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ABSTRACT
This paper showcases a real-world example of a system that
achieves collaborative localization and mapping of multiple
agents within a building. The proposed system processes the
odometry and 3D point cloud data collected by the agents
moving around the building to automatically generate the
building’s floorplan on which the agent trajectories are over-
laid. The wearable hardware consists of a low-cost passive
integrated sensor that includes both a camera and an IMU
(Inertial Measurement Unit) and an embedded compute unit.
The system’s capabilities are shown through real-world ex-
periments.

Index Terms— collaborative localization, floorplan ex-
traction, visual-inertial localization, human-interpretable
map, wearable hardware

1. INTRODUCTION

This paper presents a case study of a wearable system that
can accomplish the cooperative positioning and mapping of
multiple agents within a building where GNSS (Global Nav-
igation Satellite System) signals are unavailable, by utilizing
low-cost passive multimodal sensors, e.g., camera and IMU
(Inertial Measurement Unit ) to compute the ego-motion of
the users. Also, the floorplan of the building is automati-
cally computed by processing the 3D point cloud coopera-
tively gathered by the users moving around the establishment
(warehouse, office, factory, etc.).

The motivation of this work is to provide a tool for hybrid
human and robot teams to co-localize in environments where
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Fig. 1. Visual abstract of the proposed system: individual
agents process their VIO (Visual-Inertial Odometry) locally
and transfer these to the server which produces a consistent
map, extracts the floorplan of the place, and sends it together
with agent trajectories to a mobile device for viewing.

the GNSS has no coverage indoors [1] or has large errors be-
tween buildings [2]. Such a system is useful in warehouses
where hybrid teams perform work cooperatively, or for ex-
ample in disaster relief situations where the knowledge of the
relative position of rescuers and helping ground and air ve-
hicles is important [3]. Also, this technology can be applied
in multi-user virtual or mixed-reality scenarios. Embedded
hardware offers the possibility to integrate these capabilities
into ever smaller wearable devices, in contrast to active sen-
sors like LiDAR that require significant amounts of power
which can prevent their usage in compact systems.

Indoor localization approaches are often based on already
existing infrastructure with known transmitter positions like
Wi-Fi, UWB (Ultra Wide Band), RFID (Radio Frequency
IDentification), Bluetooth, or light (either visible or infrared)
[4]. This infrastructure constrains the applicability of such
systems. The state-of-the-art commercial solutions for local-
izing a device without outside infrastructure include the two



biggest smartphone operating system manufacturers Google1

and Apple2. Both of these companies provide developer kits
to develop Augmented Reality (AR) and Virtual Reality (VR)
applications that can be leveraged to solve the cooperative lo-
calization problem with smartphones. However, these solu-
tions are optimized for augmented reality applications often
specially confined to a room-scale experience.

There are also different open source approaches for solv-
ing the multi-agent localization problem[5], but these solu-
tions lack an easily interpretable map as seen in the top right
of Fig. 1. Our approach is built on top of COVINS [6] al-
gorithm, a state-of-the-art cooperative SLAM (Simultaneous
Localization And Mapping) system. We extend the original
COVINS algorithm with a floorplan extraction step to create
a human-interpretable, top-view map of the place. The accu-
racy of the system is similar to the accuracy of Google AR-
Core in a room as shown in our experiments and it can work
reliably in larger areas like an entire building floor.

The main components of the showcased system are on the
visual abstract in Fig. 1. To summarize, the contributions of
this paper are as follows:

• We proposed an algorithm that computes and shares a
human-interpretable floorplan-like map of the environ-
ment in real-time with the locations of the users and
their respective trajectories which can be viewed on a
phone or any other device.

• We developed a compact wearable hardware prototype
for human or robotic agents using embedded hardware
that was tested in real-world experiments3.

2. RELATED WORK

Real-time localization in environments without reliable GNSS
signals is a widely researched topic. In [4] the state-of-the-art
indoor localization methods are surveyed. In the paper dif-
ferent device-based, monitor-based, and proximity detection
methods are compared based on localization techniques, such
as angle of arrival (AoA), time of flight (ToF), return time
of flight (RTOF), and received signal strength (RSS), and on
technologies, such as Wi-Fi, RFID, UWB, and Bluetooth.
A similar compilation is presented in [7], where the state-
of-the-art relative localization methods for robot swarms are
surveyed.

SpotFi [8] is an indoor localization system using commer-
cial Wi-Fi chips without special hardware or firmware. The
algorithm can achieve a median accuracy of 40 cm by using
super-resolution algorithms that can accurately compute the
angle of arrival of the signal from the localized device. The
localization is solved with multiple Wi-Fi access points with
known positions.

