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Abstract: This paper presents a control design framework for the integration of robust control
and reinforcement learning-based (RL) control agent. The proposed integration method is
applied for motion control of autonomous road vehicles, providing safe motion. In the integrated
motion control, longitudinal and lateral dynamics are incorporated. The high-performance
motion of the vehicle, e.g., high-velocity motion, path following, and reduction of lateral
acceleration, through the RL-based control agent is achieved. The training through Proximal
Policy Optimization during episodes is performed. Safe motion with guaranteed performances,
i.e., keeping limits on lateral error, through the robust control and the supervisor is achieved.
The robust control is designed through the H∞ method, and in the supervisor, a constrained
quadratic programming task is performed. As a result, lateral and longitudinal control inputs
of the vehicle are calculated by the integrated control system. The effectiveness of the proposed
control method using simulation scenarios and test scenarios on a small-scaled test vehicle is
illustrated.
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1. INTRODUCTION AND MOTIVATION

Nowadays, due to the appearance of fast hardware tools
for solving learning problems, data-based methods are
becoming more popular and efficient in the solution of
complex control problems. One of the typical examples is
autonomous vehicle control, in which sensing, perception,
decision, and control problems must be solved in contin-
uously varying traffic environments. Various performance
specifications can be defined concerning autonomous ve-
hicle control systems. Usually, there are primary perfor-
mance specifications, which due to safety reasons must
be kept, such as guaranteeing stable vehicle motion, and
reliability, or keeping different traffic regulations. More-
over, several further non-safety performance requirements
can be defined, which have lower priority, e.g., providing
passenger comfort, achieving economic motion, minimiza-
tion of traveling times, etc. Lots of performance criteria
together with the complex vehicle environment lead to
challenging problems for robust and optimal control design
methods.

The limitations of classical and modern learning-based
have led to developing integrated methods, in which clas-
sical model-based control techniques and learning-based
approaches are incorporated simultaneously. The integra-
� The research was supported by the European Union within the
framework of the National Laboratory for Autonomous Systems
(RRF-2.3.1-21-2022-00002). The paper was partially funded by the
National Research, Development and Innovation Office (NKFIH)
under OTKA Grant Agreement No. K 135512.

tion aims to combine these two solutions to achieve the
high performance of learning-based methods, and also the
robustness and reliability of classical techniques (Németh
and Gáspár (2021)). The integration on various levels of
autonomous vehicle control can be achieved. Advanced
vehicle modeling frameworks have been developed, which
involve data processing on the step of model formulation,
e.g., through closed-loop matching (Pedro et al. (2018);
Hegedűs et al. (2021)). Focusing on the step of control
design, it has been provided design frameworks, in which
classical and learning-based control solutions jointly have
been involved, e.g., robust (Varga et al. (2022)) and LPV
control with neural networks (Németh and Gáspár (2021)),
or Bao and Velni (2022) has proposed a safe model-based
reinforcement learning approach to control LPV systems.
Furthermore, data can be incorporated in the coordinated
control design of multiple unmanned vehicles, i.e., on the
step of coordination Kumaravel et al. (2022); Németh et al.
(2022). The benefits of data-aided control on this level
are reduced energy consumption or transportation network
load Sun et al. (2020); Han et al. (2022).

The goal of this paper is to present an integrated vehicle
control strategy with which longitudinal and lateral con-
trols are designed. For achieving high-performance motion
of the vehicle, reinforcement learning (RL) is used. For
guaranteeing safe motion, robust control based on the H∞
method and a supervisor based on quadratic programming
are used. As a result, both the lateral and the longitudinal
control inputs of the vehicle are calculated by the control
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Attila Lelkó, Balázs Németh, Dániel Fényes, Péter Gáspár

Institute for Computer Science and Control (SZTAKI), Eötvös Loránd Research
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system. Although some preliminary results in the paper
(Németh (2021)) can be found, three main new contribu-
tions have been achieved. First, in this paper the training
of learning-based and design of model-based controllers are
independent. Second, in this paper two dynamics, such as
longitudinal and lateral in the control system are handled.
Third, the effectiveness of the integrated control through
simulations and demonstrations on small-scaled indoor
test vehicles is presented.

