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Abstract: Identification of bilinear systems subject to white inputs is studied. Assuming
bilinearity we use the crosscovariances between the output and the higher order Hermite
polynomials of the input for estimating the coefficients of the Hermite series expansion of the
output. The parameters of the bilinear model are obtained via a balanced factorization of the
appropriately constructed Hankel matrix. The skewness of the singular values of the estimated
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1. INTRODUCTION

From the early seventies up to now deterministic and
stochastic bilinear systems and time series are subject of
intensive research, since those are the first stage beyond
linearity towards nonlinearity. Bilinear systems arise as
natural models for a variety of physical and biomedical
chemical processes, Lakshminarayanan et al. (2001). Re-
alization and identification of bilinear systems have ap-
plications in many fields and in particular identification of
the nonlinear dynamics of an autonomous vehicle Rödönyi
et al. (2021), and certain aircraft dynamics, biological
systems Mohler and Kolodziej (1980), Isidori (1995) etc.
Reachable and observable factorization of the Hankel ma-
trix and minimal realization of a continuous bilinear sys-
tem are due to Alessandro et al. (1974) and a similar treat-
ment by Isidori (1973) for discrete time case. The singular
value decomposition of the Hankel matrix is known to be
robust therefore the balanced realization has particular
importance and it is also appropriate for model reduction
beside the identification, see Hsu et al. (1983); Hsu (1985),
Al-Baiyat (2004), and Zhang et al. (2003). Linear and
bilinear stochastic realization problem has been considered
in Desai (1986), where the crosscovariances between out-
put and stochastic input are used for realization. Wiener
theory of homogeneous chaos is applied for continuous
nonlinear stochastic realization problem by Lindquist et al.
(1982), and in particular for a simple bilinear system which
has only two terms from the infinite series. The subspace
approach for identification of time-invariant multi-input
discrete bilinear system with observed white noise input
processes was used successfully by Favoreel et al. (1999)
where the rank of the system has been established by
singular values empirically, see also Verdult et al. (1998).

⋆ The research was supported by the Ministry of Innovation and
Technology NRDI Office within the framework of the Autonomous
Systems National Laboratory Program.

Identification of MIMO bilinear systems driven by white
noise inputs has been considered in dos Santos et al.
(2009) using the fact that the bilinear term is a second-
order white noise process. The cross-cumulants up to third
order between the output and input for identification is
applied by Tsoulkas et al. (2001). Recently Petreczky and
Vidal (2018) considered the realization of bilinear systems
with observed input without considering the problem of
estimation of the rank of the system.

In this paper we consider the multiple Wiener–Itô rep-
resentation of the stochastic stationary bilinear model
driven by Gaussian white noise input, Terdik (1999). The
stochastic bilinear state space has infinitely many transfer
functions fulfilling a recursion in terms of system param-
eters, Terdik and Bokor (2010). Based on the Hermite
polynomial expansion of the observation we estimate the
coefficients by the help of cross-covariances between the
output and the Hermite polynomials of the input. We
build the Hankel matrix up of the estimated coefficients
applying Isidori’s (Isidori (1973)) construction, which has
been worked out for deterministic case. We assume that
independent samples of the input-output observations are
available. Each sample provides an estimate of the Hankel
matrix from which we derive the singular values. In this
way we have a sample for singular values of the system.
The main result of this paper is testing the rank of the
estimated Hankel matrix. The test is based on the exami-
nation of the skewness of the estimated singular values of
the Hankel matrix. The Appendix with the construction
of the Hankel matrix in terms of the coefficients of the
Hermite expansion closes the paper.

2. BILINEAR STATE SPACE MODEL

An observation Yt is called stochastic bilinear system if it
fulfils the state space model
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resentation of the stochastic stationary bilinear model
driven by Gaussian white noise input, Terdik (1999). The
stochastic bilinear state space has infinitely many transfer
functions fulfilling a recursion in terms of system param-
eters, Terdik and Bokor (2010). Based on the Hermite
polynomial expansion of the observation we estimate the
coefficients by the help of cross-covariances between the
output and the Hermite polynomials of the input. We
build the Hankel matrix up of the estimated coefficients
applying Isidori’s (Isidori (1973)) construction, which has
been worked out for deterministic case. We assume that
independent samples of the input-output observations are
available. Each sample provides an estimate of the Hankel
matrix from which we derive the singular values. In this
way we have a sample for singular values of the system.
The main result of this paper is testing the rank of the
estimated Hankel matrix. The test is based on the exami-
nation of the skewness of the estimated singular values of
the Hankel matrix. The Appendix with the construction
of the Hankel matrix in terms of the coefficients of the
Hermite expansion closes the paper.

