interpretable and reliable, it
is essential to include prior physical knowledge in the modeling framework. Hamiltonian Neural
Networks (HNNs) implement Hamiltonian theory in deep learning and form a comprehensive
framework for modeling autonomous energy-conservative systems. Despite being suitable to
estimate a wide range of physical system behavior from data, classical HNNs are restricted
to systems without inputs and require noiseless state measurements and information on the
derivative of the state to be available. To address these challenges, this paper introduces
an Output Error Hamiltonian Neural Network (OE-HNN) modeling approach to address the
modeling of physical systems with inputs and noisy state measurements. Furthermore, it does
not require the state derivatives to be known. Instead, the OE-HNN utilizes an ODE-solver
embedded in the training process, which enables the OE-HNN to learn the dynamics from noisy
state measurements. In addition, extending HNNs based on the generalized Hamiltonian theory
enables to include external inputs into the framework which are important for engineering
applications. We demonstrate via simulation examples that the proposed OE-HNNs results in
superior modeling performance compared to classical HNNs.
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1. INTRODUCTION

Despite significant developments in modeling and system
identification methods, learning complex systems is still
a challenging problem (Schoukens and Ljung (2019)). The
development of classical physics-based (white-box) models
requires detailed knowledge of the system dynamics which
is often not sufficiently available or tedious and expen-
sive to obtain. On the other hand, data-driven (black-
box) methods are able to reconstruct complex unknown
dynamics from data, but the estimated models often lack
generalizability and are hard to interpret.

Hamiltonian neural networks (HNNs) (Greydanus et al.,
2019) are a state-of-the-art grey-box modeling tool in
which Hamiltonian mechanics is embedded as prior knowl-
edge in the neural network. By means of Hamiltonian
theory, various physical mechanisms from quantum (Ver-
don et al., 2019) to large-scale systems (Sienko et al.,
2004) can be expressed in a unified approach. However,
the application of classical HNNs is limited to physical
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systems without inputs and it requires noiseless state
measurements and the knowledge of the state derivatives
for the training process. These are not readily available in
engineering applications.

After the introduction of HNNs by Greydanus et al.
(2019), many researchers from different fields studied its
application and proposed extensions to the original idea.
For instance, Choudhary et al. (2020) applied HNNs for
modeling nonlinear systems with chaotic behaviour, and
Zhong et al. (2020) generalized HNNs for Hamiltonian
systems with external inputs. A review of the different
approaches for application of HNNs is available in Chen
et al. (2022). Nevertheless, there remains a need for an
HNN approach that is capable of dealing with input,
dissipation, and noisy data in engineering systems.

Hamilton’s theory assumes the system is energy conserva-
tive. However, in practice, energy changes due to dissipa-
tion and external forces. Greydanus and Sosanya (2022)
has proposed to model dissipativity in dynamic systems
by decomposition of dissipative and conservative quan-
tities and training two subnetworks for these quantities
separately. They have assumed that the noiseless time
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derivative of the states of the physical system is available.
Zhong et al. (2020) tried to model systems with control
inputs. They have applied generalized Hamiltonian theory
to incorporate the control inputs into the HNN framework.
In their method, the noiseless state signals and constant in-
put levels have been considered as the inputs of the model.
Desai et al. (2021) used the port-Hamiltonian theory to
formulate neural networks based model learning capable
to consider both dissipation and inputs of the physical
systems. In their approach, it is assumed that the input
and dissipative terms are unknown, but noiseless measured
data on the state derivatives are available. Unlike previous
studies, we will not rely on noiseless state/state derivatives
for training the generalized HNNs, instead we focus on
identification of the systems subject to inputs with noisy
state measurements.

