
Received 7 November 2023, accepted 4 December 2023, date of publication 13 December 2023,
date of current version 22 December 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3342749

Toward a Quantum-Science Gateway: A Hybrid
Reference Architecture Facilitating Quantum
Computing Capabilities for Cloud Utilization
ATTILA CSABA MAROSI 1, ATTILA FARKAS 1,2, TAMÁS MÁRAY 1, AND RÓBERT LOVAS 1,3
1Laboratory of Parallel and Distributed Systems, Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN),
H-1111 Budapest, Hungary
2Doctoral School of Applied Informatics and Applied Mathematics, Óbuda University, H-1034 Budapest, Hungary
3Institute for Cyber-Physical Systems, John von Neumann Faculty of Informatics, Óbuda University, H-1034 Budapest, Hungary

Corresponding author: Attila Csaba Marosi (attila.marosi@sztaki.hun-ren.hu)

This work was supported in part by the European Union within the framework of the Artificial Intelligence National Laboratory under
Project RRF-2.3.1-21-2022-00004, in part by the Ministry of Innovation and Technology National Research, Development and Innovation
Office (NRDI) Office through the ‘Research on Cooperative Production and Logistics Systems to Support a Competitive and Sustainable
Economy’ under Grant TKP2021-NKTA-01 NRDIO, and in part by Hungarian Scientific Research Fund (‘‘Országos Tudományos Kutatási
Alapprogramok’’) under Grant K 132838. The work of Róbert Lovas was supported in part by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences; and in part by the UNKP-22-5 New National Excellence Program of the Ministry for Innovation and
Technology, funded by the National Research, Development and Innovation Fund (Bolyai+).

ABSTRACT The emerging availability of quantum compute resources fosters the examination of its
exploitation possibilities in different scientific domains, like artificial intelligence, manufacturing or finance.
A significant number of research scientists primarily rely on cloud computing infrastructures while
conducting research, whereas access to real (mostly remote) quantum hardware resources requires the
deployment and proper configuration of different software components. In this paper we present a hybrid,
cloud-based reference architecture that lowers the entry barrier to start new experiments with a wide range
of quantum compute resources. The solution facilitates the execution of distributed quantum computing
simulations in traditional cloud environments, and also access to several remote quantum compute resources.
The reference architecture is highly portable to various cloud platforms, resulting in efficient adaptation
and application possibilities by research communities. The paper describes our related experiences using
commercial cloud providers and on the federated, OpenStack-based research infrastructure of the Hungarian
Research Network (abbreviated as HUN-REN).

INDEX TERMS Cloud computing, quantum computing, reference architecture, simulation, science gateway.

I. INTRODUCTION
As near-term quantum computers are becoming widely
available for end users as well [2], [3], [4], [5], [6], there is
an obvious requirement to simplify their usage for interested
researchers as much as possible by lowering the entry
barrier. Quantum computing resources are still complicated
to use with their user interfaces, algorithms and applications
are far from being at the level of abstraction where they
can be easily used by researchers from other fields than
quantum experts. Usually accessing these resources requires

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .

the deployment of various development frameworks, which
contain all the necessary tools [7], [8]. This might be a
straightforward process, however with the increasing number
of such frameworks, the task of interested researchers also
increases: the installation and configuration documentation
of the different frameworks must be examined carefully, and
also, the deployment steps must be performed in some sort
of environment, which can be either the local machine of
the user, a cloud-based virtual machine service, or a bare
metal service. Additionally, once the development framework
is installed, further tools or environments are needed through
which the functionalities of the selected quantum framework
can be examined.

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 143913

https://orcid.org/0000-0001-9105-6816
https://orcid.org/0000-0003-0579-3516
https://orcid.org/0009-0007-8032-939X
https://orcid.org/0000-0001-9409-2855
https://orcid.org/0000-0002-3685-3879

A. C. Marosi et al.: Toward a Quantum-Science Gateway

There is therefore a clear gap between quantum computing
as a tool and its potential real users. This is a barrier to
the uptake of quantum computing and also a setback for the
development of quantum computing as a technology, since as
long as the number of users and the real application results
are still limited, the development of the technology cannot
proceed at a faster pace.

Our goal is to build a gateway that significantly lowers
the barrier to entry for scientists wishing to learn and
apply quantum computing by making quantum resources,
algorithms and applications more easily and simply available,
starting from a known environment. In general, science
gateways are web-based platforms that provide researchers
with user-friendly access to computational resources, data,
and scientific tools. They streamline complex processes,
promote collaboration, and democratize access to computing
resources, facilitating scientific research, and accelerating
discoveries.

In this paper we present a hybrid reference architecture
for bringing quantum computation closer to the research
communities as the targeted end users. It incorporates
major quantum software development kits (SDKs), including
support for machine learning, and access to different quantum
devices. We also provide a set of examples and present
preliminary benchmark results. These can serve as practical
guides for constructing solutions to other (predefined)
problems. Beyond these, our reference architecture aims to
deliver a user-friendly interface for researchers.

The structure of the paper is as follows: in Section II
we present relevant fields of cloud computing, quantum
resources, and we introduce the reference architecture con-
cept. In Section III, we present the our reference architecture
in detail. Following that, in section IV we examine different
deployment options of our reference architecture using
diverse hosting environments. In Section V we discuss future
improvement plans, and finally, Section VI presents the
paper’s conclusions.

II. STATE OF THE ART
Accessing quantum computing resources via the consump-
tion models introduced by commercial clouds provide a
feasible solution for making quantum computing widely
accessible [9]. Thus, Quantum Cloud Computing (QCC) or
Quantum Computing as a Service (QCaaS) [10] enables
running tasks without the need of owning and operating
physical hardware [11], [12]. Furthermore, applying the best
practices and the existing knowledge encapsulated in cloud
reference architectures could allow the creation of new best-
of-breed solutions that harness the power of both cloud and
quantum computing. Quantum computing, cloud computing
and reference architectures are all rapidly evolving fields with
wide range of research literature available. However, to keep
related works focused, in this section we are investigating
them only in three narrow categories with close connection
to our work. First, we discuss (i) reference architectures in
general. Next, we focus on (ii) how they are utilized in cloud

computing. Finally, we discuss (iii) quantum resources in
terms of available cloud-enabled offerings to be incorporated
into a reference architecture. We note here, that we relate the
presented related work concepts to our solution in Section III.

A. REFERENCE ARCHITECTURES AND CLOUD
COMPUTING
Architecture blueprints in software architectures allow the
reuse of existing knowledge and best practices when creating
new solutions. There are different definitions proposed,
e.g., [13], [14], [15], and [16] with the main ideas of
(i) promoting re-usability, (ii) incorporating best practices,
(iii) using high or low abstraction levels, and (iv) serving cer-
tain use cases. In general high abstraction level architectures
typically contain approaches and system design principles,
but lack concrete implementation references. Contrary, low-
level architectures focus on the implementation details,
in cloud computing typically using platform and software
based services of a particular cloud provider. These type
of services are referred as Platform-as-a-Service (PaaS) and
Software-as-a-Service (SaaS) services, respectively. Addi-
tionally, such blueprints can utilize open-source software
components as well.

The concept of reference architectures [17], [18], [19]
enables that a well-tested, proven architecture can be
published for reproducing some required functionality. It
allows architects to compose a service stack of cooperating
entities in away that the verified composition can be deployed
by other users easily, without the need to configure the entities
of the stack, or to deploy the entities individually.

