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Abstract: We propose a novel algorithm for identifying the poles of transfer functions describing
SISO-LTT (single input single output, linear time invariant) systems. Our identification method
works in the frequency domain and consists of two parts. In the first part, we extend a discrete
Laguerre expansion based method with an automatic parameter selection scheme. This allows
us to find an initial estimate of the poles of SISO-LTI transfer functions without the need
for human intuition. Then, in the second part, we propose a novel optimization problem to
improve our initial estimates. The proposed optimization aims to reduce the least squared
error of a parameterized model, which can be interpreted as an orthogonal projection of the
system’s frequency response onto a subspace spanned by Generalized Orthogonal Rational Basis
functions (GOBFs). We solve the corresponding nonlinear optimization task using gradient
based methods, where we can analytically calculate the gradient of the error functional. Through
robust numerical experiments, we investigate the behavior of the developed methods and show
that they work even in scenarios, when the transfer function has a high number of poles.
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1. INTRODUCTION

System identification is a data-driven approach to model
the behavior of dynamical systems. Algorithms of this
type have a black-box view of the system, i.e., they rely
on the observed input/output measurements, rather than
utilizing the underlying physics.

In the frequency domain, the identification can be formu-
lated as an approximation problem, where the system’s
transfer function is to be derived from the quotient of
the input/output spectrum. Besides the standard trigono-
metric basis, the so-called generalized orthogonal basis
functions (GOBF) have been introduced in the 90s to

* This project was supported by the NVKDP Cooperative Doctoral
Program by the Hungarian Ministry of National Development and
the National Research, Development and Innovation Fund. This
project was supported by the Jdnos Bolyai Research Scholarship
of the Hungarian Academy of Sciences. Project no. TKP2021-
NVA-29 has been implemented with the support provided by the
Ministry of Innovation and Technology of Hungary from the National
Research, Development and Innovation Fund, financed under the
TKP2021-NVA funding scheme. The research was supported by the
European Union within the framework of the National Laboratory
for Autonomous Systems. (RRF-2.3.1-21-2022-00002).

increase the freedom for incorporating a priori knowledge
about the system. Since then, the GOBF's have been uti-
lized in many applications including control theory, model
approximation, adaptive control problems, and signal pro-
cessing (see e.g., Heuberger et al. (2005)). One represen-
tative of this approach is the Schi-So algorithm (Schipp
and Soumelidis (2011); Bokor et al. (2011, 2013); Schipp
and Soumelidis (2012); Soumelidis et al. (2013, 2015)),
which utilizes discrete Laguerre functions to represent the
frequency response of single input single output linear
time invariant (SISO-LTI) systems. The Schi-So method
allows for the identification of a single pole of the system’s
transfer function, however it can be applied in a recursive
manner to identify the rest of the poles as well (Soumelidis
et al. (2013, 2015)). Furthermore, this algorithm has been
shown to perform well in scenarios where there is a large
number of poles located close to each other and to the unit
circle (Soumelidis et al. (2015)).

One of the main limitations of the Schi-So algorithm thus
far has been the fact, that the parameters of the used
discrete Laguerre-expansions had to be selected manually.
This is a direct numerical method in the sense that the
estimated poles cannot be systematically improved in
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contrast to iterative approaches. Also, as a side effect
of recursive algorithms, the estimation error of the poles
identified at earlier stages propagates and accumulates
during the progress of the recursion.

In this paper we address the previously mentioned lim-
itations of the Schi-So algorithm. First, we propose an
automatic parameter selection scheme for the discrete
Laguerre expansions used by the Schi-So algorithm. This
can be viewed as an important step towards real-world
applications, since the proposed identification method no
longer relies on human intuition. Second, we introduce a
novel approach to simultaneously correct all the estimated
pole positions provided by the automatized Schi-So algo-
rithm. The correction step is discussed in the framework
of a general mathematical model called variable projection
(VP). In this approach, we use the rational orthonormal
parameterization of the corresponding transfer function
whose poles are to be identified. As a case study, we
consider the identification of SISO LTT systems, where the
criteria for modeling and identification are formulated in
terms of the mean square error (MSE) between the ground
truth and the estimated transfer functions. By means of
comparison tests performed on several randomly initialized
zero/pole configurations, we demonstrate that the rational
VP method initialized by the pole estimates of the Schi-So
algorithm is able to precisely identify the poles of transfer
functions.