1ARCore: https://developers.google.com/ar
2ARKit: https://developer.apple.com/arkit
3Video demonstration of the proposed system: https://youtu.be/

RrW0zypa7nA

In [9] a system using UWB to accurately localize robots
is proposed. It uses 4 ceiling-mounted reference nodes and
the time-difference-of-arrival technique to achieve a localiza-
tion RMS error of 15 cm. There are also commercial systems
using UWB nodes available such as Ubisense4. Common in
all these localization techniques is that they rely on previously
installed infrastructure as reference nodes for the localization.

Both Google’s ARCore and Apple’s ARKit are software
developer kits to create AR applications. These provide mo-
tion tracking functions that rely on the phones’ sensors and
also functions such as Google’s Cloud Anchor for building
multi-user VR experiences. These are closed-source solutions
mostly for smartphones. They do not provide extensive map-
ping capabilities and also perform most of the processing in
the cloud which is an important constraint in many applica-
tions.

SLAM is the research field in robotics for localization in
previously unknown environments. Collaborative or multi-
agent SLAM builds a consistent map and localizes multiple
agents in it. In [5] and [10] the state of collaborative SLAMs
is surveyed. At this point there are multiple open-source solu-
tions for centralized collaborative SLAM, meaning the agents
communicate with a server that performs the global optimiza-
tion of the map. Visual collaborative SLAM algorithms in-
clude [11] and [12].

CORB2I-SLAM [13] and COVINS [6] both propose cen-
tralized visual-inertial collaborative SLAM algorithms built
on either ORB-SLAM2 [14] in the case of CORB2I-SLAM or
ORB-SLAM3[15] in the case of COVINS. Both of the meth-
ods perform map building and localization with passive sen-
sors, however, the resulting maps lack easy interpretability for
humans.

3. ARCHITECTURE

The proposed approach is built on top of COVINS[6] which
provides client-server communication and maintains the co-
herent global mapping between the agents, while every agent
computes its ego-motion using the ORB-SLAM3[15] algo-
rithm. The performance of COVINS is detailed in the origi-
nal paper [6] where it was shown to run with 12 agents and
also with fast-moving drones in real-time. Inherently these
performance properties apply also to the system presented in
this paper.

The client side of the algorithm is installed on NVIDIA
Jetson Xavier NX developer boards. The server performs
global optimizations when a place recognition is accepted
which can either be a loop closure event or a map fusion
event as detailed in [6]. This ensures the global consistency
of the map and the different agent trajectories inside.

3.1. Floorplan extraction
In the proposed method the global optimized map from
COVINS is further processed to achieve an easy-to-interpret

4https://ubisense.com/



Fig. 2. Steps of the floorplan extraction. Left to right: original 3D feature map; extracted floorplan; zoomed-in map with
trajectories.

overview map with floorplan and the trajectories of the dif-
ferent agents. The steps of the floorplan extraction are shown
in Fig. 2. The input of the process is the sparse combined 3D
feature map of the different agents, seen on the left of Fig. 2
where the yellow and blue colors denote the two agents which
recorded the points.

First, a statistical outlier removal is applied to the point
cloud to remove the outliers which can be seen all around the
first image of Fig. 2. The mean and standard deviation of the
filter were set empirically.

After the outlier removal, the floor and ceiling planes are
removed so the outline of the walls will become apparent.
Various methods, such as plane fitting with RANdom SAmple
Consensus (RANSAC) were tested but by using them other
horizontal planes, such as tables were also found. Thus we de-
cided to follow another approach: the floor and ceiling planes
were extracted by a distribution cut. The points are grouped
by their respective height into a histogram with a set bin size
and the algorithm searches for local maxima in this height
histogram. The floor plane should be the first and the ceiling
plane should be the last local maximum. A bin is consid-
ered to be a local maximum if it has the maximum number of
points in the immediate surrounding bins and more than the
average number per bin. Then the top and bottom of the point
cloud are simply cut along horizontal planes. These planes
are over the average height of the floor bin and under the av-
erage height of the ceiling bin by the standard deviation in
that bin. Our approach assumes a single floor scenario but the
distribution cut can be generalized to multiple floors.

Next, another statistical outlier filter is applied to delete
the remaining outliers. The resulting floorplan can be seen in
the second image of Fig. 2.