To understand reference architectures in cloud computing
we need to introduce the two dimensions on which cloud
services are offered [20]: (i) service and (ii) deployment
models.

The NIST definition for Cloud Computing [20] defines
three service models for cloud computing. These service
models are layered using a top-down view as follows:
(i) in Software as a Service (SaaS) applications (e.g., web-
based email) are provided to the user and managed by the
provider on its infrastructure; (ii) Platform as a Service
(PaaS) provides the capability to deploy applications and
services on to the cloud without the need for the consumer
to provision and manage the hosting resources; and finally
(iii) Infrastructure as a Service (IaaS) provides the capability
for the consumer to provision compute, storage, network, etc.
resources without the responsibility for the underlying cloud
infrastructure.

Additionally, The NIST Definition for Cloud Comput-
ing [20] defines four deployment models for cloud comput-
ing, where the first three characterise the accessibility and
the fourth targets the composition of the cloud. First, (a) in a
private cloud the infrastructure is provisioned for the use by a
single organisation (that may be hosting different consumers,
such as business units or departments). Private cloud
resources are mostly implemented using an open-source
cloud software, like OpenStack [21] or OpenNebula [22];

143914 VOLUME 11, 2023

A. C. Marosi et al.: Toward a Quantum-Science Gateway

(b) public clouds are publicly accessible and infrastructure
is provisioned for open use following typically a pay-as-
you-go or a subscription model. Most well-known public
cloud providers are Amazon Web Services [23], Microsoft
Azure [24], [25], Google Cloud Platform [26] and IBM
Cloud [27]; (c) community clouds are provisioned for the
exclusive use by a larger but targeted community of users
typically with a shared purpose and are a blend of public
and private clouds; and (d) in hybrid clouds the infrastructure
is composed of two or more distinct cloud infrastructures
(public, private or community).

Public cloud providers offer diverse set of reference
architectures. These are all low-level architectures aimed
at commercializing their cloud-based services. For example
Microsoft Azure currently offers 118 architecture blueprints
for data analytics [28], and AWS offers 64 reference archi-
tectures for big data and data analytics [29]. On the contrary,
the ‘‘Industrial Internet Reference Architecture’’ [30] and
‘‘Reference Architectural Model Industry 4.0’’ [31] represent
the joint effort of several organizations and companies,
however, they are high-level concepts.

HUN-REN Cloud [1] in Hungary is a federated,
community cloud of the Hungarian Research Network
(HUN-REN) that offers low-level reference architectures
utilizing open source components to the science communi-
ties. The goal of HUN-REN Cloud is supporting Hungarian
scientists with elastic, virtualized computing resources. The
low-level reference architectures offered by HUN-REN
Cloud include amongst others blueprints for Horovod [32],
Apache Spark [33], Jupyter development environments, and
Kubernetes. For example the researchers can use these
reference architectures to easily set up a Kubernetes cluster
in HUN-REN Cloud, without the need to know the details of
deployment or internal specifics. The reference architectures
always come with documentation on deployment and usage.
They are utilizing open source orchestration tools (such as
Terraform [34]) and configuration management tools (such
as Ansible [35]) for deployment.
This science cloud provides a combined 5904 vCPUs,

with 28TB RAM, 1248TB HDD and 338TB SSD storage.
It also offers a total of 68 GPUs with 2400GB RAM, and
584TFlops double precision, 1174TFlops single precision
and 13768TFlops FP16 Tensor performance. The presented
platform is deployed in the site of the Institute of Computer
Science and Control (abbreviated as SZTAKI) of the feder-
ated cloud. This site contains (among others) 10 compute
nodes, each with 2x Intel Xeon Gold 6230R 26-Core
CPUs and 768GB of RAM. Additionally, there are 6 HDD
and 6 SSD storage nodes, each with 192TB and 92TB of
raw storage, respectively. The cloud is based on OpenStack
Wallaby, and the storage backend is built using Ceph
Pacific. All virtual machines have 10Gbps networking by
default, with optional configuration settings for 30-35Gbps.
HUN-REN Cloud is connected to the Hungarian academic
backbone with 100Gbs network.

B. QUANTUM RESOURCES
The purpose of the works presented is the emerging
availability of quantum compute resources. Just like cloud
systems, quantum resources can also be divided into different
categories, based on for example the type of computingmodel
supported, the technology used to implement qubits, or the
availability of the resources.

In [36] an overview of quantum computing literature is
provided, accompanied by the introduction of a taxonomy
for quantum computing. This taxonomy is employed to
categorize and analyze numerous related studies and to
highlight research areas for further investigation. The authors
present the current state-of-the-art in quantum computing
through an exploration of quantum software tools and
technologies, post-quantum cryptography, and advancements
in quantum computer hardware development. Additionally,
the article discusses various open challenges for future
research in quantum computing.

Next, we focus on discussing the offerings of hardware
providers following the two main quantum computing
models: the quantum annealing model [37], [38], and the
quantum circuit model [39], [40], [41]. A summary of the
quantum resources discussed in the following paragraphs
can be found in Table 1 and Table 2. Similarly, a summary
of the SDKs and environments discussed in the following
paragraphs can be found in Table 3. Additionally, an in-
depth discussion and comparison of quantum programming
languages can be found in [42].
The quantum annealing model is an optimization-oriented

approach, that can be used to find minimum values for an
objective function representing a problem. Thus, in case of
the annealing model, the user must formulate the problem as
an objective function, where the minimum value of the objec-
tive function represents the best solution for the problem. The
task of the quantum hardware is to map the properly defined
function into a physical system, run the system following the
rules of quantum mechanics, and take samples of the system.

There is basically one major company offering quantum
computers following the quantum annealing model: D-Wave
Systems. They have a number of quantum processing unit
(QPU) generations, with number of qubits ranging from
2000 up to 7000 [43]. The problems to be solved by
the D-Wave hardware must be represented as an objective
function, in some sort of quadratic model. D-Wave QPUs
support binary, discrete and constrained quadratic models.
The areas of applications supported by the D-Wave systems
ranges from simple optimization problems up to machine
learning applications.

The big advantage of D-Wave systems is that they do
not only offer access to their QPUs, but also provide a
hybrid system, called Leap, in order to ease the solving
of more complex problems, using hybrid computation of
classical and quantum resources as well. Access to D-Wave
resources is available after registration for a one-month
evaluation period, under given quota restrictions: the amount

VOLUME 11, 2023 143915

A. C. Marosi et al.: Toward a Quantum-Science Gateway

of QPU and hybrid execution time is limited. The one-month
period can be extended, given that an open-source project is
provided.

The development framework of applications for D-Wave
resources is called Ocean SDK [44]. This is a Python-based
SDK, offering a very diverse set of functionalities for defining
problems for the D-Wave hardware. It also provides solvers
and samplers for processing the defined problems locally,
on a QPU, or in the cloud infrastructure of Leap, using both
QPUs and classical resources in a hybrid manner. Besides the
Ocean SDK, third-party IDEs are generally supported both
locally and cloud-based. The IDEs have to implement the
described Development Containers specification. D-Wave
recommends GitHub Codespaces or local IDE like VS Code.
This support replaces the previously available Leap IDE.

On the other hand, the quantum circuit model is closer
to the classical computation: it offers a set of quantum
gates [41] for performing operations on qubits, but in contrary
to classical systems, where a bit can have values 0 and 1,
a qubit can have the values |0⟩, |1⟩, or any other state in the
superposition of these.