In order to improve the stabilty of the HNNs, Chen et al.
(2020), and Toth et al. (2020) introduced an other physical
constraint to the HNNs by applying symplectic integra-
tor for deriving states from HNNs. Since the symplec-
tic integrators conserve the Hamiltonian, they can help
the HNN to conserve energy for longer time periods and
improve the accuracy of the final results. Although by
employing symplectic integrators, the assumption that the
Hamiltonian is separable into the kinetic and potential
energy components must hold, which significantly limits
the applicability of this approach. Xiong et al. (2021) and
Sharma et al. (2022) have tried to overcome this limitation
for modeling systems with non-separable Hamiltonians,
but their work has been limited to systems without inputs
and dissipation. It is worth mentioning that the main
objective with using the symplectic integrators has been
to reduce the errors originating from discretization and
numerical integration while handling measurements noise
through an appropriate estimation error method has been
not addressed.

Real-life engineering systems are, in most cases, subjected
to inputs and their measured states are noisy. Since Hamil-
tonian systems are stiff (Zhong et al., 2020) and sensitive
to noise, the application of HNNs for modeling systems
with noisy measurements is challenging. Stiff systems need
small integration steps to deliver stable solutions. In other
words, these systems are sensitive to the discritization
error and noisy measurements making the final results
easily diverge in forward simulation of the models. Pre-
vious studies mainly focused on delivering stable results
by introducing extra constraint via incorporating symplec-
tic integrators into HNNs. In this paper, we show that
the underlying problems can be successfully addressed by
handling noisy measurements via a proper model structure
(Ljung, 1999) which provides estimation of the determin-
istic part of the model under statistical guarantees.

In order to handle the noise in measurements properly to-
gether with external inputs, an output-error model struc-
ture for HNNS is introduced for the first time, which results
in an output-error Hamiltonian neural network (OE-HNN)
method. For the proposed OE-HNN approach, we consider
to minimize the simulation error to cope with the effects
of the measurement noise and the unavailability of the
state derivatives in practice. In order to accommodate the
simulation error as a training objective an ODE-solver is
used in the training step. While previous studies mainly
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focused on modeling energy-conservative systems without
inputs, the current study addresses modeling physical sys-
tems with inputs. The inputs should fully capture the
dynamics of the system under study, hence we propose the
use of multisines as a general type of inputs which allows
for a more systematic exploration of the system’s response
across different frequency bands, enabling a more compre-
hensive and accurate model of the system’s behavior.

To summarise our main contributions in this paper are the
following:

e Incorporating an output-error model structure into
the HNN modeling concept which allows to properly
handle noisy measurement data.

e Contrary to the classical HNN approach, there is no
need for numerical approximation or direct noise-free
measurements of the state derivatives for training the
model.

e Introduction of general type of inputs into the HNN
modeling approach. For gathering data from such
systems for HNN modeling we propose the use of
multisines, giving the user full control over the applied
power spectrum on the system.

The paper is organized as follows: Section 2 briefly reca-
pitulates the Hamiltonian theory. Section 3 introduces the
considered system class, model structure, and the details
of the proposed OE-HNN based identification approach.
Next, the performance of the proposed OE-HNNs is eval-
uated via simulation examples in Section 4. Finally, the
conclusion on the developed approach and the achieved
results are drawn in Section 5.

2. HAMILTONIAN DYNAMICS

Hamiltonian mechanics is a reformulation of classical me-
chanics. It focuses on symplectic geometry and the con-
servation of energy. In Hamiltonian mechanics, the total
energy of the system FEi. is conserved and defined as
the Hamiltonian of the position q(t) € R™ and momenta
p(t) € R™ vectors, i.e. Eyo, = H(q(t), p(t)) where H : R x
R™ — R. The Hamiltonian is defined to be a differentiable
scalar function, satisfying

. OH
q= ap
Equation (1) represents the time evolution of the system in

which the right-hand side of the equation is the symplectic
gradient of the Hamiltonian. Since

- ()ar (foen

one can make sure that by moving along the symplectic
gradient of the Hamiltonian, the Hamiltonian does not
change; in other words, as long as the system follows the
trajectory introduced in (1), the total energy is conserved.

oOH
p__87q' (1)

In the generalized version of Hamiltonian theory, inputs
u(t) € R™ are added to the relation as

OH OH
|=— p=——"uG 3
A=, P=—%5 TOW (3)
where G € R™ ™ is the input matrix. Unlike in the

classical Hamiltonian theory, inputs can add or remove
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energy in the system. Hence, the total energy is no longer
conserved.