The paper is organized as follows. The concept of the inte-
grated control, together with the applied control-oriented
vehicle model is found in Section 2. The reinforcement-
learning-based control design is found in Section 3, and
Section 4 presents details on robust control design. Op-
eration principles of the supervisor can be found in 5.
The effectiveness of the proposed control system through
simulations and demonstrations in Section 6 is presented.
Finally, the work is summarized and the future challenges
are proposed in 7.

2. OVERVIEW ON THE CONCEPT OF
INTEGRATED CONTROL DESIGN

In this paper, the design of the control system is based on
the following concept of integration. The structure of the
control loop with its control and supervisor elements can
be seen in Figure 1. During the control design, the RL-
based control agent and the robust controller are designed
independently, and both control elements use measured
signals on the system independently and provide candidate
control inputs for the supervisor. The supervisor calculates
the control input based on the candidate control inputs
(Németh and Gáspár (2021)).

Controlled system

Robust control

RL-based
control agent

Supervisor

Fig. 1. Scheme of the integrated control concept

The relationships behind the concept in the case of a
single-input system are shown below. Nevertheless, in the
application of the method for the autonomous vehicle
control problem, it is extended for multiple-input cases.
The control input u for the system, i.e., the output of the
supervisor, is formed as follows

u = uR +∆L, (1)

where uR is the output of the robust controller. ∆L is a
peak-bounded signal, which is computed by the supervisor:

∆L ∈ [∆L,min; ∆L,max], (2)

where ∆L,min,∆L,max denote bounds on ∆L.

Behind the rule of selection ∆L, the idea of integration is
found. It is considered that the output of the RL-based

control agent, such as uL, can provide high-performance
operation for the vehicle. Nevertheless, the training of
the RL-based agent is not necessarily able to result in
guarantees on the minimum performance level. Although
the minimization of u − uL can be beneficial, i.e., ∆L =
uL − uR, the resulting uL signal from the viewpoint of
safety performance requirements must be evaluated. This
evaluation leads to a constrained optimization problem,
whose objective is the minimization of ‖u(∆L)− uL‖22,
and the constraints through containment condition (2)
and further vehicle-safety-oriented conditions are formed.
These latter conditions can require additional measure-
ments on the system for the supervisor, see Figure 1. In
this integrated control concept, the robust controller works
as a baseline control: if the candidate uL is close to uR,
then it is considered safe to use as u. But, if the difference is
larger than a predefined value (i.e., out of the bounds), the
supervisor limits the deviation by choosing an appropriate
∆L value.

The proposed integrated control framework has two main
beneficial contributions to the operation of the system.
First, the supervisor through the selection of ∆L provides
guarantees on the minimum performance level on safety
performances, which is equal to the performance level of
the robust controller. Nevertheless, an improved maximum
level of performance can be achieved through the operation
of the RL-based control agent, when candidate uL is
acceptable. Second, limitations on the learning process
(e.g., model structure, measurements, etc.) for achieving
an RL-based control agent are not posed, it is only through
its output is evaluated. Moreover, in the robust control
design, only the bounds of ∆L are involved, as requested
preliminary selections. Further details on the theoretical
background can be found in (Németh and Gáspár (2021)),
and the application of the method in the given autonomous
vehicle control problem in the rest of the paper is detailed.

Vehicle model for integrated control purposes

The design of motion control for autonomous vehicles
requests the formulation of their dynamic models. The
model has high importance in integrated vehicle control
since it is used in the RL training, and the robust control
design and it can be built in the supervisor to form vehicle-
safety-oriented conditions in the constrained optimization
problem. Despite its importance, a complex nonlinear
formulation of the vehicle model is not useful, because
it can lead to slow training process, numerical difficulties
in the robust control design, and finally, slow real-time
running performance in the solution of the supervisory
optimization process. Therefore, it is recommended to
form a simplified dynamical two-wheel (bicycle) motion
model, such as:

mv̇x = Fdrive − bvx +mvyψ̇, (3a)

mv̇y = −C(αF + αR)−mvxψ̇, (3b)

θzψ̈ = −C(αF + αR)
L

2
, (3c)

where Fdrive is the driving force, b is a coefficient of friction
in the longitudinal velocity, C is the cornering stiffness,
αF and αR are tire side-slips at the front and rear tires
respectively, and L is the length of the wheelbase. Tire
side-slip angles and vy lateral velocity can be expressed
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system. Although some preliminary results in the paper
(Németh (2021)) can be found, three main new contribu-
tions have been achieved. First, in this paper the training
of learning-based and design of model-based controllers are
independent. Second, in this paper two dynamics, such as
longitudinal and lateral in the control system are handled.
Third, the effectiveness of the integrated control through
simulations and demonstrations on small-scaled indoor
test vehicles is presented.