The vast majority of quantum hardware providers imple-
ment the quantum circuit model with Superconducting
architecture, for example, Google Quantum AI [45] IBM
Quantum [46], IQM [47], OxfordQuantumCircuits [48],
and Rigetti [49], [50]. Some providers use a Trapped ion
architecture like AQT [51], IonQ [4] and Quantinuum [52].
Lastly, other hardware providers use an Analog quantum
approach with Neutral atoms architecture, like Pasqal [53]
and QuEra [54], [55]. The summary of these providers
with their latest QPU capability and supported SDKs is
presented in Table 1. Access to the hardware of these
providers is possible either directly, or using a public cloud
provider offering third-party quantum computation services,
like Amazon Braket [56].
Amazon Braket [56] works as proxy provider for accessing

QPU devices of IonQ, Rigetti or Oxford Quantum Circuits,
among others. Development is available with the help of
the Amazon Braket SDK. Amazon Web Services (AWS)
also provides an interactive development environment similar
to IBM Quantum Labs through its managed SageMaker
notebook service [57]. AWS has a number of simulators
available, with different properties, and different pricing as
well. Usage of the simulators is free in the free tier for a given
amount of time, any other usage is billed against the user.
Usage of QPU devices is also billed.

Azure Quantum provides a service similar to Amazon
Braket: it offers access to QPU devices through a public cloud
provider interface. The set of hardware providers includes
IonQ, Rigetti and Pasqal among others. Resources offered by
Azure Quantum can be accessed from Cirq, Qiskit, and the
Azure Quantum Development Kit. The latter one also offers
the high-level Q# programming language, for developing
quantum programs.

Google doesn’t offer its QPU devices publicly avail-
able [45] but provides the Cirq [58] framework for

creating quantum circuits. However, access to other hardware
providers (like IonQ, Rigetti, Pasqal and Azure Quantum) is
available through plugins.

IBM offers a complete solution for quantum computation
[59], [60]. They not only offer the Qiskit SDK [61] for
creating quantum circuits, but also provide cloud-based
simulator services, and access to QPU devices. The IBM
Quantum ecosystem also provides a graphical tool for
designing circuits, called IBM Quantum Composer [62].
Additionally, IBM Quantum Platform offers an interactive
development environment for creating Python applications
using the functionalities of Qiskit [63]. Registered users have
access to 5 and 7-qubit QPUs free of charge for 10minutes per
month besides the cloud-based simulators. Following the pay-
as-you-go scheme, access to 27 qubit devices is also possible.
More recent QPUs, offering 127 qubits are available after
negotiation.

‘‘Bare metal’’ quantum hardware providers, like IonQ or
Rigetti usually provide their own entry point to gain access to
their resources offered. They also may provide a custom SDK
for developing applications for their hardware but mostly
tend to make their resources available through public cloud
providers as well (like Amazon Braket or Azure Quantum).
The summary of the Quantum Cloud providers with the
supported QPCs, SDKs and Free Tiers plans are summarised
in Table 2.
Important new opportunities for researchers wishing to

use quantum computers will soon be opened up with the
addition of 6 new quantum computers to EuroHPC’s research
oriented supercomputing infrastructure. The EuroHPC JU
(European High Performance Computing Joint Undertaking)
has 34 participating countries and the EU represented by
the European Commission. Currently there are 7 operational
TOP500 grade EuroHPC supercomputers (Vega, Karolina,
Discoverer, Meluxina, LUMI, Leonardo, Deucalion) with
3 systems underway (MareNostrum, Jupiter, Daedalus) and
more to come. Lumi is ranked third and Leonardo fourth in
the TOP500 (June 2022). Jupiter will be the first European
exascale supercomputer and will be installed in Germany.
This powerful infrastructure will soon be complemented
by six new quantum computers with different architectures,
opening up new opportunities for a wide range of researchers.
These system will not only be integrated with traditional
supercomputers, but according to EuroHPC the resources will
be made globally available to the users by all possible means
including cloud based access, for which different research
and innovation initiatives are needed.

In summary, we can observe approaches at both higher
and lower levels for providing access to quantum computing
resources. At the higher level, abstract methods such as
iQuantum [10] aim to offer a system model for hybrid
quantum computing environments, including brokering.
However, these high level approaches typically focus on
simulation and modeling. In contrast, at the lower level,
there are numerous vendor-specific quantum computing
libraries andmeta-libraries (e.g., Qiskit, Amazon Braket [56],

143916 VOLUME 11, 2023

A. C. Marosi et al.: Toward a Quantum-Science Gateway

TABLE 1. Quantum resources: quantum processing unit providers.

TABLE 2. Quantum resources: cloud service providers.

Cirq, PennyLane) that strive to provide a unified interface
for accessing various quantum hardware and/or service
providers. Nevertheless, these support only a subset of
providers and resources, with a limited range of predefined
use cases. Our reference architecture seeks to provide a
middle ground. It incorporates major quantum software
development kits (SDKs) and frameworks, such as those
provided by IBM [46], D-Wave [43], IonQ [4], [5], and
quantum devices available through Amazon Braket [56] (e.g.,
IonQ or Rigetti [49], [50] QPU devices). The architecture also
contains frameworks enabling experiments with quantum
resources in the field of machine learning: Qiskit Machine
Learning [61] and PennyLane. We also provide a set of
examples and present preliminary benchmark results; these
can serve as practical guides for constructing solutions to
other (predefined) problems. On top of these, our reference
architecture aims to provide a user-friendly interface for
researchers. Furthermore, by relying on existing reference
architectures, such as those for Kubernetes or Apache
Spark, our solution encompasses the best practices from
these reference architectures and is cloud vendor-agnostic
as well.

III. REFERENCE ARCHITECTURE DESIGN
In this section the design of the quantum reference architec-
ture is presented. The discussion includes the requirements
based on which the work was started, the components that
have been selected to participate in the reference architecture,
and the implementation as well.

The motivation for the development of the reference
architecture was the increasing availability of quantum
computing resources. As it was presented in the previous
section, a number of QPU device implementations are
currently available for experimenting with. Thus, it was
natural to investigate if they could be useful for scientific
domains represented by the users of HUN-REN Cloud.

We started to experiment with D-Wave resources, as one
could easily gain access to its most recent resources, free
of charge within a given resource usage quota. It turned out
that the Ocean SDK offered by D-Wave is relatively easy to
use, and there were a number of examples already provided,
proving the usability of their quantum devices in a number of
application areas. Based on the provided examples, we have
selected a few and started to examine them in detail, based on
which we have created some examples on our own as well.

VOLUME 11, 2023 143917

A. C. Marosi et al.: Toward a Quantum-Science Gateway

TABLE 3. Quantum computing tooling: SDKs and environments.

Our aim was to make the results publicly available for
the researchers of HUN-REN Cloud, in a form enabling
them to start experimenting with quantum resources quickly.
We set up multiple requirements: (i) the published solution
should include every component necessary to start developing
quantum applications quickly; (ii) it should include a
number of examples demonstrating the usability of quantum
resources; and finally, (iii) it should be easily extensible with
support for additional quantum resources.