2. BILINEAR STATE SPACE MODEL

An observation Yt is called stochastic bilinear system if it
fulfils the state space model

Order Selection for Stochastic Bilinear
Systems ⋆
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Xt = A (Xt−1+ awt−1)+D (Xt−1+ awt−1) vt−1+ bvt−1,

Yt = c⊺ (Xt + awt) + vt,

where Xt ∈ Rd, A, D ∈ Rd×d, b, c, a ∈ Rd. Notice that
the state processXt, t ∈ Z is bilinear (Petreczky and Vidal
(2018), Favoreel et al. (1999), see also Cox et al. (2018) for
Markov-parameters of LPV-SS models). We assume that
the output Yt together with the scalar Gaussian white
noise input vt are observed, Evt = 0, Ev2t = σ2

v, and
the unobserved Gaussian white noise series wt (Ewt = 0,
Ew2

t = σ2
w) is independent of vt.

The method of identification in this paper is based on
covariances between the observation Yt and higher order
Hermite polynomials of vt. These covariances does not
contain any information on wt. Hence we set the coefficient
a of the noise gain to zero and postpone its estimation
after the bilinear parameters have been estimated. The
parameter a can be estimated by solving ARE-like equa-
tions afterwards. In this way we can simplify the bilinear
state-space equation

Xt = AXt−1 +DXt−1vt−1 + bvt−1, (1)

Yt = c⊺Xt + vt.

We assume that Yt, t ∈ Z is physically realizable with
respect to the input {vt, t ∈ Z}. It is seen that Xt

is independent of vt and EXt = 0. The most common
assumption here is that all the eigenvalues of the matrix
A ⊗ A + σ2

vD ⊗ D are less than one in modulus (where
⊗ denotes the Kronecker matrix product). This is the
necessary and sufficient condition for the existence of a
second order stationary physically realizable solution of
(1) as well, see Terdik (1985), Liu and Brockwell (1988)
and Terdik (1999). The infinite Hankel matrix H of the
transfer function system {c⊺gk}, defined below, has finite
rank if and only if there exits bilinear realization. The
rank is the dimension of the minimal realization and an
actual minimal realization is provided by the quadruplet
A,D,b, c, see Isidori (1973), Isidori (1995) Theorem 3.4.3,
p. 127. In frequency domain a large class of stationary
stochastic series Xt, which belongs to the nonlinear space
generated by the Gaussian white noise series vt, has
Wiener–Itô representation

Xt =

∞∑
r=1

∫

Dr

e
i2πt

r∑
j=1

fj

gr(f1:r)W (df1:r) , t ∈ Z, (2)

Yt = c⊺Xt + vt.

where the integral of a vector valued function is meant by
coordinate wise, D = [0, 1], f1:r = (f1, . . . , fr), gr denote
the transfer functions of Xt and W (df1:r) is the multiple
stochastic spectral measure with respect to the Gaussian
white noise series {vt, t ∈ Z}. We recall that multiple
Wiener–Itô integrals in the representation (2) have the
following properties (see Terdik (1999), Sect. 2 for details)

(1) Wiener–Itô integrals are real valued and
E
∫
Dr gr(f1:r)W (df1:r) = 0,

(2) Wiener–Itô integrals with different orders are orthog-
onal: if r ̸= q, then

E

(∫

Dr

gr(f1:r)W (df1:r)

∫

Dq

gq(f1:q)W (df1:q)

)
= 0,

and

Var

(∫

Dr

gr(f1:r)W (df1:r)

)

= σ2r
v r!

∫

Dr

|sym gr (f1:r)|2
r∏

k=1

s (fk) df1:r,

(3) If t1, t2, . . . , tr ∈ R

∫

Dr

e
i2π

r∑
j=1

tjfj

W (df1:r) = Hr (vt1 , vt2 , . . . , vtr ) ,

where Hr (vt1 , vt2 , . . . , vtr ) denotes the rth degree
Hermite polyinomial of Gaussianvariables vt1 ,. . . ,vtr .