The paper is organized as follows. The concept of the inte-
grated control, together with the applied control-oriented
vehicle model is found in Section 2. The reinforcement-
learning-based control design is found in Section 3, and
Section 4 presents details on robust control design. Op-
eration principles of the supervisor can be found in 5.
The effectiveness of the proposed control system through
simulations and demonstrations in Section 6 is presented.
Finally, the work is summarized and the future challenges
are proposed in 7.

2. OVERVIEW ON THE CONCEPT OF
INTEGRATED CONTROL DESIGN

In this paper, the design of the control system is based on
the following concept of integration. The structure of the
control loop with its control and supervisor elements can
be seen in Figure 1. During the control design, the RL-
based control agent and the robust controller are designed
independently, and both control elements use measured
signals on the system independently and provide candidate
control inputs for the supervisor. The supervisor calculates
the control input based on the candidate control inputs
(Németh and Gáspár (2021)).

Controlled system

Robust control

RL-based
control agent

Supervisor

Fig. 1. Scheme of the integrated control concept

The relationships behind the concept in the case of a
single-input system are shown below. Nevertheless, in the
application of the method for the autonomous vehicle
control problem, it is extended for multiple-input cases.
The control input u for the system, i.e., the output of the
supervisor, is formed as follows

u = uR +∆L, (1)

where uR is the output of the robust controller. ∆L is a
peak-bounded signal, which is computed by the supervisor:

∆L ∈ [∆L,min; ∆L,max], (2)

where ∆L,min,∆L,max denote bounds on ∆L.

Behind the rule of selection ∆L, the idea of integration is
found. It is considered that the output of the RL-based

control agent, such as uL, can provide high-performance
operation for the vehicle. Nevertheless, the training of
the RL-based agent is not necessarily able to result in
guarantees on the minimum performance level. Although
the minimization of u − uL can be beneficial, i.e., ∆L =
uL − uR, the resulting uL signal from the viewpoint of
safety performance requirements must be evaluated. This
evaluation leads to a constrained optimization problem,
whose objective is the minimization of ‖u(∆L)− uL‖22,
and the constraints through containment condition (2)
and further vehicle-safety-oriented conditions are formed.
These latter conditions can require additional measure-
ments on the system for the supervisor, see Figure 1. In
this integrated control concept, the robust controller works
as a baseline control: if the candidate uL is close to uR,
then it is considered safe to use as u. But, if the difference is
larger than a predefined value (i.e., out of the bounds), the
supervisor limits the deviation by choosing an appropriate
∆L value.

The proposed integrated control framework has two main
beneficial contributions to the operation of the system.
First, the supervisor through the selection of ∆L provides
guarantees on the minimum performance level on safety
performances, which is equal to the performance level of
the robust controller. Nevertheless, an improved maximum
level of performance can be achieved through the operation
of the RL-based control agent, when candidate uL is
acceptable. Second, limitations on the learning process
(e.g., model structure, measurements, etc.) for achieving
an RL-based control agent are not posed, it is only through
its output is evaluated. Moreover, in the robust control
design, only the bounds of ∆L are involved, as requested
preliminary selections. Further details on the theoretical
background can be found in (Németh and Gáspár (2021)),
and the application of the method in the given autonomous
vehicle control problem in the rest of the paper is detailed.

Vehicle model for integrated control purposes

The design of motion control for autonomous vehicles
requests the formulation of their dynamic models. The
model has high importance in integrated vehicle control
since it is used in the RL training, and the robust control
design and it can be built in the supervisor to form vehicle-
safety-oriented conditions in the constrained optimization
problem. Despite its importance, a complex nonlinear
formulation of the vehicle model is not useful, because
it can lead to slow training process, numerical difficulties
in the robust control design, and finally, slow real-time
running performance in the solution of the supervisory
optimization process. Therefore, it is recommended to
form a simplified dynamical two-wheel (bicycle) motion
model, such as:

mv̇x = Fdrive − bvx +mvyψ̇, (3a)

mv̇y = −C(αF + αR)−mvxψ̇, (3b)