A. SELECTED COMPONENTS
Based on the requirements defined, it is deemed natural
that the target reference architecture should have a graphical
gateway and development environment. In general, science
gateways are web-based platforms that provide researchers
with user-friendly access to computational resources, data,
and scientific tools. In our case there are multiple candidates
that fit this role: self-hosted solutions such as Visual Studio
Code, JupyterLab or Apache Zeppelin or cloud-based ones
such as Google Colab. We selected JupyterLab for the role
of the gateway, as it is a de facto standard among scientists,
its notebook functionality has an extensive feature set, is easy

to deploy in varying environments, integrates very well with
different tools (like Matplotlib), and it does not require
external services.

Additionally, we wanted to include examples presenting
the usability of quantum computers through solving some
‘‘real-life’’ problems. For this, we have selected the clustering
problem demonstration of D-Wave. This problem can be
solved with the help of Apache Spark as well, in its
machine learning library through the K-mean algorithm.
The aim of this demonstration is that we can show that
such a problem can be solved with Apache Spark, but with
quantum resources as well. In order to host this example,
the reference architecture should include an Apache Spark
cluster as well. For this we extended the existing Apache
Spark reference architecture [33] provided by HUN-REN
Cloud.

Besides serving as an alternate platform for the examples,
Apache Spark also allows the exploitation of multiple nodes
for computation. If the application execution could benefit
from the usage of quantum resources, then with the help of
quantum libraries deployed onto Spark worker nodes, this
option also becomes available.

143918 VOLUME 11, 2023

A. C. Marosi et al.: Toward a Quantum-Science Gateway

FIGURE 1. The Quantum - Science Gateway Hybrid Reference Architecture running on HUN-REN Cloud (components
provided by the cloud are marked with yellow) utilizing the (i) Kubernetes Reference Architecture [64] (related
components marked with blue grid); and extending the (ii) Apache Spark Reference Architecture [33] (related components
marked with green stripes).

B. REFERENCE ARCHITECTURE IMPLEMENTATION
The reference architecture is software container based with
the option to deploy the components on the hosts directly
if needed. In order to speed up deployment, and provide
portability, we recommend an orchestrated deployment of
the reference architecture either via Docker Compose or
Kubernetes. The following images are used to deploy
the reference architecture: (1) the Science Gateway image
containing JupyterLab, SDKs and examples; (2) the Apache
SparkMaster image; and (3) on or more instance of the image
for the Apache Spark worker. The high-level component
structure of the reference architecture is presented in Figure 2.

FIGURE 2. Component structure of the quantum reference architecture.

The Science Gateway component acts as the entry point
for the users, thus, must include all the quantum computing
SDKs pre-deployed, and also the ready-to-use examples.
In order to build the image, we have selected Docker. With
Docker, it is necessary to have a base image, which is used as
a starting point for creating the component’s final image. For
JupyterLab, there are multiple base selection possibilities:

1) a small base image, for example a minimal Debian
image. In this case it is necessary to deploy all
the additional components (like JupyterLab, Spark
libraries)

2) a specific base image, containing a set of prerequisites
already deployed (like JupyterLab itself, or Java for
Spark)

The base of the image selected was the OpenJDK Docker
image (openjdk:8-jdk-slim), as Java is required to run
the examples using Apache Spark. ADockerfile describes the
deployment steps of the image, these include the followings:
installation of Python packages, installation of JupyterLab,
installation of quantum SDKs, the deployment of example
notebooks, and the deployment of the startup script. The
task of the startup script is to create the default Jupyter
configuration, set the password (based on an environment
variable), and to start JupyterLab.

The component includes the following quantum SDKs:
D-Wave’s Ocean SDK, Amazon Braket SDK, Cirq and Qiskit
SDK.Additionally, application-specific quantum libraries are
also deployed: Qiskit Machine Learning, Qiskit Runtime, and
PennyLane. These can be used to demonstrate the usability of
quantum resources in machine learning applications.

Additionally, Spark Python packages are also deployed,
allowing the execution of examples using the Apache Spark
cluster. Two node types are used to build the Apache Spark
cluster. a master node, and a worker node type, where there
is one master node instance, but there can be multiple worker
node instances. Similarly to the Gateway component, Docker
was selected to build the container images. Also, the base
Docker image is OpenJDK, as Java is required for Spark.
Two Dockerfiles describe the master and the worker nodes.
Both of these include the same instructions to deploy Apache
Spark, however the way the containers start are different: the
master runs the Spark Master class, while workers run the
Spark Worker class. Beside Spark dependencies, all Spark
nodes have the same set of quantum SDKs deployed as the
JupyterLab component. As mentioned earlier, this allows
the exploitation of quantum resources from applications run
through Apache Spark.

VOLUME 11, 2023 143919

A. C. Marosi et al.: Toward a Quantum-Science Gateway

C. COMPONENT COMPOSITION
At this point the container images representing the different
components are ready, and in the next step they must be
orchestrated. There are multiple options for orchestration,
e.g., Docker (via Docker Compose or Swarm), Kubernetes,
or virtual machines (via Terraform). Docker itself is a
basic tool for bringing up individual containers, however
requires additional work to bring up multiple containers
which can communicate with each other. Docker Compose
is an easy to use tool for bringing up composition of
multiple containers, offering replication as well. It also
allows the users to deploy the service stack onto a Docker
Swarm cluster. Alternatively, Kubernetes is a widespread
tool for managing large-scale service stacks containing
multiple container instances, however it requires notable
resources to deploy, and extensive operation knowledge.
Finally, Terraform is a versatile orchestration tool supporting
various cloud providers, and its services.

Based on the above, and the ease of the tools’ usability,
we decided to offer a Docker Compose and Kubernetes
based deployment method for the users and Terraform
can be used for provisioning virtual machines. In general,
Docker Compose act as a ‘‘Swiss Army knife’’: users
can easily start up the reference architecture in a Docker-
capable environment, like a standalone Docker Engine
deployment, a Docker Swarm cluster or on Kubernetes with
Kompose [65].

Multiple deployment options are provided for the reference
architecture: a base one, and a full one. The base deployment
includes only the JupyterLab component, and this is the
default one. In this case users do not have the possibility
to run examples using Apache Spark, but can use all the
other examples using quantum resources. On the other hand,
the full deployment contains the Spark Master node, and a
configurable number of Spark Worker nodes, allowing users
to run all the provided examples.

D. AVAILABILITY OF THE REFERENCE ARCHITECTURE
The developed reference architecture is available through the
HUN-REN Cloud portal [66], and has its own Git reposi-
tory [67], hosted on a GitLab deployment. This repository
includes all the necessary code to reproduce the components’
images. Additionally, the CI/CD functionality of GitLab is
used to build and publish new versions of the images when
the code is updated. The Git repository also contains a short
documentation on how to deploy the reference architecture
in the HUN-REN Cloud. Furthermore, a Wiki page [68]
is continuously maintained with documentation on how to
get access to the different quantum hardware providers’
resources.

IV. DEPLOYMENT AND USABILITY EXPERIENCES
In this section the deployment possibilities of the reference
architecture in various environments are examined, and the
deployment’s usability is also evaluated.

The reference architecture supports both single node
and orchestrated deployments. For single node deployment
Docker Compose is recommended. However, the reference
architecture can be directly deployment on any host or VM as
well. Further, single-node Kubernetes deployment using e.g.,
Minikube, is also possible. For orchestrated or multi-node
deployments Kubernetes is recommended tool. Either an
existing Kubernetes cluster, including hosted services such as
Azure Kubernetes Service can be used, or a new cluster can
be deployed via the Kubernetes Reference Architecture [64]
by HUN-REN Cloud (see Figure 1). The latter deployment is
detailed on Figure 1. For legacy reasons Docker Swarm [69]
based deployment is also supported.