Finally, an image is created by the orthographic projection
of the remaining points to the horizontal plane, the last few
seconds (this is a viewing parameter) of the trajectories are
plotted on top and the region of interest around the trajectories
is cropped as seen in the right image of Fig. 2. This is saved
and published to a simple website using an Apache web server
and can be viewed on a phone or any other device.

3.2. Hardware
The goal was to create a small device for the agents that peo-
ple can wear and can also be mounted on robots. A lot of
preparation, work, and hardware testing went into the final
system so a short list and considerations are presented here.

3.2.1. Client
The Auvidea JNX30D developer board for NVIDIA Jetson
Xavier NX was chosen as the compute module for the client
because it has considerable hardware resources while requir-
ing low power. It can flawlessly run the ORB-SLAM3 client
and has a GPU that can later be used for better environment
understanding using CNNs. We power it using a 20 000 mAh
Xiaomi power bank with 50W maximal output. It has a USB
3.0 port for the camera and another 2.0 port that can be sol-
dered on for the Wi-Fi adapter.

The Intel RealSense D435i was chosen as the camera and
IMU for the client. Although only one IR camera is used from
this active stereo camera, the integration of the IMU sensor,
the low cost, and the readily available ROS package make it
the best candidate for our design choice. The IR camera has
the additional advantage of working great in lowlight scenar-
ios. The IMU error and noise parameters were characterized
using the Allan Variance method5 and the cameras and IMU
extrinsic parameters were calibrated using Kalibr [16].

The parts of the client system are secured and encapsu-
lated in a 3D printed box as in the left of Fig. 1.

3.2.2. Server and network
We use an ASUS laptop with AMD Ryzen 9 5900hx and 64
GB RAM as the server which is more than sufficient for 3
agent scenarios.

For the network, an ASUS Wireless AC2400 Router was
used which provides a pretty good range in a small package
with easy to configure interface. TODO about 80 meters or a
building floor inside our office space.

4. RESULTS

Two main tests were carried out in the real world. These tests
were recorded in the basement of our institution. For details,

5https://github.com/ori-drs/allan_variance_ros



Fig. 3. Image of the different hardware components used in
the trajectory comparison experiment.

kindly check the video attachment here: https://youtu.
be/RrW0zypa7nA.

In the first experiment, the agents initialized at the same
place and traversed the basement along different trajectories.
Note that the trajectories on the COVINS map update con-
stantly when a global optimization is performed, and the 3D
map is becoming ever more cluttered but the mobile map is
easy to interpret throughout.

In the second experiment, the robustness of the place
recognition pipeline was tested by starting all agents without
scene overlap between their camera views. Note that right
after all the maps are fused the mobile map appears. Also,
the map and the trajectories are very similar in quality to the
first experiment.

The system performed well and robustly in both cases
and the floorplan is much easier to interpret than the original
COVINS map.

4.1. Trajectory accuracy
4.1.1. Solution with ARCore

We built a unity application for Android to compare our ap-
proach based on COVINS. The application uses Google’s
ARCore developer kit and specifically the Cloud Anchor
concept. This is a method to provide shared AR experiences
for multiple users. In our case, we used it to get the rel-
ative device locations and benchmark COVINS against the
trajectories.

Cloud Anchors are local feature clouds around a user-
specified 3D point, collected by one phone and then shared
online through the Cloud Anchor API with other phones. In
our case, we place a Cloud Anchor by one of the phones and
then resolve it by the others to have a common coordinate sys-
tem. After that, the 6DoF pose of each phone in this common
coordinate system is known, and an overview map is created
with the anchor and the phone poses.

This works great in one room but each user defines its lo-
cation in relation to the anchor, and no inter-user matches and
loop closures are used for global optimization which signifi-
cantly worsens the trajectory further away from the anchor.

Fig. 4. Trajectory overview of the two solutions and GT. Note
that there are no significant differences in terms of localiza-
tion error between the COVINS and ARCore based solutions.

4.1.2. Trajectory comparision

The front of the 3D-printed client box was updated to hold
a phone as seen in Fig. 3. With this change, a qualitative
comparison could be carried out by running the ARCore and
COVINS methods at the same time on the same rigid body.

Ground Truth (GT) trajectories were also recorded with
the SZTAKI MIcro aerial vehicle and MOtion capture (MIMO)
system[17]. The MIMO arena uses an OptiTrack motion
capture system to provide sub-millimeter accurate, 240 Hz
tracking data for bodies with IR retroreflective markers.

Two markered-up agents traversed the MIMO arena along
two different trajectories while recording both COVINS, AR-
Core, and GT data. The recordings were synchronized by sav-
ing each trajectory pose with UNIX timestamps. This lacks
the synchronization accuracy for quantitative measurements,
however, it shows that the proposed method performs simi-
larly to ARCore in small spaces as seen in 4.