θzψ̈ = −C(αF + αR)
L

2
, (3c)

where Fdrive is the driving force, b is a coefficient of friction
in the longitudinal velocity, C is the cornering stiffness,
αF and αR are tire side-slips at the front and rear tires
respectively, and L is the length of the wheelbase. Tire
side-slip angles and vy lateral velocity can be expressed

as the functions of yaw rate ψ̇, steering angle δ and vx
(Németh (2021)). Relations in (3) can be used within the
environment, resulting in local velocities in the frame of
vehicle reference and the yaw angle ψ. The global velocities
can be calculated as

Vx = vx cosψ − vy sinψ, (4a)

Vy = vx sinψ + vy cosψ, (4b)

which can be used for computing the position of the vehicle
through the integration of Vx, Vy.

3. DESIGN OF RL-BASED AGENT FOR
AUTONOMOUS VEHICLE CONTROL

In this section, the design method of the learning-based
control controller is detailed for handling longitudinal and
lateral dynamics. The lateral and longitudinal controllers
are designed in the form of two separate neural networks
to increase the modularity of the system and to achieve
faster convergence during training, but the networks are
trained in an iterative method.

In the design process of an RL-based agent Proximal
Policy Optimization is used (Schulman et al. (2017)). The
reason behind its selection is its fast training capability,
compared to Trust Region or Policy Gradient methods.
The aim of this method is that for training purposes it
uses a clipped surrogate objective function, which limits
the variation of actions between two steps, i.e., a penalty
for having too large of a policy update is applied. The
training process is performed through simulation episodes,
in which the vehicle must move on given tracks. The tracks
are generated through linear and arc segment primitives
with a predetermined width. During training, if the vehicle
left the track the current scenario is interrupted and a
large punishment through reward functions is applied. The
output of the lateral agent is the steering angle, in the
case of the longitudinal agent, its output is the reference
longitudinal velocity.

The improvement of the performance level by the RL-
based agents can be achieved through reward functions.
At every step of the environment, the reward is calculated,
based on the unique reward functions of the agents. In the
case of the lateral agent, the parametric reward function
is formed as

RLat(s, a) = −Ax2
Lat,err −Bψ2

err −D∆4
δ + f(s, a), (5)

where xLat,err is the lateral path tracking error, ψerr is the
orientation error, ∆δ is the difference between the actual
and previous step steering angles and it is used to limit the
rate of change of the control input, decreasing unwanted
oscillations in the resulting control, A, B and D are the
corresponding weights and

f(s, a) =

{
1 if the next checkpoint is closer than the last

0 otherwise.

The checkpoints are designated points on the centerlines
of the track, and the progression along the track, and
the lateral and orientations error are estimated based
on these points. The driving behavior of the agents is
greatly influenced by the weights of reward functions. The
most typical example is if one chooses weights A and B
large, then the result will be an agent that follows the
center of the track accurately. But, if these weights are

small compared to f(s, a), then faster progress will be
more important and the agent will tend to cut corners
aggressively to reduce lap time. The result of a high D
value is the reduction of steering angle oscillation.

In the case of the longitudinal control agent, the reward
function for the training process is

RLong(s, a) = −Ex2
Lat,err − Fψ2

err −Ga10y + f(s, a), (6)

where ay is used to punish the lateral acceleration to limit
the traction force needed and to increase passenger com-
fort, it is at the 10th power resulting in low punishments
for small acceleration which increases rapidly beyond a
value determined by the corresponding weight. E, F , and
G are design parameters to achieve a balance between the
different terms in the longitudinal reward function. Thus,
the selection of RLong(s, a) expresses that longitudinal
control has a high impact on the lateral motion of the
vehicle, e.g., through the appropriate selection of velocity
profile ay can be limited.

The inputs of the networks consist of measurements on
the track in the neighborhood of the vehicle, which is the
relative position of N number of checkpoints ahead of the
vehicle, and also the actual difference in vehicle heading
and track orientation:

xNN = [Xr,1 Yr,1 Xr,2 Yr,2 . . . Xr,N Yr,N ∆ψ] . (7)

This input vector is used for both control agents. Although
the selection of N for a long horizon can result in high-
efficient efficient control intervention due to the lots of
information on the track, it can overcomplicate the neural
network and consequently, training time is significantly in-
creased. Therefore, N is recommended to select depending
on the characteristics of the track, i.e., the requested min-
imum look-ahead distance, which determined the actual
selection of δ and vx.