The deployment of the reference architecture was per-
formed in the following environments: a user’s local machine
(for example, a laptop), the HUN-REN Cloud and Amazon
Web Services. The deployment options are described in the
following parts.

A. LOCAL DEPLOYMENT
In this scenario the user is using its own machine for
deploying the reference architecture. The assumption in this
scenario is that the user is using a recent Linux operating
system, with Docker Engine and Docker Compose deployed.
The steps to start the reference architecture in this case are as
follows:

1) the user must clone the Git repository of the reference
architecture; and

2) the user must start the requested version (either the base
one using the default compose file, or the complete one
using the full compose file).

This simple deployment method starts only the gateway
component (JupyterLab), and the interface is accessible via
HTTP on port 8888/TCP using the password defined in the
docker-compose.yml file.

FIGURE 3. The Gateway (JupyterLab) of the reference architecture
running in HUN-REN Cloud.

B. CLOUD-BASED DEPLOYMENTS
As the reference architecture aims at offering a quick-start
package for experimenting with quantum resources for
HUN-REN Cloud users, it is natural to check the deployment
of the reference architecture in HUN-REN Cloud. This cloud

143920 VOLUME 11, 2023

A. C. Marosi et al.: Toward a Quantum-Science Gateway

offers Ubuntu 22.04 images for the users, which already has
a Docker Engine and Docker Compose pre-deployed. On the
top of this image, HUN-REN Cloud offers a Kubernetes
reference [64] architecture (see Figure 1), which can be used
to deploy the Quantum reference architecture in a distributed
environment.

The extended Spark Reference Architecture uses the
Standalone cluster manager type [70], regardless of the
deployment mode (Docker single host, Docker multi-host or
Kubernetes) to provide the same behavior on all deployments.

The user can follow the detailed documentation to deploy
the Kubernetes cluster on HUN-REN Cloud. After the
deployment they can easily deploy, the Quantum reference
architecture on the top of the Kubernetes cluster with the
help of the provided docker-compose.yml file and the
Kompose tool or with the Kubernetes deployment files.
After the deployment the Kuberetes master node will have a
Floating IP, and the user can access the JupyterLab interface
through that using the 8888 port. The examples are usable
from this deployment as well, as shown in Figure 3.

Finally, we have validated the deployment of the reference
architecture in Amazon Web Services. There are multiple
deployment possibilities, such as creating a task in Amazon
Elastic Container Service (ECS), using Docker Compose
with a properly configured ECS context, using a hosted
Kubernetes solution or just deploying in virtual machines.
For testing, we selected the first method, as through the
AWS console a container can be started up within a few
minutes. Care must be taken when configuring networking:
for the test using a public IP address and a security group
configured to allow incoming traffic to TCP port 8888 was
set up. Figure 4 shows the gateway accessible via the public
IP address running the example notebook demonstrating the
Deutsch-Jozsa algorithm [71].

FIGURE 4. The gateway (JupyterLab) of the reference architecture running
in Amazon Web services.

C. USABILITY EXPERIENCES
Finally, the usability of a deployment of the reference
architecture was tested. In this scenario the connection to the
following quantum resources and usability of the mentioned
frameworks was tested: IBM Quantum with Qiskit, Amazon
Braket (using IonQ) and D-Wave (with the Vertex Cover
problem example).

TABLE 4. Measurements of the Deutsch-Jozsa circuit using the IonQ [4]
QPU through Amazon braket.

For testing IBM Quantum access, a prepared Qiskit
example in the reference architecture was used, the
03-Execution notebook. This example prepares a quan-
tum circuit with 4 qubits, applies Hadamard gates to each
of them, and finally takes measurements. As all of the
qubits are in the equal superposition state, the measurements
should return random numbers in the range of 0, . . . , 15. The
example runs the circuit using the local aer_simulator,
the cloud-based simulator_stabilizer, and finally,
a real QPU device, ibm_oslo. In every case, the circuit
was run using multiple shots. We could see that the example
was properly executed, however the queuing time for the
executions using QPU device were around 10 minutes.

Testing Amazon Braket also did rely on one of the exam-
ples, namely the 04-Deutsch-Jozsa notebook. This
example demonstrates the Deutsch-Jozsa algorithm’s [71]
usage with a balanced function, operating on 3 qubits. The
circuit has a total of 4 qubits, the fourth one being the result
of the function. According the Deutsch-Jozsa algorithm, for
a balanced function we should measure all input parameter
bits as 1. When using the local simulator in the example,
two values were measured: 1110 and 1111, which matches
our expectations: the first three bits are always 1. However,
when using a real QPU device, the IonQ provided by Amazon
Braket, based on 100 shots additional values were also
measured. Table 4 shows the number of occurrences for the
different measurements. In contrary to the ideal case, we can
see some invalid results as well, this is the consequence of the
erroneous property of current QPU devices, which should be
handled following some error mitigation methods [72], [73].

The final test scenario covers the usability and some bench-
marking tests of the D-Wave resources, through the minimum
vertex cover problem example, examining the processing
time required to determine the minimum vertex cover of
Erdős-Rényi graphs with increasing number of nodes. The
example uses the local (CPU-based) ExactSolver and
the QPU-backed DWaveSampler to get solutions for the
problem. As the last step, the example presents a diagram
of the processing times required using the different devices.
An example result is shown for 10..35 nodes in Figure 5. As it
can be seen, when local resource is used, the processing time
grows exponentially as the node number increases. While
using the QPU devices requires basically constant time.

V. FUTURE WORK
The development of the reference architecture is an important
step in the process of creating a quantum-science gateway to
make quantum computing much easier and more accessible
for researchers who want to use this very advanced tool
in their own research. Considering that both quantum

VOLUME 11, 2023 143921

A. C. Marosi et al.: Toward a Quantum-Science Gateway

FIGURE 5. CPU and QPU processing times for the vertex cover problem.

hardware and quantum algorithms and applications are novel,
rapidly evolving, experimental fields and that in many cases
different implementations support the tasks with different
efficiencies, it is important that prospective users can easily
test and compare the possibilities. The reference architecture
described above enables this by providing a free, single,
open and portable environment from which many different
quantum hardware and simulators can be accessed in a similar
way.

FIGURE 6. QPU access possibilities in the hybrid reference architecture.

The reference architecture is flexible enough to be
deployed in various environments: in local environments,
in community clouds such as HUN-REN Cloud, or at public
cloud providers like Amazon Web Services. A modular
software container-based approach and the utilization of
standardized orchestration methods make this possible.

Additionally, multi-user support is also considered in
the form of using JupyterHub as the gateway. Currently,
the JupyterLab component allows a single-user mode, thus
multiple deployments of the reference architecture are
required to serve multiple users. However, with JupyterHub,

multiple users could exploit the possibilities of the quantum
reference architecture by using a single deployment. Having
a multi-user gateway is not enough, as the backend services
(e.g., Apache Spark) must be multi-user aware, for example
a batch scheduler such as Hadoop Yarn or the native
Kubernetes scheduler must be configured for them.

Finally, as the application possibilities of quantum
resources increases through the improvement of the different
frameworks, we are also continuously maintaining the SDKs
and frameworks integrated in the reference architecture.