The COVINS and ARCore data is recorded in an arbitrary
coordinate system while the GT data was recorded in the co-
ordinate system of the arena. The trajectories were aligned
by calculating the rigid body transformation (SE3) between
them. For each COVINS and ARCore trajectory position, a
corresponding GT trajectory position was determined, choos-
ing the closest measurement in time and the transformation
was calculated by least square fitting of the point sets[18].

The aligned trajectories are plotted in 2D from above in
Fig. 4. There are 6 trajectories all starting from a filled circle
and terminating in a filled triangle. The trajectory of the first
agent is denoted with solid lines while the second agent is
denoted with dashed lines. The colors represent the recording
method as seen in the legend. Note, that both of the calculated
trajectories are similar in shape and similarly close to the GT.

In conclusion, our method based on COVINS can achieve
similar accuracy to ARCore in small spaces. As demonstrated
in the previous subsection, it can also robustly localize teams
in much larger environments that contain multiple rooms with
easily interpretable floorplan extraction.



5. REFERENCES

[1] Marko Modsching and R. Kramer, “Field trial on gps
accuracy in a medium size city: The influence of built-
up,” 2006.

[2] Jinyong Jeong, Younggun Cho, Young-Sik Shin,
Hyunchul Roh, and Ayoung Kim, “Complex urban
dataset with multi-level sensors from highly diverse
urban environments,” The International Journal of
Robotics Research, vol. 38, no. 6, 2019.

[3] Chang Liu and Tamas Sziranyi, “Road condition detec-
tion and emergency rescue recognition using on-board
UAV in the wildness,” Remote Sensing, vol. 14, pp.
4355, 2022.

[4] Faheem Zafari, Athanasios Gkelias, and Kin K. Leung,
“A survey of indoor localization systems and technolo-
gies,” IEEE Communications Surveys Tutorials, vol.
21, no. 3, pp. 2568–2599, 2019.

[5] Danping Zou, Ping Tan, and Wenxian Yu, “Collabora-
tive visual slam for multiple agents:a brief survey,” Vir-
tual Reality Intelligent Hardware, vol. 1, no. 5, pp. 461–
482, 2019, 3D Vision.

[6] Patrik Schmuck, Thomas Ziegler, Marco Karrer,
Jonathan Perraudin, and Margarita Chli, “Covins:
Visual-inertial slam for centralized collaboration,” in
2021 IEEE International Symposium on Mixed and Aug-
mented Reality Adjunct (ISMAR-Adjunct), 2021, pp.
171–176.

[7] Siyuan Chen, Dong Yin, and Yifeng Niu, “A survey of
robot swarmsrsquo; relative localization method,” Sen-
sors, vol. 22, no. 12, 2022.

[8] Manikanta Kotaru, Kiran Joshi, Dinesh Bharadia, and
Sachin Katti, “Spotfi: Decimeter level localization using
wifi,” SIGCOMM Comput. Commun. Rev., vol. 45, no.
4, pp. 269–282, aug 2015.

[9] Sivanand Krishnan, Pankaj Sharma, Zhang Guoping,
and Ong Hwee Woon, “A uwb based localization sys-
tem for indoor robot navigation,” in 2007 IEEE Interna-
tional Conference on Ultra-Wideband, 2007, pp. 77–82.

[10] Pierre-Yves Lajoie, Benjamin Ramtoula, Fang Wu, and
Giovanni Beltrame, “Towards collaborative simultane-
ous localization and mapping: a survey of the current
research landscape,” Field Robotics, vol. 2, no. 1, pp.
971–1000, mar 2022.

[11] Robert Castle, Georg Klein, and David W. Murray,
“Video-rate localization in multiple maps for wearable
augmented reality,” in 2008 12th IEEE International
Symposium on Wearable Computers, 2008, pp. 15–22.

[12] Patrik Schmuck and Margarita Chli, “CCM-SLAM:
Robust and efficient centralized collaborative monocu-
lar simultaneous localization and mapping for robotic
teams,” in Journal of Field Robotics (JFR), 2018.

[13] Arindam Saha, Bibhas Chandra Dhara, Saiyed Umer,
Ahmad Ali AlZubi, Jazem Mutared Alanazi, and Ku-
lakov Yurii, “Corb2i-slam: An adaptive collaborative
visual-inertial slam for multiple robots,” Electronics,
vol. 11, no. 18, 2022.
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