The rest of this paper is organized as follows. In section 2
we introduce the pole identification problem, and discuss
the Schi-So algorithm. In section 3 we consider numerical
problems regarding the Schi-Scho algorithm and extend it
with our new, automatic parameter selection scheme. In
section 4 we formulate the pole identification task using
the VP approach and introduce a novel algorithm to cor-
rect the pole estimates produced by the automatized Schi-
So algorithm. Section 5 details our numerical experiments.
Finally, in section 6 we draw our conclusions and discuss
possible future research directions.

2. AUTOMATIZED POLE IDENTIFICATION USING
DISCRETE LAGUERRE SYSTEMS

2.1 Problem specification

In this paper we address the problem of identifying the
transfer function H of a discrete SISO-LTT system. Such
a system can be expressed in the frequency domain by
P(z)
Q(z)’
where U(z), X(z) denote the Z-transforms of the input
and output sequences, D = {z : z € C,|z| < 1},
T:={z:2¢€C, |2 =1}, P and Q are the numerator
and the denumerator polynomials of H, respectively. The
rational function H is the so-called transfer function of the
SISO system. In practice, we usually only have access to
an equidistant sampling of H on T known as the frequency
response of the system.

X(2) = H(2)-U(2), H(z) =

(zeDUT), (1)

To adequately describe the transfer function we introduce
the elementary rational functions

ro(z) = (a €D,z < 1). (2)

1—-a
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In (2), the parameter o will be referred to as the inverse
pole of 14, since 1/a@ is the pole in the usual sense and @
denotes the complex conjugate. Consider the linear space
R4 :=span{r, : « € A C D} C H?(D), where A is a finite
subset of I, and H?(D) denotes the Hardy-space, whose
elements are square-integrable complex functions analytic
within D. In this work, we assume that the transfer
function H, whose inverse poles are to be identified,
belongs to R 4. Then, our objective is to estimate the
inverse poles ay,...,any_1 € D, which define H. We note
that a one-to-one mapping between poles in the usual sense
and inverse poles exists (Heuberger et al. (2005)), however
using inverse poles greatly simplifies notations.

2.2 Identifying a single inverse pole

Schipp and Soumelidis et al. introduced an inverse pole
identification method in a series of papers (Schipp and
Soumelidis (2011); Bokor et al. (2011, 2013); Schipp and
Soumelidis (2012); Soumelidis et al. (2013, 2015)). We
begin by briefly describing this method, which we will
refer to as the Schi-So algorithm. The discrete Laguerre
system (Heuberger et al. (2005)) is a complete and orthog-
onal rational function system in H?(D). The nth discrete
Laguerre function can be given by

V 1- ‘a’|2 n

Ly.o(2) = T Bl'(z)
where B,(z) := {== is a so-called Blaschke-function.
These functions have many interesting properties and con-
tribute greatly to a number of theoretical results (Mashreghi
et al. (2013); Pap and Schipp (2006); Schipp and Bokor
(2003)). In this paper we make use of the fact, that
Blaschke functions are one-to-one maps on both D and
T, furthermore B, '(z) = B_,(2) (z € D,a € D). The
following theorem is a key result for identifying a single
inverse pole a € A of a transfer function H € R4 by the
Schi-So algorithm.
Theorem 1. Let H € R 4 have a number N € N of inverse
poles. Suppose that every inverse pole A = {ag,...,an—_1}
of H is simple. Consider the coefficients ¢y, , of the discrete
Laguerre expansion for a priori chosen a € D parameter:

H(Z) = Z Cn,aLn,a(z)7 (4)
n=0

(aeD,zeD,neN), (3)

where ¢, o := (H, Ly, ,) and (-, -) denotes the inner product
in H?(D). Then, the sequence

Cn+1,a
Qn,a ‘= m (5)
satisfies
Gn,a = Ba(a®) + O(s"), (6)
where s 1= maxaca aza |Ba(a)|/|Ba(a*)| and o* is an

inverse pole of H, i.e., a* € A.