3. IDENTIFICATION APPROACH

In this section, at first the considered system class and
the details of the proposed model structure are discussed.
Later, a brief overview of the classical HNN identification
is provided and the proposed OE-HNN framework is
introduced.

3.1 Considered system class

We consider systems that obey the Hamiltonian dynamics
(1)-(3) and that can be represented in terms of continuous-
time state-space equations as

x(t) = f(x(t),u(t))
y(t) = Cx(t) + v(b),

where x(t) = (q(t),p(t))" € R is the state at time
moment t € R and f describes the evolution of x, i.e.,
the dynamics of the system. The output measurements
y(t) € R™ are contaminated by v(¢) € R™, a zero-mean
ii.d. (white) noise with finite variance ¥, € R™ x R™.
Here we consider C =1.

(4)

It is assumed that sampled measurements of the system
are obtained with rate T;. Hence, a data set of the
measurements with xg as the initial state is available:

Dy = {(y(kT3), u(kT3)) 1y

Since we need to integrate over time, the inter-sample
behaviour of u(t) needs to be known. In this regard,
the Zero-Order Hold (ZOH) assumption for the imposed
inputs is necessary (i.e. u(kTs + ) = u(kTy),Va € [0,T5))
(Pintelon and Schoukens, 2012).

3.2 Model structure

In order to model the dynamics of the considered systems,
an output-error model structure is chosen. A schematic
description of the system and model structure is illustrated
in Figure 1. Since the generalized Hamiltonian theory (3)
is capable of fully representing dynamics of the above
mentioned system class, one can define the parameterized
model of the state dynamics, fy, as,

3H9
fol(0), u(t) = 35
Cx(1),

01
-10p
the Hamiltonian of the system, considered to be a function
parameterized with parameter vector 6.

x(t)
y(®)

where J =

(t) + Gu(t) 5)

G =1[01]", and C = I Here, Hy is

3.8 Identification of classical HNN

Greydanus et al. (2019) proposed to learn the Hamilto-
nian, as an energy-like scalar value in an unsupervised
manner. They formulated H as an artificial neural network
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Fig. 1. Schematic description of the system and the pro-
posed OE-HNN model structure.

(ANN), denoted as Hy, and trained it by minimizing the
loss function given below:

; (6)

HBHg

Lyny = ‘

where || - ||2 stands for the ¢5 norm of signals. In this way,
the conservation law (1) is embedded in the trained ANN.
The identified H fully defines a continuous-time motion
model of the system, which can be calculated directly.
However, as stated in (6), in order to train the HNNs,
noiseless measurements of the position and momentum
states are needed to obtain unbiased estimates using (6)
and state derivatives are needed to be known as well.

8.4 Identification of OE-HNN

In most engineering systems, only noisy measurements of
the position and momenta (states) are available. In order
to surpass this issue, a proper treatment of the noise during
the model estimation is required. To this end, the popular
prediction error framework (Ljung, 1999) can be used. In
this paper, we consider an output error noise setting during
the identification of HNN models, resulting in the OE-
HNN model structure. This corresponds of the presence
of measurement noise on the states x(t) = (q(t),p(t))"
associated with the system under consideration.

Minimizing the prediction error in an OE setting results
in minimizing the simulation error. Hence, similar to Chen
et al. (2020) and Lee et al. (2021), an ODE solver is
integrated in the HNN learning method. As illustrated in
Figure 2, at each time step, the outputs of the HNN, the
simulated state derivatives, are fed into the ODE-solver to
predict the state in the next time step.

On top of that, unlike classical HNNs, the proposed ap-
proach is generalized to systems with inputs. The simula-
tion loss function for the proposed OE-HNN approach is
given by:
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Fig. 2. Output-Error Hamiltonian Neural Network.