VI. CONCLUSION
In this paper we presented a novel approach for providing
access to a diverse set of real quantum resources. Our hybrid
reference architecture incorporates major quantum software
development kits (SDKs) and frameworks, such as those
provided by IBM, D-Wave, IonQ, and quantum devices
available through Amazon Braket (e.g., IonQ or Rigetti QPU
devices). The architecture also contain frameworks enabling
experiments with quantum resources in the field of machine
learning: Qiskit Machine Learning and PennyLane. The
content of the architecture is visually summarized in Figures
1, 2 and 6. We also provide a set of examples and present
preliminary benchmark results, these can serve as practical
guides for constructing solutions to other (predefined)
problems. On top of these, our reference architecture aims
to provide an user-friendly interface for researchers.

We hope these combined will democratize access to
quantum computing resources, and thus promote scientific
collaboration.

ACKNOWLEDGMENT
The authors would like to express their sincere gratitude to
Zoltán Farkas and Miklós Kozlovszky for their invaluable
comments and feedback shaping this study. On behalf
of the ‘‘Quantum Reference Architecture’’ project we are
grateful for the possibility to use HUN-REN Cloud (see [1];
https://science-cloud.hu/) which helped us achieve the results
published in this paper.

REFERENCES
[1] M. Héder, E. Rigó, D.Medgyesi, R. Lovas, S. Tenczer, F. Török, A. Farkas,

M. Emodi, J. Kadlecsik, Á. Pintér, and P. Kacsuk, ‘‘The past, present and
future of the ELKH cloud,’’ Információs Társadalom, vol. 22, no. 2, p. 128,
Aug. 2022.

[2] P. I. Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolkacheva, F. Altomare,
A. J. Berkley, R. Harris, J. P. Hilton, T. Lanting, A. J. Przybysz, and
J. Whittaker, ‘‘Architectural considerations in the design of a supercon-
ducting quantum annealing processor,’’ IEEE Trans. Appl. Supercond.,
vol. 24, no. 4, pp. 1–10, Aug. 2014.

[3] K. Boothby, C. Enderud, T. Lanting, R. Molavi, N. Tsai, M. H. Volkmann,
F. Altomare, M. H. Amin, M. Babcock, A. J. Berkley, and C. B. Aznar,
‘‘Architectural considerations in the design of a third-generation supercon-
ducting quantum annealing processor,’’ 2021, arXiv:2108.02322.

[4] S. Debnath, N. M. Linke, C. Figgatt, K. A. Landsman, K. Wright,
and C. Monroe, ‘‘Demonstration of a small programmable quantum
computer with atomic qubits,’’ Nature, vol. 536, no. 7614, pp. 63–66,
Aug. 2016.

[5] J. M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N. C. Pisenti,
M. Chmielewski, and C. Collins, ‘‘Benchmarking an 11-qubit quantum
computer,’’ Nature Commun., vol. 10, no. 1, p. 5464, 2019.

143922 VOLUME 11, 2023

A. C. Marosi et al.: Toward a Quantum-Science Gateway

[6] Y. Alexeev, D. Bacon, K. R. Brown, R. Calderbank, L. D. Carr, F. T. Chong,
B. DeMarco, D. Englund, E. Farhi, B. Fefferman, and A. V. Gorshkov,
‘‘Quantum computer systems for scientific discovery,’’ PRX Quantum,
vol. 2, no. 1, Feb. 2021, Art. no. 017001.

[7] V. Hassija, V. Chamola, V. Saxena, V. Chanana, P. Parashari, S. Mumtaz,
and M. Guizani, ‘‘Present landscape of quantum computing,’’ IET
Quantum Commun., vol. 1, no. 2, pp. 42–48, Dec. 2020.

[8] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and
C. Weedbrook, ‘‘Strawberry fields: A software platform for photonic
quantum computing,’’ Quantum, vol. 3, p. 129, Mar. 2019.

[9] S. J. Devitt, ‘‘Performing quantum computing experiments in the
cloud,’’ Phys. Rev. A, Gen. Phys., vol. 94, no. 3, Sep. 2016,
Art. no. 032329.

[10] H. T. Nguyen, M. Usman, and R. Buyya, ‘‘IQuantum: A case for
modeling and simulation of quantum computing environments,’’ 2023,
arXiv:2303.15729.

[11] F. Leymann, J. Barzen, M. Falkenthal, D. Vietz, B. Weder, and
K. Wild, ‘‘Quantum in the cloud: Application potentials and research
opportunities,’’ 2020, arXiv:2003.06256.

[12] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, ‘‘A quantum engineer’s guide to superconducting qubits,’’
Appl. Phys. Rev., vol. 6, no. 2, Jun. 2019, Art. no. 021318.

[13] What is a Reference Architecture—Enterprise it Definitions. Accessed:
Jul. 23, 2023. [Online]. Available: https://www.hpe.com/us/en/what-
is/reference-architecture.html

[14] P. Pääkkönen and D. Pakkala, ‘‘Reference architecture and classification of
technologies, products and services for big data systems,’’ Big Data Res.,
vol. 2, no. 4, pp. 166–186, Dec. 2015.

[15] Microsoft Azure Documentation—Reference Architectures. Accessed:
Jul. 23, 2023. [Online]. Available: https://docs.microsoft.com/en-
us/azure/architecture/browse/

[16] The TOGAF Standard, Version 9.2 Overview. Accessed: Feb. 12, 2022.
[Online]. Available: https://www.opengroup.org/togaf

[17] R. Cloutier, G. Müller, D. Verma, R. Nilchiani, E. Hole, and M. Bone,
‘‘The concept of reference architectures,’’ Syst. Eng., vol. 13, no. 1,
pp. 14–27, Mar. 2010.

[18] M. Weyrich and C. Ebert, ‘‘Reference architectures for the
Internet of Things,’’ IEEE Softw., vol. 33, no. 1, pp. 112–116,
Jan. 2016.

[19] A. C. Marosi, M. Emodi, Á. Hajnal, R. Lovas, T. Kiss, V. Poser,
J. Antony, S. Bergweiler, H. Hamzeh, J. Deslauriers, and J. Kovács,
‘‘Interoperable data analytics reference architectures empowering digital-
twin-aided manufacturing,’’ Future Internet, vol. 14, no. 4, p. 114,
Apr. 2022.

[20] P. Mell and T. Grance, ‘‘The NIST definition of cloud computing,’’
Special Publication (NIST SP), Nat. Inst. Standards Technol.,
Gaithersburg, MD, USA, Sep. 2011. [Online]. Available:
https://doi.org/10.6028/NIST.SP.800-145

[21] O. Sefraoui, M. Aissaoui, and M. Eleuldj, ‘‘OpenStack: Toward an
open-source solution for cloud computing,’’ Int. J. Comput. Appl., vol. 55,
no. 3, pp. 38–42, Oct. 2012.

[22] D. Milojicic, I. M. Llorente, and R. S. Montero, ‘‘OpenNebula: A cloud
management tool,’’ IEEE Internet Comput., vol. 15, no. 2, pp. 11–14,
Mar. 2011.

[23] S. Mathew and J. Varia, ‘‘Overview of Amazon web services,’’ Amazon
Whitepapers, vol. 105, pp. 1–22, Jan. 2014.

[24] R. Jennings, Cloud Computing With the Windows Azure Platform.
Hoboken, NJ, USA: Wiley, 2010.