A proof of theorem 1 can be found in (Schipp and Soume-
lidis (2011)). Using the limit B,(a*), we can easily find
a* by B_,(Bg(a*)). It is important to mention, that the
theorem still holds if the inverse poles a were not simple,
however in this case the sequence described in (6) con-
verges more slowly. We note that the identified inverse pole
a* can be described using the so-called pseudo hyperbolic
distance
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b—a

b) :=|Bg(b)| = ,beD). 7

plat) = B0 = [{ =] (@beD) (D

Namely, the inverse pole a* can be found by the Schi-So

algorithm if and only if there exists some a € D for which

pla,a”) > pla,a) (€A ,a#a”). (8)

If the above condition holds for the parameter a € D of

the Laguerre-expansion in (4), then the ratios in (5) tend

to By (a*) as n — oo. We note that condition (8) holds for
any a € D, disregarding a zero measure set.

2.8 Identifying every pole using Laguerre coefficients

Given a transfer function H, whose inverse poles belong
to the finite set A C D, it cannot be guaranteed that for
each o € A condition (8) holds. In other words, some
a € A inverse poles may exist which cannot be identified
by the Schi-So algorithm. To overcome this limitation,
a recursive approach has been proposed in (Soumelidis
et al. (2013)). This approach is based on the so-called
Malmquist-Takenaka (MT) functions

— 5 n— 1
O, (2 _ViZlwP g

1—a,z

«(2) (ar€D)  (9)

which contain the Laguerre system (3) as a special case.
The MT functions were introduced by (Takenaka (1925))
and (Malmquist (1925)), and form an orthonormal and
complete system in H?(D) if and only if the so-called
Szdsz condition Y po (1 — |ax|) = oo is satisfied for the
parameters ar € D (see section 2.2.5 in (Heuberger et al.
(2005))).

Proposition 1. ((Soumelidis (2002))). If the cardinality of
A'is N, the subspace R 4 is spanned by the MT functions

Dy, ..., Py_1 parameterized by ag,...,any_1 € A. Conse-
quently, if H € R 4, then
n—1
H(z) =Y (H,&:)®k(z) (z€T). (10)
k=0

n (Soumelidis et al. (2013, 2015)), this property along
with Theorem 1 was exploited to construct a recursive
pole identification scheme. Suppose that the first m < N
inverse poles of H € R4 in (10) have already been iden-
tified. Then, these inverse poles can be used to construct
the mth MT-Fourier partial sum:

m—1

D (H, @) 0p(2) (z€T).

k=0

Observe that S, H can be used to ”eliminate” the inverse
poles which are already identified. In fact,

H(z) = SpH(z) :=

Hp,(2):= (H(z) = SpmH(2)) - Apm—1(2), (11)
where the conjugate of A,,_1(2) := [}y Bay () simpli-
fies out the inverse poles a; (k = 0,...,m — 1) from the

residual H(z) — Sy, H(z). Thus, the Schi-So algorithm can
be applied recursively by identifying one pole in each step,
which is followed by the elimination of this pole from the
residual transfer function. In practice, problems can occur
if the true inverse pole a* was not identified precisely
enough, as it will not be fully eliminated by (11). We
resolve this issue in section 4 by introducing a nonlinear
optimization method initialized by the pole estimates of
the Schi-So algorithm.
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3. AUTOMATIC PARAMETER SELECTION

In this section, we investigate the challenges concerning
the practical application of the Schi-So algorithm and pro-
pose an automatic parameter selection scheme. Basically,
we consider the following two problems:

e For any f € H?(D), the Laguerre-Fourier coefficients
Cnya = {f,Ln,q) tend quickly to zero as n increases.
This means that calculating the ratios gn, in (5)
for large n introduces numerical errors. Figure 1
illustrates this phenomenon.

e According to Theorem 1, the rate of convergence at
which the quantities ¢, , approach B, (a*) depends
heavily on the choice of the parameter a € D (see (6)
and (8)). Since we can only calculate the ratios (5)
up to some finite index, choosing a for which ¢, 4
converges slowly may lead to bad approximations of
the true pole a*. In figure 2 we illustrate different
choices for parameter a of the Laguerre system, and
show the corresponding sequences gy, q.