The training of the neural networks is performed itera-
tively through the following steps

(1) The lateral agent is initialized and trained in an en-
vironment, where the reference longitudinal velocity
is set to constant until the agent is able to navigate
without leaving the track.

(2) The longitudinal agent is initialized and trained in an
environment, where the lateral control is performed
by the previously trained longitudinal agent, until
RLong(s, a) is converged.

(3) The lateral agent is trained while the longitudinal
control is performed by the longitudinal agent, and
then, the longitudinal agent is trained with the help
of the lateral agent until RLat(s, a) is converged.

(4) Step (3) repeats until the increase of the expected
rewards in the episodes is larger than a threshold
(∆Rmin) in the training scenarios. If there is no
significant increase in the rewards the training stops
and the agents are considered to be trained.

4. DESIGN OF THE ROBUST ELEMENT OF THE
AUTONOMOUS VEHICLE CONTROL SYSTEM

The design of the robust control is based on the method
presented in this section. In the control design, it is
necessary to consider that u may differ from uR, due to the
additional value of ∆L. Therefore, ∆L can be handled as
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an additive input disturbance to uR, and thus, robustness
against ∆L must be guaranteed. The block diagram of the
system in Figure 1 can be restructured to form a simple
control loop with additive input disturbance, see Figure
2. Thus, from the viewpoint of the robust controller, the
supervisor and the reinforcement learning-based control
agent are not considered, only the ∆L.

Controlled system

Robust controller

Fig. 2. Schematic view of the loop for robust control design

In the robust control design process below, the worst-case
scenario is considered, i.e., ∆L in the robust design process
through its bound is involved, see (2). In the design is

assumed that L∆ � |∆L,max| = |∆L,min|, i.e., the measure
of additive input disturbance is symmetric. Since L∆ has
an impact on the robust control design, it influences the
values of ∆L,max,∆L,min in the optimization process of
the supervisor. Choosing L∆ to have a large interval allows
increased differences in the two control signals, resulting
in ∆L = uL − uR often can be selected. Nevertheless, it
results in a more conservative robust controller to provide
robust stability even in case of larger disturbances. But, if
L∆ is tight, u is close to uR, and thus, performance level
increase from the RL-based control agent can be lost.

Computation of safe steering angle

In designing a robust control system, several methods are
available (e.g., H∞ or robust LPV methods), with which
theoretical guarantees against bounded disturbances can
be guaranteed. In the rest of this section a robust H∞
control design method on the lateral dynamics, consider-
ing ∆L is proposed. The design is based on the vehicle
motion model (3)(b),(c), which can be transformed into
the following state-space representation:

ẋ = Ax+B2u = Ax+B2∆L +B2uK , (8)

where A,B2 are matrices of the system, x =
[
ẏ ψ̇

]T
represents state vector and u = δ steering angle.

The primary, i.e., the safety performance of the system
is to guarantee the limitation of the lateral error of the
vehicle from the centerline of the road:

z1 = yref − y; |z1| → min, (9)

where yref is the reference lateral position for the vehicle.
Moreover, the limitation of the steering angle is requested
to avoid the unwanted effect of actuator saturation, which
leads to further performance:

z2 = u = uK +∆L; |z2| → min. (10)

In the design process of the H∞ controller weighting func-
tion for scaling disturbances and for finding balance be-
tween different performances must be applied, see Sename
et al. (2013) and Németh and Gáspár (2021) for details on

selecting weighting functions and the formulation of the
H∞ design problem.

Computation of safe velocity profile angle

The computation of the safe velocity profile, i.e, the actual
reference velocity is determined by the local curvature of
the track. Since the reference path (e.g., centerline) of the
track is a known two-dimensional parametric curve, its
curvature can be calculated as

κ(s) =
|Ċtrack(s)× C̈track(s)|

|Ċtrack(s)|3
, (11)

where s is the parameter of the curve (e.g., the distance
traveled along the centerline). The reference velocity is cal-
culated in a way to limit the required lateral acceleration
of the car for traction reasons:

v2refκ ≤ ay,max, (12)

where ay,max denotes the maximum achievable lateral
acceleration, based on the maximal tire force available. Its
value can be the result of tire characteristics or estimation,
see e.g., (Villagra et al. (2011)). The resulting reference
velocity as a function of s is

vref (s) ≤
√

ay,max

κ(s)
. (13)

In straight sections, the curvature of the track is 0, which
results in infinite reference velocity. Thus, vref must be
limited, especially in case of low curvature values, such as
vref (s) ≤ vmax, where vmax is the maximum velocity limit
on the given road section.