There will be no confusion if we denote both e−i2πf and
the back shift operator by z−1, in this sense

z−k1
1 z

−(k1+k2)
2 = e−i2π(k1f1+(k1+k2)f2) and

z
−(k1,k1+k2)
1:2 vt =

[
vt−k1 , vt−(k1+k2)

]
.

The first transfer function g1(f1) in (2) corresponds to
the linear part of the state variate Xt in (1), the second
one contains the contribution of all possible second order
products of the input and so on. The following recursive
formula for the transfer functions can be derived easily:

g1(f1) = (z1I−A)
−1

b,

g2(f1:2) = (z1z2I−A)
−1

Dg1(f1),

and in general for r ≥ 2,

gr (f1:r) = (z1 · · · zrI−A)−1Dgr−1 (f1:r−1) .

The first transfer function is clearly the linear part of the
system and corresponds to the series∫

D
ei2πtf1g1 (f1)W (df1)

=

∫

D
ei2πtf1 (z1I−A)

−1
W (df1)b

=

∞∑
k=0

Ak

∫

D
z
t−(k+1)
1 W (df1)b =

∞∑
k=0

Akvt−(k+1)b.

The linear part of Xt is written in terms of first order
Hermite polynomial is H1

(
vt−(k+1)

)
= vt−(k+1) as

∞∑
k=0

AkbH1

(
vt−(k+1)

)
= bvt−1 +Abvt−2 + ....

Consider the series expansion of Yt then the coefficient of
vt is 1, the coefficient of vt−1 is c⊺b let it be denoted by
ℓ0. In general the coefficients c⊺Akb of the linear part of
the series expansion of Yt will be denoted by h (0k), where
0k denotes k consecutive zeros. In particular if k = 1 we
set h (0) = c⊺Ab, and so on. The second order transfer
function

g2 (f1:2) = (z1z2I−A)
−1

D (z1I−A)
−1

b,

has the series expansion

g2 (f1:2) =

∞∑
k1:2=0

Ak2DAk1bz
−(k1+k2+2)
1 z

−(k1+1)
2 .

Let the coefficient c⊺Ak2DAk1b of the Hermite polyno-
mial H2

(
vt−(k1+k2+2), vt−(k1+1)

)

= H2

(
z
−(k1+k2+2,k1+1)
1:2 vt

)
= vt−(k1+k2+2)vt−(k1+1), be

denoted by h (0k1
10k2

). Notice that exponents of A are
indexed by opposite (right to left) order. An example is

that if k1:2 = 0 then the coefficient of H2 (vt−1, vt−2) is
h (1) = c⊺Db.

Now set

g3 (f1:3) = (z1z2z3I−A)
−1

Dg2 (f1:2)

=
∞

k1:3=0

Ak3DAk2DAk1bz
−(k1+k2+k3+3,k2+k3+2,k3+1)
1:3 .

We denote the coefficient c⊺Ak3DAk2DAk1b of Yt by
h (0k1

10k2
10k3

). In particular h (12) = c⊺D2b (k1:3 = 0)
corresponds to the H3 (vt−1, vt−2, vt−3), where 1k denotes
k consecutive 1s. Notice that the term
z
−(k1+k2+k3+3)
1 z

−(k2+k3+2)
2 z

−(k3+1)
3 in series expansion of

g3 guarantees that all the indices of the variables of H3

are distinct. It is also seen that the degree of the Her-
mite polynomial is the number of ones plus one, more-
over the Hermite polynomials are symmetric therefore
it will be more convenient renumber the exponents, say

instead of z
−(k1+k2+k3+3)
1 z

−(k2+k3+2)
2 z

−(k3+1)
3 we shall put

z
−(k1+1)
1 z

−(k1+k2+2)
2 z

−(k1+k2+k3+3)
3 .

In general we introduce a set (0k110k210k3 . . . 10kK
) for

indices of Hermite polynomials where there are exactly
K − 1 ≧ 0 ones between consecutive zeros 0kj , see in
the Appendix as well. Some blocs of zeros can be empty
(kj = 0). If K = 1, then we have (0k). If K > 0,
and k1:K = 0, then we have the set (1K−1). The series
expansion of the transfer function c⊺gK (f1:K) can be de-
scribed by the help of these indices. Namely the coefficient

of Hermite polynomial HK


z
−(k1+1,k1+k2+2,...Σkℓ+K)
1:K vt



is c⊺AkKD . . .Ak2DAk1b which corresponds to the index
(0k1

10k2
10k3

. . . 10kK
) and will be denoted by

h (0k1
10k2

10k3
. . . 10kK

). In particular h (1K) = c⊺DK−1b
is the coefficient of HK (vt−1, vt−2, . . . , vt−K) in the se-
ries expansion of Xt. Note that these indices can be
considered as digits of integers. Now we can build up
the Hankel matrix H of the system using the coeffi-
cients h (0k1