) =lcl)

ol = Im q‘
L ——— r

0 A

6

20 40 60 80 100

Fig. 1. Since |cy, o tend quickly to 0 as n — oo, calculating
the ratios gy, becomes numerically unstable.

1 -RG q,La) 1 4 ‘-Re(qn,b) |
08! -Im Qna \-I"L(th)
2
0.6 l
04 I, ”|h|||nl. TR
||'“|| '|ﬂ ||' |ﬂ| Il
0.2
0 -2
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Fig. 2. Convergence properties of the ratios (5) with
respect to the same transfer function H, but different
parameter setups for the Laguerre expansion. A good
choice of a speeds up the convergence (left), whereas
a poor parameter selection decreases the rate of
convergence (right).

To overcome these issues, we introduce the following
heuristics. First, for any fixed parameter a, we should
find a subsequence of g, , where these ratios are nearly
constant. We can express this, by fixing a window size
L € N, and considering the values of



Tamas Dozsa et al. / IFAC PapersOnLine 56-2 (2023) 3994-3999

u(J,a) == max |gi,a — gj.al, (12)
i,jE€J

where J := [k, k + L] is an L-long index window. Then,

we determine the window J* that includes the ”most

constant” part of the ratio sequence:

J* = argminu(J, a). (13)
J
This step is followed by the estimation of the limit
. 1
S = p D die (1)
jeJg*
and by the estimation of the true inverse pole
N 1
o~ B_, 7 Z Ga | = ala). (15)

JjeJ*

Next, we introduce a method to find a suitable Laguerre
parameter a for which (15) provides a good estimate
of a*. In doing so, we exploit the observation that the
location of the peaks in |H(z)| (¢ € T) correspond to
the argument of the dominant poles (see e.g., G&zse
and Soumelidis (2015)). Following this idea, we consider
the parameter a ”good”, if the peaks of |H(z)| can be
approximated well by means of MT functions defined
with the previous and the current inverse pole estimates.
Formally, let ag,aq,...,qanm_o € D be already identified
inverse poles of the transfer function H and «,,—1(a) € D
be the next estimate. Then, finding a "good” parameter a
can be posed as a nonlinear optimization problem

mi | H — S H|co, (16)
where S,,H denotes the mth MT-Fourier partial sum
defined by the parameters g, ..., Qnm—2,¥m—1(a) € D. In
order to solve the optimization problem (16), we propose
to use the so-called hyperbolic variant of the Nelder—
Mead algorithm (Lécsi (2013)). The classical Nelder—-Mead
algorithm (Nelder and Mead (1965)) applies geometric
transformations to an initial simplex defined by the func-
tion to be minimized. The hyperbolic variant of the algo-
rithm (Lécsi (2013)) replaces these geometric transforma-
tions with their corresponding variants from hyperbolic
geometry. In our case this is important, because it nat-
urally guarantees, that the parameter a stays inside D
throughout the optimization.

4. SYSTEM IDENTIFICATION WITH VARIABLE
PROJECTION

In section 3, we proposed an algorithm to estimate
the inverse poles of SISO-LTI transfer functions in the
frequency-domain. This could be used as an initialization
to the following nonlinear optimization problem:

. . 2
min F(n) := min [H - H(n)]l,, (17)
where H is the frequency response of H evaluated over
M points, ie., Hy = H(e?™*/M) (k = 0,...,M — 1).
This is a deterministic approach to identify the system
by minimizing the least squares error of an a priori
chosen model H(n) with respect to the parameters n
over a feasible set I'. Typically, I' ¢ R?*" and H(n) =
P(n)/Q(n), where the coeflicients i of the numerator P
and the denumerator Q polynomials are to be determined.
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In our setting, we choose

H(n) = Pg()H := (n)®(n) "H, (18)
where ®(n) is a predefined M x N matrix parametrized by
n, and @(n)* denotes its pseudoinverse. Note that P,
defines an orthogonal projection to the column space of
®(n) depending on n, which implies the name variable
projection (VP). By utilizing VP models of the transfer
function, (17) becomes a separable nonlinear least squares
(SNLLS) problem.