5. DESIGN OF THE SUPERVISOR FOR THE
INTEGRATION OF DIFFERENT CONTROLLERS

The supervisor results in ∆L signal, which is used for
the computation of control input u, see (1). The goal of
the supervisor is to achieve a control signal, which results
in a high-performance level for the vehicle through the
minimization of the following objective:

‖u(∆L)− uL‖22 = ‖uR +∆L − uL‖22 → min, (14)

where ∆L ∈ [∆L,min; ∆L,max] is considered (2), and

∆L = [∆L,Lat ∆L,Long]
T

contains the additional distur-
bance value respect to lateral and longitudinal controls.

Additionally, in the case of the vehicle path tracking con-
trol, the lateral distance from the centerline can be limited
using a model-based prediction layer in the supervisor.
The trajectory of the vehicle can be predicted (3)-(4), see
Németh and Gáspár (2021), which results in the vector of
predicted Ppred,T vehicle positions. The predicted lateral
error can be estimated using the known checkpoints of the
track Ctrack(s):

eLat,T = min
s

‖Ppred,T − Ctrack(s)‖22 . (15)

Thus, the constrained optimization task in the supervisor
is formed through (14),(2), and (15) as

argmin
∆L

‖uR +∆L − uL‖22 (16a)

subject to

∆L ∈ [∆L,min; ∆L,max] (16b)

eLat,T ≤ emax. (16c)
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an additive input disturbance to uR, and thus, robustness
against ∆L must be guaranteed. The block diagram of the
system in Figure 1 can be restructured to form a simple
control loop with additive input disturbance, see Figure
2. Thus, from the viewpoint of the robust controller, the
supervisor and the reinforcement learning-based control
agent are not considered, only the ∆L.

Controlled system

Robust controller

Fig. 2. Schematic view of the loop for robust control design

In the robust control design process below, the worst-case
scenario is considered, i.e., ∆L in the robust design process
through its bound is involved, see (2). In the design is

assumed that L∆ � |∆L,max| = |∆L,min|, i.e., the measure
of additive input disturbance is symmetric. Since L∆ has
an impact on the robust control design, it influences the
values of ∆L,max,∆L,min in the optimization process of
the supervisor. Choosing L∆ to have a large interval allows
increased differences in the two control signals, resulting
in ∆L = uL − uR often can be selected. Nevertheless, it
results in a more conservative robust controller to provide
robust stability even in case of larger disturbances. But, if
L∆ is tight, u is close to uR, and thus, performance level
increase from the RL-based control agent can be lost.

Computation of safe steering angle

In designing a robust control system, several methods are
available (e.g., H∞ or robust LPV methods), with which
theoretical guarantees against bounded disturbances can
be guaranteed. In the rest of this section a robust H∞
control design method on the lateral dynamics, consider-
ing ∆L is proposed. The design is based on the vehicle
motion model (3)(b),(c), which can be transformed into
the following state-space representation:

ẋ = Ax+B2u = Ax+B2∆L +B2uK , (8)

where A,B2 are matrices of the system, x =
[
ẏ ψ̇

]T
represents state vector and u = δ steering angle.

The primary, i.e., the safety performance of the system
is to guarantee the limitation of the lateral error of the
vehicle from the centerline of the road:

z1 = yref − y; |z1| → min, (9)

where yref is the reference lateral position for the vehicle.
Moreover, the limitation of the steering angle is requested
to avoid the unwanted effect of actuator saturation, which
leads to further performance:

z2 = u = uK +∆L; |z2| → min. (10)

In the design process of the H∞ controller weighting func-
tion for scaling disturbances and for finding balance be-
tween different performances must be applied, see Sename
et al. (2013) and Németh and Gáspár (2021) for details on

selecting weighting functions and the formulation of the
H∞ design problem.