N—-1 1
min Y — [y (kT:) = y(kT)]
= (7)

st k(1) = Jaai? (t) + Gu(t)
y = Cx(t).

To obtain the simulated model output, y(kTs), one can
use an ODE-solver to solve (5) for a given initial state as

x((k+ 1)T3) =

ODE-solve (%,f{(kﬂ), u(kTy), Ts). ®)
The ultimate goal of minimizing the loss function is to
train the neural notwork which represents the parameter-
ized Hamiltonian Hy. This is depicted schematically in
Figure 2. During training of the neural network, deriva-
tives of the output of the neural network with respect to
inputs are calculated via automatic differentiation. The
derivatives of the Hamiltonian with respect to states and
inputs are applied in (3) to calculate state time derivatives,
which are fed into an ODE-solver to predict the states at
the next time step. This procedure is repeated for the full
length of the data trajectory starting from a known initial
state. Here, the simulated outputs of the trajectory are
compared to the output measurements (7) in order to train
the model.

4. SIMULATION STUDY
4.1 Data-generating system

In order to illustrate performance of the proposed OE-
HNN approach, data-driven modelling of a Duffing-type
oscillator, depicted in Figure 3, is studied. Typically, these
oscillators are used in passive vibration absorbers. In the
oscillator, ¢ is the position of the mass, and the momenta
is defined by p = mq where m is the mass of the oscillator.
The dynamic behaviour of the oscillator with a cubic
nonlinear spring is expressed as

mi + kq — kg’ = u, (9)
where k is the stiffness of the spring and w is the imposed
force. In this study, it is assumed that k = m = 1.

4.2 Data-set and training

To gather data, a multisine input is applied to the system.
Multisines provide the user full control over the applied
power spectrum (Pintelon and Schoukens, 2012). The
input force u is defined as
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Fig. 3. Schematic representation of a Duffing-type oscilla-
tor.

0 2 4 6 8 10
t(s)

(a) Multisine input force

t(s)

(b) Various realizations of the input force

Fig. 4. Input force of the oscillator.

k=20

w= Z sin (27k fot + ¢x,),

k=1

(10)

where fo = 0.1 and the phase components ¢, are randomly
chosen between [0, 27). The input force is designed to fully
capture the behaviour of the considered oscillator. Figure
4a depicts a realization of the multisine input force.

In order to generate the data-set, (9) is numerically solved
for 25 different realizations of the input (Figure 4b) with
random initial states. The calculated states for each input
are considered to be measured under an additive indepen-
dent white noise of variance ¥, = 0.1. Each trajectory
contains 500 samples which are sampled from ¢ € [5,10)s
with the sampling rate, Ty = 0.01. The response trajec-
tories together with their inputs are collected into the
data-set {(yg,ur)}_, = Dy for each realization. The
training, validation and test data-sets consist of 15, 5, and
5 series of trajectories and input, respectively. The position
trajectories of the training data-set are plotted in Figure
5.

A fully connected neural network with one hidden layer,
200 nodes and tanh activation function is used to formulate
Hy in the considered OE-HNN model. At each time step,
the outputs of the neural network are fed into a fourth-
order Runge-Kutta solver to predict the state at the next
time step. The model is trained with a learning rate of
1073 using the Adam optimizer method (Kingma and Ba,
2015).
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(b) measured momenta
Fig. 5. Measured state trajectories in the training data-set.

4.3 Results

In order to assess the capability of the proposed OE-
HNN approach to capture the behaviour of the oscillator,
the simulated output response of the estimated OE-HNN
model are compared on the test data set. Figures 6a and
6b show the resulting simulated position and momenta,
respectively. By comparing the simulated states to the
sampled states, it is evident that the OE-HNN can ac-
curately model the behaviour of the oscillator.