[25] M. Copeland, J. Soh, A. Puca, M. Manning, D. Gollob, M. Copeland,
J. Soh, A. Puca, M. Manning, and D. Gollob, ‘‘Microsoft Azure and
cloud computing,’’ inMicrosoft Azure. Berkeley, CA, USA: Apress, 2015,
pp. 3–26.

[26] E. Bisong, ‘‘An overview of Google cloud platform services,’’ in Building
Machine Learning and Deep Learning Models on Google Cloud Platform.
Berkeley, CA, USA: Apress, 2019, pp. 7–10.

[27] A. Kochut, Y. Deng, M. R. Head, J. Munson, A. Sailer, H. Shaikh, C. Tang,
A. Amies, M. Beaton, D. Geiss, and D. Herman, ‘‘Evolution of the IBM
cloud: Enabling an enterprise cloud services ecosystem,’’ IBM J. Res.
Develop., vol. 55, no. 6, pp. 1–13, Nov. 2011.

[28] Microsoft Azure Documentation—Reference Architectures for Data
Analytics. Accessed: Aug. 8, 2023. [Online]. Available: https://learn.
microsoft.com/en-us/azure/architecture/browse/?azure%20categories=
analytics&azure_categories=analytics

[29] Aws Architecture Center—Architecture Best Practices for Analytics & Big
Data. Accessed: Aug. 8, 2023. [Online]. Available: https://aws.amazon.
com/architecture/analytics-big-data/?cards-all.sort-by=item.additionalFie
lds.sortDate&cards-all.sort-order=desc&awsf.content-type=content-type
%23reference-arch-diagram&awsf.methodology=∗all

[30] S.-W. Lin, B. Murphy, E. Clauer, U. Loewen, R. Neubert, G. Bachmann,
M. Pai, and M. Hankel, ‘‘Architecture alignment and interoperability:
An industrial internet consortium and platform industrie 4.0 joint whitepa-
per,’’ White Paper, Industrial Internet Consortium, Boston, MA, USA,
Tech. Rep. IIC:WHT:IN3:V1.0:PB:20171205, 2017. [Online]. Available:
https://www.iiconsortium.org/pdf/JTG2_Whitepaper_final_20171205.pdf

[31] K. Schweichhart. (2016). Reference Architectural Model Industrie 4.0
(RAMI 4.0). [Online]. Available: https://www.plattform-i40.deI

[32] A. Farkas, K. Póra, S. Szénási, G. Kertész, and R. Lovas, ‘‘Evaluation of a
distributed deep learning framework as a reference architecture for a cloud
environment,’’ in Proc. IEEE 10th Jubilee Int. Conf. Comput. Cybern.
Cyber-Medical Syst. (ICCC), Jul. 2022, pp. 83–88.

[33] E. Nagy, R. Lovas, I. Pintye, Á. Hajnal, and P. Kacsuk, ‘‘Cloud-agnostic
architectures for machine learning based on apache spark,’’ Adv. Eng.
Softw., vol. 159, Sep. 2021, Art. no. 103029.

[34] Terraform by Hashicorp: Terraform is an Open-Source Infrastructure as
Code Software Tool That Enables You to Safely and Predictably Create,
Change, and Improve Infrastructure. Accessed: Mar. 22, 2022. [Online].
Available: https://www.terraform.io

[35] Ansible is Simple it Automation. Accessed: Mar. 22, 2022. [Online].
Available: https://www.ansible.com

[36] S. S. Gill, A. Kumar, H. Singh, M. Singh, K. Kaur, M. Usman, and
R. Buyya, ‘‘Quantum computing: A taxonomy, systematic review and
future directions,’’ Softw., Pract. Exper., vol. 52, no. 1, pp. 66–114,
Jan. 2022.

[37] S. Morita and H. Nishimori, ‘‘Mathematical foundation of quantum
annealing,’’ J. Math. Phys., vol. 49, no. 12, Dec. 2008, Art. no. 125210.

[38] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori, and W. D. Oliver,
‘‘Perspectives of quantum annealing:Methods and implementations,’’Rep.
Prog. Phys., vol. 83, no. 5, May 2020, Art. no. 054401.

[39] A. C.-C. Yao, ‘‘Quantum circuit complexity,’’ in Proc. IEEE 34th Annu.
Found. Comput. Sci., Feb. 1993, pp. 352–361.

[40] M. Benedetti, E. Lloyd, S. Sack, and M. Fiorentini, ‘‘Parameterized
quantum circuits as machine learning models,’’ Quantum Sci. Technol.,
vol. 4, no. 4, Nov. 2019, Art. no. 043001.

[41] D. P. DiVincenzo, ‘‘Quantum gates and circuits,’’ Proc. Roy. Soc. London
A, Math., Phys. Eng. Sci., vol. 454, no. 1969, pp. 261–276, 1998.

[42] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller,
M. Troyer, and K. Svore, ‘‘Quantum programming languages,’’ Nature
Rev. Phys., vol. 2, no. 12, pp. 709–722, 2020.

[43] D. Willsch, M. Willsch, C. D. Gonzalez Calaza, F. Jin, H. De Raedt,
M. Svensson, and K. Michielsen, ‘‘Benchmarking advantage and D-wave
2000Q quantum annealers with exact cover problems,’’ Quantum Inf.
Process., vol. 21, no. 4, p. 141, Apr. 2022.

[44] D-Wave Ocean SDK. Accessed: Oct. 24, 2023. [Online]. Available:
https://docs.ocean.dwavesys.com/

[45] Google Quantum AI. Accessed: Oct. 3, 2023. [Online]. Available:
https://quantumai.google

[46] IBM Quantum Computing. Accessed: Oct. 3, 2023. [Online]. Available:
https://www.ibm.com/quantum, Accessed 2023-10-03.

[47] IQM Superconducting Quantum Computer. Accessed Oct. 24, 2023.
[Online]. Available: https://meetiqm.com/

[48] OxfordQuantumCircuits. Accessed: Oct. 3, 2023. [Online]. Available:
https://oxfordquantumcircuits.com

[49] W. Zeng, B. Johnson, R. Smith, N. Rubin, M. Reagor, C. Ryan, and
C. Rigetti, ‘‘First quantum computers need smart software,’’ Nature,
vol. 549, no. 7671, pp. 149–151, Sep. 2017.

[50] J. Olivares-Sánchez, J. Casanova, E. Solano, and L. Lamata,
‘‘Measurement-based adaptation protocol with quantum reinforcement
learning in a Rigetti quantum computer,’’ Quantum Rep., vol. 2, no. 2,
pp. 293–304, May 2020.

[51] AQT Ion Trap Quantum Computer. Accessed: Oct. 24, 2023. [Online].
Available: https://www.aqt.eu/

[52] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses,
M. S. Allman, C. H. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer,
C. Ryan-Anderson, and B. Neyenhuis, ‘‘Demonstration of the trapped-ion
quantum CCD computer architecture,’’ Nature, vol. 592, no. 7853,
pp. 209–213, Apr. 2021.