Computation of safe velocity profile angle

The computation of the safe velocity profile, i.e, the actual
reference velocity is determined by the local curvature of
the track. Since the reference path (e.g., centerline) of the
track is a known two-dimensional parametric curve, its
curvature can be calculated as

κ(s) =
|Ċtrack(s)× C̈track(s)|

|Ċtrack(s)|3
, (11)

where s is the parameter of the curve (e.g., the distance
traveled along the centerline). The reference velocity is cal-
culated in a way to limit the required lateral acceleration
of the car for traction reasons:

v2refκ ≤ ay,max, (12)

where ay,max denotes the maximum achievable lateral
acceleration, based on the maximal tire force available. Its
value can be the result of tire characteristics or estimation,
see e.g., (Villagra et al. (2011)). The resulting reference
velocity as a function of s is

vref (s) ≤
√

ay,max

κ(s)
. (13)

In straight sections, the curvature of the track is 0, which
results in infinite reference velocity. Thus, vref must be
limited, especially in case of low curvature values, such as
vref (s) ≤ vmax, where vmax is the maximum velocity limit
on the given road section.

5. DESIGN OF THE SUPERVISOR FOR THE
INTEGRATION OF DIFFERENT CONTROLLERS

The supervisor results in ∆L signal, which is used for
the computation of control input u, see (1). The goal of
the supervisor is to achieve a control signal, which results
in a high-performance level for the vehicle through the
minimization of the following objective:

‖u(∆L)− uL‖22 = ‖uR +∆L − uL‖22 → min, (14)

where ∆L ∈ [∆L,min; ∆L,max] is considered (2), and

∆L = [∆L,Lat ∆L,Long]
T

contains the additional distur-
bance value respect to lateral and longitudinal controls.

Additionally, in the case of the vehicle path tracking con-
trol, the lateral distance from the centerline can be limited
using a model-based prediction layer in the supervisor.
The trajectory of the vehicle can be predicted (3)-(4), see
Németh and Gáspár (2021), which results in the vector of
predicted Ppred,T vehicle positions. The predicted lateral
error can be estimated using the known checkpoints of the
track Ctrack(s):

eLat,T = min
s

‖Ppred,T − Ctrack(s)‖22 . (15)

Thus, the constrained optimization task in the supervisor
is formed through (14),(2), and (15) as

argmin
∆L

‖uR +∆L − uL‖22 (16a)

subject to

∆L ∈ [∆L,min; ∆L,max] (16b)

eLat,T ≤ emax. (16c)

In case of the infeasibility of (16), e.g., the vehicle is out
of the track, ∆L = 0 is selected, and a command on
maximum reduction of velocity for the vehicle is sent.

In most of the operation of the vehicle, it can be con-
sidered that the vehicle moves under normal vehicle dy-
namic conditions, i.e., it is assumed that uL can result
in keeping the lateral error under emax. Consequently, in
the first computation step of the supervisory process, the
assumption is checked, such as the ensuring of condition
eLat,T ≤ emax with uL. If the assumption in the checking
process is validated to be true, an equivalent solution of
the optimization process (16) is

∆L,i =




uL,i − uR,i if (uL,i − uR,i) ∈ [∆L,min;∆L,max]

∆L,max if (uL,i − uR,i) > ∆L,max

∆L,min if (uL,i − uR,i) < ∆L,min,

(17)
where the indices denote the ith control input. But, if the
assumption in the checking process is validated to be false,
the optimization process (16) must be performed.

In the case of a practical application, the process above
can significantly reduce the computation effort, i.e., the
assumption in most of the vehicle operation is verified to
be true.

6. ILLUSTRATION OF THE DESIGNED
INTEGRATED CONTROL SYSTEM

Finally, in this section, the effectiveness of the integrated
control system is illustrated. In the examples, the goal of
the integrated control system is to navigate the car on a
racetrack. First, the design of the RL-based control agent
is detailed, and second, simulations of the operation are
shown.