A multilayer perceptron (MLP), fully connected feed for-
ward neural network with ¢, p, u as inputs and ¢, p as out-
puts, and regular HNN model with the same architecture
for Hy as the OE-HNN are also used for modeling the
oscillator in order to compare performance of the OE-HNN
estimator to other methods. Unlike the OE-HNN, MLP
and HNN methods need both states and state derivatives
for training. Since the classical HNN does not take input
into consideration, we had to slightly modify the loss
function (6) to impose the input:

OHy
- —4q| +

Ip 2 2
The same considerations are also taken into account during
training of the MLP.

Lyxy = (11)

LHG +p—Gu
dq

In Table 1, the root mean square error (RMSE) of the sim-
ulated position and momenta responses of the estimated
models are cross compared. Based on the results, the
proposed OE-HNN outperforms the MLP and the HNN.
Note that the OE-HNN accumulates only a small error
during simulation thanks to the Hamiltonian structure
and the simulation error based objective function, which
strongly penalizes the accumulation of errors over time.
While the OE-HNN approach produces more accurate
results, the training process requires more computation
time. The same reasoning also applies to both the HNN
and MLP approaches in which the MLP is trained faster.
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Fig. 6. Test results of the OE-HNN on the first realization
of the test-set.

Table 1: RMSE of the simulated model responses for the
nonlinear oscillator identification problem.

Method q P
MLP 0.071 0.135
HNN 0.048 0.084

OE-HNN 0.025 0.047

4.4 Connected nonlinear oscillators

In order to evaluate the generalizability of the proposed
method to higher degrees of freedom, we also consider
data-driven modelling of connected spring-mass systems,
illustrated in Figure 7. For the sake of simplicity, it is
assumed that m; = mo = 0.5, and k; = ko = 1. The same
input force as in Section 4.2 is imposed to the second mass.
Here the measured states are contaminated with a white
noise of variance Y, = 0.05. For two connected oscillators,
the considered state is defined as x = [¢1 g2 p1 pg]T

The simulated response of the resulting model in com-
parison to the measured positions of the two masses are
depicted in Figure 8. Based on the results, the obtained
OE-HNN model can successfully capture the behaviour of
two connected oscillators. With the same approach one can
generalize the proposed method for systems with higher
degrees of freedom.

Table 2 compares the accuracy of three ANNSs for identify-
ing the behaviour of two connected oscillators. According
to Table 2, the HNN and MLP are outperformed by the
OE-HNN in terms of accuracy on the test data set.

Table 2: RMSE of the simulated model responses for the
connected two mass spring systems based identification
problem.

Method q1 go D1 D2
MLP 0.113 0.120 0.219 0.256
HNN 0.061 0.068 0.143 0.174

OE-HNN 0.028 0.035 0.074 0.088
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Fig. 7. Schematic illustration of the connected two mass-
spring systems.
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(b) Simulated model response vs measured momenta of the second
mass (g2)

Fig. 8. Test results of the estimated OE-HNN model
for two connected nonlinear oscillators on the first
realization of the test-set.

5. CONCLUSION

In this paper, an OE-HNN approach is introduced to
address the identification of physical systems subjected
to the inputs and noisy state measurements. The OE-
HNN method incorporates an output-error model struc-
ture which enables it to handle the noisy measurements
properly by focusing the estimation on minimizing the
simulation error instead of the prediction error in case of
HNNs. To minimize the simulation error, an ODE-solver is
implemented within the training step, which also enables
to train the OE-HNN without the need for knowing the
noiseless state time derivatives as is the case for the clas-
sical HNNs. In addition, by using the generalized Hamil-
tonian theory to formulate the OE-HNN, the approach is
capable of modeling systems with inputs. The performance
of the proposed OE-HNN is evaluated on a Duffing-type
oscillator subject to multisine inputs. Based on the results,
it is evident that the OE-HNN can successfully identify the
oscillator given noisy state measurements. In addition, the
generalizability of the proposed approach to systems with
larger degrees of freedom is shown via a two mass-spring
system example.
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