VOLUME 11, 2023 143923

A. C. Marosi et al.: Toward a Quantum-Science Gateway

[53] PASQAL Neutral Atoms Quantum Computers. Accessed: Oct. 24, 2023.
[Online]. Available: https://www.pasqal.com//

[54] QuEra Neutral Atoms Quantum Computers. Accessed: Oct. 24, 2023.
[Online]. Available: https://www.quera.com///

[55] J. Wurtz, A. Bylinskii, B. Braverman, J. Amato-Grill, S. H. Cantu,
F. Huber, A. Lukin, F. Liu, P. Weinberg, J. Long, and S.-T. Wang,
‘‘Aquila: Quera’s 256-qubit neutral-atom quantum computer,’’ 2023,
arXiv:2306.11727.

[56] Quantum Cloud Service—Quantum Computing Service—Amazon
Braket—AWS. Accessed: Oct. 5, 2023. [Online]. Available:
https://aws.amazon.com/braket/

[57] Aws: Create an Amazon Braket Notebook Instance. Accessed: Nov. 1,
2023. [Online]. Available: https://docs.aws.amazon.com/braket/latest/
developerguide/braket-get-started-create-notebook.html

[58] Google Quantum AI: Cirq. Accessed: Oct. 31, 2023. [Online]. Available:
https://quantumai.google/cirq

[59] M. Steffen, D. P. DiVincenzo, J. M. Chow, T. N. Theis, and M. B. Ketchen,
‘‘Quantum computing: An IBM perspective,’’ IBM J. Res. Develop.,
vol. 55, no. 5, pp. 1–11, Sep. 2011.

[60] D. García-Martín and G. Sierra, ‘‘Five experimental tests on the
5-Qubit IBM quantum computer,’’ J. Appl. Math. Phys., vol. 6, no. 7,
pp. 1460–1475, 2018.

[61] A. Cross, ‘‘The IBM Q experience and QISKit open-source quantum
computing software,’’ in Proc. APS March Meeting Abstr., 2018, p. 58.

[62] IBM Quantum Composer. Accessed: Oct. 3, 2023. [Online]. Available:
https://quantum-computing.ibm.com/composer/

[63] IBM Quantum Learning Lab. Accessed: Oct. 3, 2023. [Online]. Available:
https://lab.quantum-computing.ibm.com/

[64] Kuberentes Reference Architecture. Accessed: Oct. 3, 2023. [Online].
Available: https://science-cloud.hu/en/reference-architectures/kubernetes-
cluster

[65] Kompose. Accessed: Oct. 3, 2023. [Online]. Available: https://kompose.io/
[66] Quantum Reference Architecture. Accessed: Feb. 27, 2023. [Online].

Available: https://science-cloud.hu/en/reference-architectures/quantum
[67] Quantum Reference Architecture, Git repository. Accessed: Feb. 27,

2023. [Online]. Available: https://git.sztaki.hu/science-cloud/reference-
architectures/quantum

[68] Quantum Reference Architecture, Wiki Page. Accessed: Feb. 27,
2023. [Online]. Available: https://git.sztaki.hu/science-cloud/reference-
architectures/quantum/-/wikis/home

[69] Docker: Swarm Mode Overview. Accessed: Oct. 31, 2023. [Online].
Available: https://docs.docker.com/engine/swarm/

[70] Apache Spark: Cluster Mode Overview. Accessed: Oct. 30, 2022. [Online].
Available: https://spark.apache.org/docs/latest/cluster-overview.html

[71] D. Deutsch and R. Jozsa, ‘‘Rapid solution of problems by quantum
computation,’’ Proc. Roy. Soc. London A, Math. Phys. Sci., vol. 439,
no. 1907, pp. 553–558, Dec. 1992.

[72] M. Scheerer, J. Klamroth, and O. Denninger, ‘‘Fault-tolerant hybrid
quantum software systems,’’ in Proc. IEEE Int. Conf. Quantum Softw.
(QSW), Jul. 2022, pp. 52–57.

[73] J. D. Guimarães and C. Tavares, ‘‘Towards a layered architecture for error
mitigation in quantum computation,’’ in Proc. IEEE Int. Conf. Quantum
Softw. (QSW), Jul. 2022, pp. 41–51.

ATTILA CSABA MAROSI received the M.Sc.
and Ph.D. degrees from the Budapest Uni-
versity of Technology and Economics. He is
currently a Research Fellow with the Lab-
oratory of Parallel and Distributed Systems
(LPDS), Institute for Computer Science and
Control (SZTAKI), Hungarian Research Network
(HUN-REN). He has more than 20 years of
research and development experience, involving
both industry and academia that encompasses a

wide range of distributed and parallel systems. His research interests include
large-scale time-series data collection and inference. His latest research
achievements in the fields of big data and cloud computing contribute to
the research on Cooperative Production and Logistics Systems to Support
a Competitive and Sustainable Economy (COPROLOGS) Project and the
National Laboratory for Autonomous Systems (NLAS).

ATTILA FARKAS received the B.Sc. and M.Sc.
degrees in computer science engineering from
the John von Neumann Faculty of Informat-
ics, Óbuda University. He is currently pursuing
the Ph.D. degree in distributed deep learning.
He is a Research Associate with the Lab-
oratory of Parallel and Distributed Systems
(LPDS), Institute for Computer Science and
Control (SZTAKI), Hungarian Research Network
(HUN-REN). He has been involved in COLA and

NEANIAS European H2020 projects. His research interests include parallel
computing, clouds, container technologies, and machine learning.

TAMÁS MÁRAY received the M.Sc. and Ph.D.
degrees from the Budapest University of Technol-
ogy and Economics. He is currently a Research
Fellow with the Laboratory of Parallel and
Distributed Systems (LPDS), Institute for Com-
puter Science and Control (SZTAKI), Hungarian
Research Network (HUN-REN). For more than
ten years, he was a Professor with the Budapest
University of Technology and Economics, and
for 16 years he was the Technical Director of

the NIIF Institute, which developed and operated the Hungarian Research
and Education Network (NREN). He set up Hungary’s first web server,
in 1993 and played a key role in the development and spread of the
Internet and its applications in Hungary. Under professional guidance, the
first TOP500 grade supercomputer was implemented in Hungary, in 2001.
He led the development and operation of the Hungarian national HPC
infrastructure for two decades. The Hungarian HPC Competence Centre
(HPC@hu)was established under leadership. He is a delegate in international
HPC professional organizations. His research interests include software
architectures for parallel systems, supercomputers, and quantum computers,
networking technologies and protocols, and software design methodologies.

RÓBERT LOVAS received the Ph.D. degree
in informatics from the Budapest University
of Technology and Economics. He is currently
the Deputy Director of the Institute for Com-
puter Science and Control (SZTAKI), Hungarian
Research Network (HUN-REN). He is also a
Habilitated Associate Professor and the Founder
of the Institute for Cyber-Physical Systems with
the John von Neumann Faculty of Informatics,
Óbuda University. His research and development

experience in a wide range of application fields of distributed and
parallel systems has been gained in various global, EU, and national
collaborations with academic organizations, universities, and enterprises,
focusing on computational chemistry, numerical meteorological modeling,
bioinformatics, agriculture, connected cars, and Industry 4.0. He has been
coordinating EU FP7/H2020/Horizon Europe projects and the HUN-REN
Cloud Research Infrastructure. His latest cloud, big data, the IoT, and
AI-related research achievements contribute to the recently launched
Artificial Intelligence National Laboratory and the National Laboratory for
Autonomous Systems. He is a member of the Committee on Information
Science, Hungarian Academy of Sciences. Recently, he has been elected as
an Executive Board Member of EGI.

143924 VOLUME 11, 2023