10k2
10k3

. . . 10kK
), Isidori (1973). A station-

ary stochastic series Yt which has Wiener–Itô represen-
tation (2) with respect to a Gaussian white noise series
vt can be associated with a Hankel matrix with entries
Cov

�
Yt, HK

�
z−cS(k1:K+1)vt


. Then one can truncate the

singular values of the Hankel matrix for getting a bilinear
approximation of the process Yt.

3. ESTIMATION OF THE HANKEL MATRIX

Recall that we have assumed that the input series
vt is Gaussian white noise with mean 0 and vari-
ance σ2

v. One can get this assumption fulfilled with
prewithening the input Gaussian process. The estima-
tion of the entries h (i1:k) of the Hankel matrix fol-
lows from the cross covariances between the output and
the Hermite polynomials of the input vt. We introduce
the following short notation: let the cumulative sum
cumSum (k1 + 1, k2 + 1, k3 + 1, . . . , kK + 1) be denoted by

cS (k1:K + 1), and
�
vt−(k1+1), vt−(k1+k2+2), . . . vt−(Σkj+K)


= z−cS(k1:K+1)vt. An example is K = 3, when

cS (k1:3 + 13) = cumSum (k1 + 1, k2 + 1, k3 + 1)
= (k1 + 1, k1 + k2 + 2, k1 + k2 + k3 + 3). It is seen that
each kj ≥ 0, nevertheless all indices of the input vt are

distinct, strictly decreasing, and it starts from t−(k1 + 1).
We have the corresponding Hermite polynomials

HK


z
−cS(k1:K+1K)
1:K vt


=HK

�
vt−(k1+1), vt−(k1+k2+2), . . .


.

These Hermite polynomials constitute an orthogonal sys-
tem therefore we can apply the equation

Cov

Yt, HK


z−cS(k1:K+1)vt



= Cov

(c⊺Xt + vt) , HK


z−cS(k1:K+1)vt



= σ2K
v c⊺AkKD . . .Ak2DAk1b,

for estimating the entries of the Hankel matrix. The
variance σ2

v can be estimated from the input. As we have
seen the coefficients h (·) of the Hermite polynomials in
the series expansion (1) of the input process Yt provides
the Hankel matrix.

4. TEST FOR THE HANKEL RANK

The singular values s of the Hankel matrix H give a
possible estimation for the Hankel rank of the system. The
singular values are non-negative and the default orders is
monotone decreasing. We assume that either independent
samples of the input-output observations are available or
we have that the number of observations is so large that
it can be sliced such that each slice is large enough for
providing an estimate of s. We estimate the Hankel matrix
H and its singular values s(L) for each sample. In this way

we have an independent sample s(L)
k for each singular value

s(L). This sample follows the CLT and asymptotically

s(L)
k is approaching the normal distribution. In case the

expected value of s(L)
k is zero the sample of a normal

distribution would take a symmetrical values with respect
to zero. Which can not happen for a sample of zero singular
value since it should be non-negative. This implies that the
closer to zero a singular value is, the more its distribution
skewed. The skewness of a distribution is well studied, the
definition is the 3rd order cumulant of the standardized
variates. This is the first characteristic of discrepancy form
normal variate since all higher (then 2) order cumulants
are zero for a normal variate. Let us suppose that we have

a sample s(L)
k , k = 1 : N for the Lth singular value s(L)

of the Hankel matrix H. Our empirical findings is showing
clearly the fact that as far as a singular value s = 0 the
distribution of the estimated singular value s skewed to
zero compared to the cases when s ̸= 0, see Figure 1. We
estimate the index of skewness γ1,L of the Lth singular
value by

γ1,L =


s(L)

k − s(L)
k

σN


s(L)
k





3

,

where σN


s(L)
k


denotes the sample standard deviation

of the sample s(L)
k . The most popular test for checking

the skewness γ1 = 0 has been given by Mardia (1970):
using asymptotic normality of γ1,L the Nγ2