The training of the RL-based control agent based on the
motion of the vehicle on various tracks has been performed.
The environment using route primitives, e.g., linear or arc
segments, has been generated. The neural networks were
structured similarly in both the lateral and longitudinal
agents. They had 3 hidden layers containing 5, 15, and
25 neurons each and ReLU activation layers. The output
layers use hyperbolic tangent activations to appropriately
limit the control outputs. The output of the network is fed
back to the input leading to a recurrent neural network
structure. For the input measurements of the networks,
N = 5 with 0.5 m equidistant segments is selected, with
which information on the track 2.5 m distance ahead of
the vehicle is considered. For this type of track vmax = 2
m/s is selected. Using (5) and (19), the reward functions
are selected as

RLat = −0.5x2
Lat,err − 0.5ψ2

err − 10∆4
δ + f(s, a), (18)

RLong = −0.5x2
Lat,err − 0.5ψ2

err −
a10y
1024

+ f(s, a). (19)

For performing supervisory optimization, the regions of
∆L,Lat = [−0.25, 0.25] and ∆L,Long = [−0.3, 0.3] are
selected.

6.1 Simulation results

First, the evaluation of the proposed integrated control
method through simulations is performed. A comparison

can be seen in Figure 3 where the operation of the inte-
grated control (blue) and of the RL-based controller (or-
ange) are found. Both controllers provide accurate motion
(see Figure 3(a)), however, in the case of the integrated
control the maximum values of the lateral error are re-
duced, due to the safety constraint in the optimization.
In some cases, the controller without the supervisor tends
to cut the corners more sharply resulting in possibly dan-
gerous situations, but in case of the integrated control,
the supervisor avoids these situations. In Figure 3(b) the
lateral error of the vehicles is shown and it can be seen
that in three cases around time steps 650, 800, and 1100
the controller without the supervisor violates the maximal
lateral error constraint emax, while with the integrated
control the vehicle is within the specified interval at all the
time. In Figure 3(d)-3(e) the candidate control interven-
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Fig. 3. Comparison of vehicle motion signals and control
interventions

tions of the RL-based control agent, the robust controller,
and the integrated control are shown. It can be seen that
the signals of the integrated control and the RL-based con-
trol agent are close to each other, but at critical situations,
e.g., at sharp corners (time steps 200, 650, 800, 1100), δ
and vref are modified. Numerical results on lap time using
the two controllers are 59.95 s in case of the RL-based
agent and 62.55 s in case of the integrated controller. It
shows that lap time with the RL-based controller is smaller
than with the integrated controller, which is resulted by
the reduction of vx in the latter case, i.e., 4.2% slower lap
time has resulted. Nevertheless, the smaller lap time of the
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RL-based controller is not achievable, due to the avoidance
of the constraints. Thus, the integrated control results in
an appropriate minimum increase in the lap time.

6.2 Results with small-scaled test vehicle implementation

The effectiveness of the control has been investigated
in real-life experiments using an F1TENTH small-scaled
test vehicle with a LiDAR-based localization algorithm,
which has provided estimated information about centerline
(Ghallabi et al. (2018)). A track has been set up using
buoys, whose path is independent of the tracks of the
training set. The motion of the test vehicle has been
monitored by the OptiTrack motion capture system, but
this data has been used only for evaluation.

A comparison of vehicle trajectories with the integrated
and the RL-based controls can be seen in Figure 4(a).
It can be seen that without the supervisor the RL-based
controller is only able to navigate one full lap and failed on
the second by leaving the track. It can be avoided through
lateral error prediction of the supervisor, with which the
vehicle is able to complete both laps safely.
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(a) Measured trajectories of F1TENTH vehicle
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(b) Reference velocity signals of the vehicle

Fig. 4. Measurements on the F1TENTH vehicle

The possible cause of leaving path can be found by inves-
tigating reference velocities chosen by the two controllers.
Figure 4(b) shows that the supervisor consistently de-
creases the reference velocity in corners, which results in s
9.5% increase in lap time, but in this case, the leaving of
the track is avoided.

7. CONCLUSIONS

The paper has proposed an integrated control design
framework for motion control of autonomous vehicles.
Using simulations and implementation on a small-scaled
test vehicle the effectiveness of the control system is
illustrated. In the framework, the robust controller and the
reinforcement learning-based control agent are designed
independently, but a supervisory algorithm guarantees
the safe and efficient operation of the closed loop. The

illustrations have shown that the control interventions of
the RL-based agent, which can result in unsafe motion,
can be avoided through the supervisory structure, i.e.,
a minimum performance level on safety requirements is
guaranteed. Nevertheless, the high-performance operation
of the RL-based control agent is only slightly reduced.
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