In order to make use of the a priori knowledge on the
pole structure estimated by the Schi-So algorithm in
section 2, we express the VP model of the transfer function
in terms of GOBFs. This can be done by utilizing the
Malmquist—Takenaka (MT) basis functions (9). In this
case, the columns of ®(n) are MT functions sampled
uniformly on the unit circle, which are parameterized by
n = (To,to,...,TNfl,thl) el C RQN, where ap =
rret* (k = 0,...,N — 1) are the inverse poles, and
(re,tg) € [0,1) x [—m,7]. For an actual implementation,
we refer to the RAIT MatLab Toolbox by (Kovacs and
Lécsi (2012)), that includes several routines to calculate
®(n), PsH, etc.

Note that the MT-VP model of the transfer function can
provide the exact representation of causal SISO-LTT sys-
tems, which is a necessary condition for model consistency.
In fact, according to the Titchmarsh theorem, causality
implies that the corresponding transfer function belongs to
H?(D), where the MT functions form an orthonormal and
complete function system provided that the so-called Szasz
condition is satisfied (see e.g., section 2.3). Therefore, the
approximation error in (17) can be made arbitrarily small
by choosing a large enough value for N. By Proposition 1,
if the transfer function is also defined with the same finite
number N of poles, then it can be exactly represented by
MT functions as well.

One of the main advantage of the SNLLS formulation
of the identification problem is that the exact gradient
can be derived according to the work of (Golub and
Pereyra (1973)), which in our case simplifies a lot due
to the orthonormality of the MT functions. In fact, the
kth coordinate of the gradient F in case of (18) can be
calculated as

1
SVEL = [~(PaDi@" + (PeDy®")")H)]" PSH,

where we omitted 1 for the sake of simplicity, Pz =
I - Ps, and Dy = 0P(n)/On; represents the matrix of
partial derivatives of the MT functions with respect to a
single parameter 7. Due to the orthonormality of the MT
functions, ®(n)™T is simply equal to the complex conjugate
of ®(n). This heavily speeds up the computation, since no
singular value decomposition is needed to calculate the
pseudoinverse. Additionaly, the existance of VF enables
the use of fast gradient based numerical optimization
techniques, such as the trust-region method, which we
utilized in our experiments. Finally we note that SNLLS
approaches have several other applications (see e.g., Golub
and Pereyra (2003), Kovdcs et al. (2021)), although this
is the first time they are used for frequency domain
identification in combination with GOBF's.
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5. EXPERIMENTS

In order to demonstrate the effectiveness of the proposed
method, we conducted a set of numerical experiments
as described below. In each experiment, we generated a
number N of random inverse poles. Then, we constructed
a transfer function H using the MT system corresponding
to the generated inverse poles:

N—1
H(z) := Z ek - Pr(z), (19)
k=0
where ¢, were randomly generated complex coefficients
with |ex| < 5. In order to mimic the behavior of real-
world systems, the random inverse poles defining the MT
functions @ in (19) were chosen as complex conjugate
pairs. Furthermore, in practice the poles often fall close
to the edge of the unit circle (e.g., in systems describing
flexible aircraft wing behavior Soumelidis et al. (2015)).
To ensure similar testing scenarios, we generated inverse
poles « such that the condition 0.7 < |a| < 1 is satisfied.

A favourable property of the proposed method is that it
performs well for large N, i.e., when a high number of
inverse poles need to be identified. To demonstrate this, we
conducted experiments with transfer functions defined by
a number N = 2,4,6,...,20 of inverse poles. Specifically,
for each value of N, we generated 100 number of different
transfer functions, and measured the performance of the
following identification approaches:

e The Schi-So algorithm in itself complemented by the
automatic parameter selection scheme proposed in
section 3.

e The Malmquist-Takenaka based variable projection
(MT-VP) approach proposed in section 4, with ran-
dom intialization.

e The hybrid identification scheme, that is, the opti-
mization of MT-VP model initialized by the autom-
atized Schi-So algorithm.