1,L/6 proves to
be chi square distributed with degree of freedom 1. The

asymptotic variance of the estimated skewness γ1,L of s(L)
k

is also known to be

var (γ1,L) = cums,6 + 9cums,4 + 9cum2
s,3 + 6,
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ance σ2

v. One can get this assumption fulfilled with
prewithening the input Gaussian process. The estima-
tion of the entries h (i1:k) of the Hankel matrix fol-
lows from the cross covariances between the output and
the Hermite polynomials of the input vt. We introduce
the following short notation: let the cumulative sum
cumSum (k1 + 1, k2 + 1, k3 + 1, . . . , kK + 1) be denoted by

cS (k1:K + 1), and
�
vt−(k1+1), vt−(k1+k2+2), . . . vt−(Σkj+K)


= z−cS(k1:K+1)vt. An example is K = 3, when

cS (k1:3 + 13) = cumSum (k1 + 1, k2 + 1, k3 + 1)
= (k1 + 1, k1 + k2 + 2, k1 + k2 + k3 + 3). It is seen that
each kj ≥ 0, nevertheless all indices of the input vt are

distinct, strictly decreasing, and it starts from t−(k1 + 1).
We have the corresponding Hermite polynomials

HK


z
−cS(k1:K+1K)
1:K vt


=HK

�
vt−(k1+1), vt−(k1+k2+2), . . .


.

These Hermite polynomials constitute an orthogonal sys-
tem therefore we can apply the equation

Cov

Yt, HK


z−cS(k1:K+1)vt



= Cov

(c⊺Xt + vt) , HK


z−cS(k1:K+1)vt



= σ2K
v c⊺AkKD . . .Ak2DAk1b,

for estimating the entries of the Hankel matrix. The
variance σ2

v can be estimated from the input. As we have
seen the coefficients h (·) of the Hermite polynomials in
the series expansion (1) of the input process Yt provides
the Hankel matrix.

4. TEST FOR THE HANKEL RANK

The singular values s of the Hankel matrix H give a
possible estimation for the Hankel rank of the system. The
singular values are non-negative and the default orders is
monotone decreasing. We assume that either independent
samples of the input-output observations are available or
we have that the number of observations is so large that
it can be sliced such that each slice is large enough for
providing an estimate of s. We estimate the Hankel matrix
H and its singular values s(L) for each sample. In this way

we have an independent sample s(L)
k for each singular value

s(L). This sample follows the CLT and asymptotically

s(L)
k is approaching the normal distribution. In case the

expected value of s(L)
k is zero the sample of a normal

distribution would take a symmetrical values with respect
to zero. Which can not happen for a sample of zero singular
value since it should be non-negative. This implies that the
closer to zero a singular value is, the more its distribution
skewed. The skewness of a distribution is well studied, the
definition is the 3rd order cumulant of the standardized
variates. This is the first characteristic of discrepancy form
normal variate since all higher (then 2) order cumulants
are zero for a normal variate. Let us suppose that we have

a sample s(L)
k , k = 1 : N for the Lth singular value s(L)

of the Hankel matrix H. Our empirical findings is showing
clearly the fact that as far as a singular value s = 0 the
distribution of the estimated singular value s skewed to
zero compared to the cases when s ̸= 0, see Figure 1. We
estimate the index of skewness γ1,L of the Lth singular
value by

γ1,L =


s(L)

k − s(L)
k

σN


s(L)
k





3

,

where σN


s(L)
k


denotes the sample standard deviation

of the sample s(L)
k . The most popular test for checking

the skewness γ1 = 0 has been given by Mardia (1970):
using asymptotic normality of γ1,L the Nγ2

1,L/6 proves to
be chi square distributed with degree of freedom 1. The

asymptotic variance of the estimated skewness γ1,L of s(L)
k

is also known to be

var (γ1,L) = cums,6 + 9cums,4 + 9cum2
s,3 + 6,
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where cums,k are the kth order cumulants of ŝ
(L)
k (see

Terdik (2021), p. 345).

Now we perform the test H0,L : s(L) ̸= 0, against H1,L :

s(L) = 0, i.e. the singular value s(L) is non zero, i.e. ŝ(L) is
unskewed. Hence we test the skewness of ŝL with the test
statistic γ̂1,L, such that H0,L is rejected if the skewness

γ1,L of the distribution of ŝ
(L)
k is not zero. Under the H0,L

hypothesis the variance is reduced to cums,6+9cums,4+6
and it is estimated by the sample variance of Hermite

polynomial H3

(
ŝ
(L)
k

)
. If s(L) ̸= 0 then γ̂2

1,L/ var (γ̂1,L)

is asymptotically chi square distributed with degree of
freedom 1, (see Terdik (2021), (6.22)). Note that we use
this test recursively by L, L − 1, . . . until the s(L) ̸= 0
hypothesis is accepted. The Figure 1 shows that decreasing
L the histogram becomes unskewed and the p−values are
increasing. The result is that we stop at L = 3 and except
that the order of the system is 3. The method of truncating
the singular values of the Hankel matrix H with entries
EYtHK

(
z−cS(k1:K+1)vt

)
provides bilinear approximation

for a nonlinear process Yt.

5. SIMULATION

In this section we consider the bilinear system with state
space representation form

Xt = AXt−1 +DXt−1vt−1 + bvt−1,

Yt = c′Xt. (3)

We put s2v = 2, A =

[
0.15 1 0
0.1 0 0
1 0 0

]
, the bilinear pa-

rameters D =

[
0.3 0 −0.2
0.5 0 0
0 0 0

]
, finally b = [0.6, 0, 0]

⊤

and c = [1, 0, 0]
⊤
. We calculated the Hankel matrix H

with these parameters. The singular values s of H are
[1.0067, 0.4612, 0.1761] except zeros. Using these singu-
lar values Q6 and P6 are calculated, such that both
Gramians are the singular values s. The new parame-

ters proved to be b̃ = [−0.7509, 0.2393,−0.0622]
⊤
, c̃ =

[−0.76060.14910.1101]
⊤
,

Ã =

[
0.3214 0.6292 0.0228
0.0692 −0.2341 −0.0321
−0.3939 0.1346 0.0628

]
,

and D̃ =

[
0.3814 −0.1223 0.3750
0.6045 −0.1034 −0.2246
0.0948 −0.0225 0.0219

]
. Note that these new

parameters provide the same Hankel matrix.

Now we put the sample size as 210 and repeated the
estimations 27 times. The Hankel matrix with L = 6 is esti-
mated using the cross-covariances. We found the estimated
singular values ŝ = [1.0036, 0.4924, 0.1937, 0.1051, 0.0900,
0.0779] see the corresponding p-values by the Figure 1.

Hence we except that the rank of Ĥ is 3. The estimated
system parameters as follows:

b̂ = [−0.7433, 0.2525,−0.0655],
ĉ = [−0.7575, 0.1274, 0.1155],

Â =

[
0.3070 0.6511 0.0463
0.1191 −0.2231 −0.0681
−0.4049 0.1028 0.0198

]
,

and

D̂ =

[
0.3705 −0.1572 0.3889
0.6130 −0.0864 −0.2166
0.1237 −0.0211 −0.0897

]
,

compare to the true values b̃, c̃, Ã, B̃.

6. CONCLUSIONS

This paper proposed a realization - based identification
procedure for stochastic bilinear systems. The Hankel
matrix of the system is built up in terms of the Hermite
series representation of the process. The estimation of
the entries of the Hankel matrix is obtained from the
cross covariances between the output and the Hermite
polynomials of the input. A statistical test is performed
which based on the skewness of the distribution of the
estimated Hankel singular values. This idea is elaborated
to get the order of the bilinear model.

In practice one slices the observation and estimate the
singular values for each slice and use this sample of singular
values to test the Hankel rank of the system. If the Hankel
rank is given then the parameters A, D, b, and c are
calculated from the estimated Hankel matrix resulting in
a balanced realization. Based on the Hankel matrix for
the general nonlinear model (2) one can use the method of
Section 3 for getting either an approximate bilinear model
or a model reduction of a more general nonlinear model to
the bilinear.
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Appendix A. HANKEL MATRIX FOR BILINEAR
SYSTEMS AND BALANCED CANONICAL FORM

The entries h (·) of the Hankel matrix H will be indexed
by vectors of 0s and 1s. Both the first row and the first
column will be generated by the similar recursion. Let the
first entry be the empty vector ∅. The next 2 entries are the
vectors (0) and (1) then the next 4 entries are the binary
digits of numbers 0, 1, . . . , 3, namely (02) , (01) , (10) , (12),
where 0k and 1k denote k consecutive 0s and 1s and so
on. In general the kth blocks of indices are the binary digit
vectors of numbers 0, 1, . . . , 2k−1, for k = 1, . . .. We allow
arbitrary orders of numbers within a block. Finally the
index vector of an entry of H is the concatenation of the
corresponding index vectors of the first column and the
first row respectively. Notice that this is true for the first
row and the first column as well since the first entry in
both cases is an empty vector.