We evaluated the performance of each method according
to the two criteria, which are the accuracy of the estimated
poles and the transfer function. The first criterion was
measured in the average (Euclidean) distance between
each estimated inverse pole and the true inverse pole
closest to it (table 1). The second was measured in terms
of the mean squared error (MSE):

M
1 =~ 5
MSE := — kgil |H; — Hy |, (20)

where H € CM denotes the frequency response of H

sampled over M € N points, and H € CM denotes the MT
approximation of H generated by the estimated inverse
poles (table 2).

N | Schi-So | MT-VP | Schi-So + MT-VP

4 0.1417 0.0001 0.0000
8 0.1531 0.0160 0.0025
16 | 0.1359 0.3166 0.0468
20 | 0.1382 0.3928 0.0982

Table 1. Average distance of each estimated
inverse pole from the nearest true inverse pole.
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N | Schi-So | MT-VP | Schi-So + MT-VP

4 0.3815 0.0000 0.0000
8 5.5951 0.1980 0.0010
16 6.4826 2.8154 0.0284
20 | 6.7320 4.4282 0.1442

Table 2. Mean Squared Error (20) of the gen-
erated model.

The results in tables 1-2 are averaged over 100 experiments
for each N. Our results show that the proposed method,
in which the variable projection based optimization is
initialized by the automatized Schi-So algorithm provides
very precise estimates of the inverse poles (and the transfer
function H) even for large N. If H is defined by only a few
number of inverse poles (i.e., N is small), the randomly
initialized variable projection method also performs well,
however as N increases random initialization becomes less
and less effective. The automatized Schi-So algorithm’s
performance remains consistent even for large N. Al-
though the estimates provided by the Schi-So algorithm
are not entirely accurate, the estimated inverse poles, in
general, lie in the neighborhoods of the true inverse poles
and thus can provide a good starting point for the variable
projection based optimization.

The results of an example experiment are illustrated in
figure 3, which captures the behavior of the investigated
methods well. The automatized Schi-So algorithm finds
the inverse poles but is not accurate enough, the MT-
VP based method with random initialization finds some
inverse poles with great accuracy, but may also produce
some very far off estimates. However, starting the opti-
mization of the MT-VP model from the neighborhood of
the true inverse poles (i.e., from the estimated inverse poles
provided by the automatized Schi-So method) improves
the final pole estimation a lot.

6. CONCLUSION

In this paper we presented a novel pole identification
scheme that is applicable for discrete SISO LTI systems in
the frequency domain. To this end, we extended a Laguerre
expansion based identification method of (Schipp and
Soumelidis (2011)) called the Schi-So algorithm with an
automatic parameter selection scheme. Furthermore, we
introduced a new optimization approach based on variable
projections to improve the estimated pole locations. For
the first time, a gradient based optimization procedure
was introduced to minimize the error of the frequency
response’s projection onto a subspace spanned by GOBFs.
The gradients of this error functional are analytically
calculated during the optimization procedure. Through
robust numerical experiments we asserted the effectiveness
of the proposed method. In particular, we showed that our
hybrid Schi-So + VP approach can successfully identify
transfer functions consisting of a large number of poles.

In the next phase of this research, we will further develop
the proposed algorithms to solve real-world system identi-
fication problems. One interesting direction of inquiry will
be to investigate the noise tolerance of the proposed identi-
fication techniques. In addition, we note that even though
in our current experiments, we assumed the number of
inverse poles to be known, in the next steps of the research,
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Fig. 3. An example experiment. Pole estimates produced by the automatized Schi-So algorithm (3a), by the randomly
initialized MT-VP model (3b), and by the combination of the proposed approaches (3c).

we plan to exploit the nonparametric nature of the Schi-
So algorithm. In particular, if the pole estimates provided
by the Schi-So algorithm are precise, then the Hz(DD)
norm of the residual frequency response (11) decreases
with each identified pole (Soumelidis et al. (2015)). This
behavior can be exploited to define stopping conditions in
the initialization part of the proposed method.
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