Now we show an example of the Hankel matrix which is
used in this paper.

Example 1. The first block of the first column is (0) and
(1) then we generate each block adding an extra 0 to the
front of each index vector of the previous block then repeat
these steps with 1 instead of 0. The first row starts with (1)
and (0) then follow the construction of the blocks of the
first row with 1 first then 0. Let the dimension d, matrices
A, D ∈ Rd×d, and vectors b, c ∈ Rd×d be given. Then
we can build up the Hankel matrix H in the following
way. Let us identify 0 with A and 1 with D then let
h (0k1

1m1
. . .0kK

1mM
) = c⊺Ak1Dm1 × · · · ⊺AkKDmMb.

The construction of the Hankel matrix H guarantee the
existence of matrices Q and P such that H = Q×P.
It is clear that the Hankel matrix is well defined by the
coefficients h (·) and depends on the rank of the system (d)
by an intimate way, as we shall see later. The constructions
of Example 1 implies that the observability matrix is Q =[
c⊺; c⊺A; c⊺D; c⊺A2; c⊺AD; c⊺DA; . . .

]
(’;’ implies to ar-

range the rows underneath to each other) and the reach-
ability matrix is P =

[
b,Db,Ab,D2b,DAb,ADb, . . .

]
,

see Isidori (1995). We use the following recursive algo-
rithm, with respect to Example 1, for construction of
the Hankel matrix Hm,k = Qm × Pk with dimension(
2m+1 − 1

)
×

(
2k+1 − 1

)
. The dimensions of qj and pj

are 2j × d, and d× 2j hence Qjand Pj are
(
2j+1 − 1

)
× d

and d×
(
2j+1 − 1

)
respectivelly. The factorization of Hm,k

is not unique we provide a particular factorization wich
results the balanced canonical form.

We apply the singular value decomposition of Hm,k

with dimension
(
2k+1 − 1

)
×
(
2m+1 − 1

)
. Define Q̃m with(

2m+1 − 1
)
× d̃ and P̃k with d̃×

(
2k+1 − 1

)
by the singular

decomposition where d̃ the is the number of the nonzero
singular values such. We can use the square root of singular

values such that the observability Gramian Q̃⊺
kQ̃k and

Algorithm 1 Hankel matrix construction

q0 ← c⊺, Q0 ← q0,
p0 ← b, P0 ← p0

for j = 1 : k do
qj ← [qj−1 [A,D]]

⊺
;

qj ← Reshape qj to d× 2k then transpose
Qj ← [Qj−1;qj ] ;

end for
for j = 1 : m do

pj ←
[
Dpj−1,Apj−1

]
; Pj ← [Pj−1,pj ] ;

end for
Hm,k = Qm ×Pk.

reachability Gramian P̃⊺
mP̃m become diagonal and the

diagonals are equal. We have Hm,k = Q̃m×P̃k.

Now we can select the rows and columns of Hm,k and
get the matrices HA,k,m and HD,k,m with the property

HA,k,m = Q̃A,kÃP̃m and HD,k,m = Q̃kD̃P̃D,m respec-
tively.

Algorithm 2 Selecting indices for rows of Q̃A,k and

columns of P̃D,m

indexRows ← [2 : 2 : size(Hm,k, 1)]
indexColumns ← [2]
for k = 1 : (m− 2) do

indexColumns ← [indexColumns, 2k+1, 2k+1 + (1 :
(2k − 1))];
end for

Hence we obtain the balanced canonical form

Ã =
(
Q̃⊺

A,kQ̃A,k

)−1

Q̃⊺
kHA,k,mP̃⊺

m

(
P̃mP̃⊺

m

)−1

D̃ =
(
Q̃⊺

kQ̃k

)−1

Q̃⊺
kHD,k,mP̃⊺

D,m

(
P̃D,mP̃⊺

D,m

)−1

, c̃⊺ is

the first row of Q̃k and b is the first column of P̃m.

In sequel we assume that A, D ∈ Rd×d, b, c are in the
balanced canonical form.


